An Implementation Scheme for XML Transformation
Languages through Derivation of Stream Processors

Keisuke Nakano

Department of Mathematical Engineering and Information Physics,
University of Tokyo
ksk@mist.i.u-tokyo.ac.jp

Abstract. We propose a new implementation scheme for XML transformation
languages through derivation of stream processors. Most of XML transforma-
tion languages are implemented as tree manipulation, where input XML trees are
completely stored in memory. It leads to inefficient memory usage in particu-
lar when we apply a facile transformation to large-sized inputs. In contrast, XML
stream processing can minimize memory usage and execution time since it begins
to output the transformation result before reading the whole input. However, it is
much harder to program XML stream processors than to specify tree manipula-
tions because stream processing frequently requires ‘stateful programming’. This
paper proposes an implementation scheme for XML transformation languages,
in which we can define an XML transformation as tree manipulation and also we
can obtain an XML stream processor automatically. The implementation scheme
employs a framework of a composition of attribute grammars.

1 Introduction

In recent years, various languages specialized for XML transformation have been pro-
posed|[25, 28, 10, 3]. Since XML documents have tree structure, these languages sup-
port various functions of pattern matching for paths in order to access particular nodes.
These node accessing methods are generally implementextasanipulatiorthat re-

quires the whole tree structure of an input XML document to be stored in memory. This
implementation might be inefficient in memory usage in particular when a facile trans-
formation, such as tag renaming and element filtering, is applied to large-sized XML
documents because it does not require all information about the tree structure.

XML stream processingas been employed as one of solutions to reduce memory
usage[22, 5]. XML stream processing completes a transformation by storing no tree
structure of XML documents in memory. While taking advantage in memory usage,
XML stream processing has a problem that programs are quite complicated because
XML stream processing is defined by ‘stateful program’ in the sense that programmers
need to consider what to memorize on reading a start tag, what to output on reading
an end tag, and so on. It imposes a burden on programmers and causes error-prone
unreadable programs.

To release programmers from the bother of stream processing, two kinds of ap-
proaches have been proposed. The first approach is to add various primitive combi-
nators or functions for stream processing[11, 27]. Though it helps us to make stream

XML transformation program

| Xatt—S: XML treeto XML stream
| Xatts S : XML strearrto XML stream
] XML stream processor

(I) Converting into an ATT

(1) Composing with an AT Barse

(1) Stream processing style evaluation

Fig. 1. Derivation of stream processing programs

processing programs, we still need to write programs with the prospect that the input
XML is not a tree but a stream. The second approach is to give a mechanism deriving a
stream processing program from a specification of a tree manipulation or node access-
ing[1, 17,19, 4, 15]. We can write the program in tree manipulation style and need not
to bear in mind that the input XML is a stream. However, the derivation mechanism can
be applied to only a restricted class of XML transformations.

This paper basically takes the second approach, provided that the derivation method
can deal with a wider class of XML transformations than before. Our derivation mech-
anism is based on a frameworkatfributed tree transduc€ATT)[6] which is a formal
computational model foattribute grammafAG)[12]. The mechanism is summarized
by dividing it into three steps (Fig.1). In the first step (I), a given XML transforma-
tion is converted into an ATT specialized for XML transformation, called X&tt
The Xatt—s represents a transformation from XML trees to XML streams. This pa-
per roughly shows how to convert an XML transformation into Xattthrough two
kinds of practical XML transformation: XPath querying[24] and partial modification.
The former returns the collection of all elements specified by a given XPath expression.
It is useful in the case that the input XML is regarded as a database. The latter returns
an XML with a similar structure to the input XML where several fragments in the input
are replaced with different ones. We can write a variety of XML transformations by
combination of these basic transformations, though they are only a subset of the class
of XML transformation specified by Xatts. However, it does not show the limitation
of this approach. This paper claims that we can derive an XML stream processor from
every XML transformation program defined by Xatt which can deal with a wide
class of XML transformation as well as non-circular AG. If one wants to implement
an XML transformation language intended for stream processing, all he has to do is to
give a conversion method into Xate for the language. The stream processor is derived
from an Xatt—S by the following two steps.

In the second step (Il), we can obtain an Xat which represents a transforma-
tion from XML streams to XML streams, from an Xatf. We employ adescriptionall
compositiofB], which is a composition method for AGs. If two AGs are given, where
one represents a transformation from a languag®® a languagé.g and another rep-
resents a transformation from a languageto a languagéd.c, then we can obtain a
single AG fromLa to Lc by descriptional composition. The obtained AG does not cre-
ate any expressions lrg even as intermediate result. The method can also be applied
to ATT[14, 16]. In our framework, we use this method to compose a giverXaitith
the other ATT representing a parsing function for XML and obtain ansXattWhen
more appropriate, the original descriptional composition cannot be applied to the pars-

ing ATT because of the restriction of the method. For this reason, we use an extended
descriptional composition[16] which can deal with ATTs with stack devices required in
the parsing ATT.

In the third step (ll), from the Xatt’s derived in the previous step, we can obtain
an XML stream processor by specifying evaluation order for attributes in stream pro-
cessing style. The XML stream processor can be derived by dividing the computation
by Xatfs into the computation for each input symbol. This generation method is sim-
ilar to Nakano and Nishimura’s method in [17, 19]. However, they failed to deal with a
large class of ATTs because they sticked to derivation of finite state transition machines
with dependency analysis.

This paper also shows benchmark results to illustrate effectiveness of our frame-
work. The author has implemented an XML transformation language XTiSP (an ab-
breviation for XML Transformation language intended for Stream Processing) based
on our framework. Using XTiSP, we can program an XML transformation as tree ma-
nipulation with XPath and obtain the corresponding XML stream processor for free.
We compare an implementation of XTiSP with two XSLT processors, Xalan[26] and
SAXON[23].

Related work

The issue of automatic generation of stream processors has been studied for various
languages. Most of these studies, however, targeted for only query languages such as
XPath[1, 4, 9] and a subset of XQuery[15]. These querying languages have few express-
ibility to specify XML transformation. For example, they could not define the structure-
preserved transformation, such as renaming a tag maimte b. Our framework allows

not only querying functions but also ability to specify such transformation.

Our framework is based on the previous work[17, 19]. They succeeds in deriving a
stream processing program from the specification of XML tree transformation defined
by an ATT. However, in their framework, a set of ATTs we can deal with and input
XMLs for them are quite restricted because of the weak applicability of AG composi-
tion method[8]. Our framework solves this problem by using the extended composition
method[16].

Additionally, there are several work using a framework of attribute grammars for
XML transformation. Whereas we use binary representation for XML trees, [18, 2] im-
prove a traditional attribute grammar for unranked representation. However, their at-
tribute grammars do not have a framework of descriptional composition we require. Al-
though [13] employs an attribute grammar for XML stream processing, they uses only
L-attribute grammars. In our framework, attribute grammars for XML stream process-
ing are non-circular, which is wider class than L-attribute, and they are automatically
derived from tree manipulation programs.

Outline

The rest of this paper is comprised of seven sections, including introduction. Section 2
gives basic notations and a brief introduction of attributed tree transducers. In Section 3,
we show how to specify XML transformation by using Xaft. Section 4 presents a

composition method of Xdtts and an XML parser. In Section 5, we mention how to
obtain an XML stream processor from Xatt. Then Section 6 shows several bench-
mark results to illustrate effectiveness of our framework. Finally we conclude this paper
in Section 7.

2 Preliminaries

2.1 Basic Notions

The empty set is denoted iy The set of natural numbers including 0 Nyand the set
of natural numbers excluding O ly... For everyn € N, the set{1,...,n} is denoted
by [n]. In particular,[0] = 0. We denote a set of finite strings over a Betf symbols by
P*. A null string is denoted by.

A ranked alphabek is a finite set in which every symbol is associated with a hon-
negative integer callethnk. We denote the rank of a symbelby rank(c). We may
write (" to indicate tharank(c) = n. Let I be a ranked alphabet adbe a set of
variables disjoint witl®. The set of-labeled trees indexed by, Aenoted byfs (A) (or
Ts, if Ais empty), is the smallest super§eof A such thato(ty,--- ,t,) € T for every
oW ez andty, - .theT.

We denote bytx := g the substitutionof occurrences of a variable by s. Let
t,s1,...,5,U1, ...,Uy be trees inTx(X) such that every; for i € [n]; is a subtree of,
provided thau is not a subtree aiij for anyi andj with i # j. The treet[ug,... Uy :=
S1,--,5n], Ort[Ui 1= Sic|n, is Obtained fromt by simultaneouslyeplacingevery sub-
tree at the points of occurrences wf,...,u, by the treess,,...,s,, respectively. If
p=[uy,...:=si,...], then we may write(t) for t{us,... :==s1,...].

The prefix-closed set of apathsof t, denoted bypath(t)(C N*), is defined by
path(a(ty,---, t)) = {e} U {iw | i € [k],w € path(t;)} if o® e =. We writet|y for a
subtree of a treeat a pathw € path(t). Every pathw € path(t) refers to a corresponding
label oft, denoted bylabel(t,w), which is defined byabel(o(ts,- - ,th),€) = o and
label(o(ty, - - - ,tn),iw) = label(tj,w) for everyi € [n] andw € path(t;).

A reduction systens a systen(A,=) whereA is a set and= is a binary relation
overA. We writeag =" an+1 if 8 = a41(i € [n]) for someay,- - ,an11 € A. In par-
ticular,a =0 a. a € A is irreducible with respect to=- if there is noc € A such that
b= c(# b). If b is irreducible wherea = b for somei € N and there is no pair of
irreducible termb/ (£ b) andi’ € N such thata =" b/, we sayb is anormal formof a
and writenf(=-, a) for b.

2.2 Attributed Tree Transducers

We give a brief introduction oattributed tree transduc€ATT) which has been intro-
duced by llop[6] as a formal computational model of attribute grammar(AG). See [7]
for detail. The ATTM is defined by a tuplM = (Syninh,Z, A, s, §, R), where

— Synis a set ofsynthesized attributefnh is a set ofinherited attributesWe denote
{s(1k) | s€ Synk € [n]} and{i(m) | i € Inh} by Msyn(n) andMinn, respectively.
— X andA are ranked alphabets, called thput and output alphabetespectively.

— Sp is the initial (synthesized) attribute afids the root symbol with rank 1. These
are used for specifying the computation result.
— Ris a set of attribute rules such tHat= Ugcs (43 R® with finite setsR’ of o-rules
satisfying the following conditions:
e For everys e Synando € %, R® contains exactly one attribute rule of the form
of s(1) — n wheren & Tz (Msyn(rank(o)) U Minn).
e For everyi € Inhando € Z, R° contains exactly one attribute rule of the form
of i(Tk) — n wherek € [rank(o)] andn € Tz (Msyn(rank(a)) U Mian).
e R’ contains exactly one attribute rule of the formsyf(m) — n wheren ¢
Tz(Msyn(1)).
e Forevenyi € Inh, R contains exactly one attribute rule of the formi@fl) — n
wheren € Ts(Msyn(1)).

where we uset, 1, T2, - - - for path variables
The computation bl for input treet € Ts is defined by a reduction systetd, = 4t))
whereU = Ta({a(w) | a € SynJulnh,w € path(t)} and=-y is defined by

— s(w) =m ¢ N[1:= W] wheres € Syn s(1) — n € R° ando = label(t,w).
— i(WK) =M n[m:=w] wherei € Inh, s(Tk) — n € R° ando = label(t, w).
= 3(...,Nky--.) =Mt 6(...,N,...) whered € A andng =m Ny

where [1t:= w] with w € N* stands for a substitutiofi(1r),s(11),s(T2), - - - := (W),
S(W1),S(W2), - - - licinhsesyn Thetransformation result by M for the input treéstdefined
by nf(=m4()> Sn(€))(€ Ta).

3 Attributed Tree Transducers for XML transformation

Our framework requires XML transformations to be defined by specialized ATTs in
order to obtain the corresponding XML stream processor. In this section, we first in-
troduce a model of XML trees and XML streams as annotated trees. Next we ex-
tend ATTs to ones that deal with annotated trees, calltiibuted tree transducers

for XML(Xatt—S). Then we show several examples of Xattwhich represent basic
XML transformations.

For simplicity, we deal with XML documents with no character data and no at-
tribute. Our framework can be easily extended with them and the actual implementa-
tion supports them. In the rest of paper, a bare word ‘attribute’ is not used for XML
attributes but for synthesized/inherited attributes in ATTS.

3.1 XML Trees and XML Streams

We use a binary representation for XML trees in which each left branch points to
the leftmost child and each right branch to the first sibling node to follow in the tree

structure of XML. For example, consider a fragment of Xt
<a><c/><d/> . It has tree structure as shownl|in /?\
the upper-right figure. In binary representation, the XML treeb C d
is figured as shown in the lower-right one where a black bul=

let stands for a leaf which means the end of siblings. Every e

tree in binary representation is defined by a tree Gyge = | |
g

——C——d—e

{N®@ LO} whereN is a binary symbol annotated with a lah l l
andL is a nullary symbol corresponding a leaf. For instance| we
write Na (Np (L, N (L,Ng(L,L))),L) for the XML tree above. The set of trees in binary
representation is denoted By,...

XML streams are defined by monadic trees oXgfeam= {SY,E®,Z()} where
S andE are unary symbols corresponding a start tag and an end tag, respectively, each
of them is annotated with a label as wellldsandZ is a nullary symbol standing for
the end of stream. For instance, we wistg(Sy (En (Sc (Ec(Ea(Z)))))) for a fragment
of XML <a><c/><a> . The set of streams is denoted By,

3.2 Extension of Attributed Tree Transducers with annotation

Xatt'—S deals with annotated trees such as XML trees and XML streams as ATT deals
with trees. An Xatft~S is defined by a tuple d¥l = (SynInh,Z,A, R)? in similar way to

an ATT, whereZ = Tyee andA = SqyeamSince an Xatts represents a transformation
from XML trees to XML streams. The major difference from ATT is tiais defined

by Uges,.R%* With finite setsR°* of ox-rules in which we can use the annotatiom

a right-hand side of an attribute rule. For exami®¥ may contain an attribute rule
s(m) — Sx(s(m)). We show a simple example of Xatf which represents an iden-

tity XML transformation that takes an XML tree and returns the corresponding XML
stream. The Xaltt’s Mig = (SynInh,%,AR) is defined by

— Syn= {s} andInh = {i}
- R=RURMUR" where
e Ri= {Sn(T[) — S(TI:I.)7 I(TI:I.) — Z}
o R = {s(1) — Sx(s(md)), i(T) — Ex(s(12)), i(T2) — i(1)}
o Rt = {s(m) —i(m}.
Lettingt = Na(Np(L,Na(L,L)),L) be a given input XML tree ane- stand for=-y ;).
the transformation result ®fliy is computed by
sn(e) = s(1) = Sa((11)) = Sa(Sp(s(111)) = Sa(Sp(i(11
(So(En(Sa(s(1121)))) = Sa(Sw(E
))) = Sa(So(En(Sa(Ea(i(1122)))))

1))

(Sa b(Sa(i(1121))))
(Sa(Ea((1122)))

(Sa(Ea(i(112))))) = Sa(Sb(En(Sa(Ea(i(11))))))
Eb(Sa(Ea(Ea(s(12))))))) = Sa(Sb(En(Sa(Ea(Ea(i(12)))))))
= Sa(Sb(En(Sa(Ea(Ea(i(1))))))) = Sa(Sb(En(Sa(Ea(Ea(2))))))-

1 The initial attributesy, and the root symbdi are omitted for simplicity.

Fig.2 visualizes the above computation. It shows the input XML traenotated with
attributes and their dependencies. For examiplel21) is computed byE,(s(1122)
because of the attribute rufgml) — Ex(s(12))) € R¥ with 1= 112 andx = a from
label(f(t),112) = N,.

The Xatt—S Mg transforms from XML trees into the corresponding XML stream.
Using two attributes andi, we can make an evaluation in depth-first right-to-left order.
Note that we do not directly use this Xatf for stream processing. Since we use an
ATT obtained by the composition of the original Xatt and parsing transformation,
the above evaluation does not mean that stream processing cannot start to output any
result before it reads the complete input.

Xatt'—S can deal with symbols other than output symbol€igeamin right-nand
sides of the attribute rules. Let us consider an X&tM, has the same definition as
Miq except thaR\x is a set of the following rules:

s(m) — Cat(Sx,s(m)), i(Tl) — Cat(Ex,s(T2)), i(T2) — i(T).

The computation by is done in similar to that biq. For example, iiMig outputs
Sa(Sw(En(...))) for an input,M/; outputsCat(Sa, Cat(Sp,Cat(Ep, ...))) for the same

input. The symbol$y andEy are used as nullary symbols and the binary synthal

means a concatenation of outputs and In the rest of paper we use these symbols instead
of unary symbol$y andEy for output symbols. It will be helpful for us to obtain XML
stream processors.

Furthermore, our framework allows the output alphabet of'X&tto include the
other symbols such &Stry, Eq,, And, Or andIf: the nullary symbolStry means a
string valuex; the unary symboEq, means a boolean value representing whether the
argument matches a string valyeor not; the binary symbolénd and Or represent
boolean operations in usual way; the 3-ary symibaheans a conditional branch by
the first argument. These symbols are useful for us to define a wide variety of XML
transformations.

Sn(€) ﬁ z
. Nau(l)E sz L i(12)
sa | g Nt T
s11 Np , s112 Na —suzg L i(a
‘ Ep .. A Eq.. TN
sy L 141 sa1oy L 4129
A A

Fig. 2. The computation by for the inputNa (Np (L, Na(L,L)),L)

3.3 Conversion from Practical XML Transformations to Xattt—s

This section gives practical examples and several hints for converting XML transfor-
mation into Xatt—S. A basic idea of the conversion is that we give a number of pairs
of synthesized attributeand inherited attributeiswhose attribute rules fdiy have the
following form:

S(T) — If (Eest €51, €52), i(Th) — If (Gest &1, 62), i(m2) —i(m (1)

whereees;, €51, €52, 61 ande;, are right-hand side expressions for Xatt By adjusting
these expressions we can convert a variety of XML transformations inté-RaEor
example, let us consider an Xatt Mg which has the same definition b, except
thatR"x has attribute rules of the form (1) where

Best= Eqy(Strp), &s1 = S(TR), &5 = Cat(Sx,S(T)), @1 = &2 = Cat(Ex(S(T2)))?.

The Xatt—S My gives a transformation which outputs the input tree wittbrelement,
which can be figured out as follows. ¥f# b, thenRY of Mg equals to that oMy,
because we take the second braqaln(Sy,s(rd)) for If. Suppose thax = b. Since

we take the first branck(m2), the dotted arrow which points &11) in Fig.2 comes

from s(112) instead ofs(111). It implies that all nodes under the first branchNyf is
skipped in the evaluation. Therefore we get the transformation result which is the input
tree with nob element. In the following, we show how to convert XML transformations

to Xatt—s for two practical examples{Path queryingandpartial modification Each
transformation is defined by a pair of synthesized and inherited attributes. A number
of XML transformation programs can be regarded as the combination of these basic
transformations.

XPath Querying and its extension XPath[24] is a syntax for defining parts of an XML
tree by using paths on the XML tree. For exampdild::a/descendant::b

[child::c] designated elements each of which is descendant ofaanode and
has ac node as its child. XPath querying collects all elements satisfying the XPath
expression.

A part of XPath querying can be converted into Xatt We consider querying by
absolute XPath expressions in which only forward axes are ugedthe expression
cannot contain backward axes suclpagent andancestor . Note that this restric-
tion is not too excessive. All backward axes in absolute XPath can be removed by the
method introduced by Olteanu et al.[21].

XPath querying is converted into X&atf Mque Which contains conditional branches
of the form (1) where

es1 = Cat(Sx,s(1d)), esp=s(1d), e1=Cat(Ex,s(12)), ep=9(2).

In the computation bMque the node is copied iest is evaluated to true at the node.
Otherwise, no copy is created for the node. Thus we need to specify how tegive
for each XPath expression in order to convert the XPath querying intb %att

2 The conditional branckf is useless for(md)-rule because;; = e;.
3 This conversion assumes that the node whose ancestor is queried is not queried by a given
XPath expression. In order to query such nested nodes, the other conversion is required.

The conversion is defined by associating all subexpressions of a given XPath ex-
pression. with a synthesized or inherited attribute in an'X&attSubexpressions in
bracketed qualifiers (also called predicates) in the XPath are associated with synthe-
sized attributes. The other subexpressions are related with inherited attributes. Con-

ul

sider an absolute XPath expressfcohild::a/descendant ::b[child::c]

u2 vl
We take three subexpressions as shown by curly braces each of which is associated
with an attribute assigned to the brace. The attributtandu?2 are inherited an@’1
is synthesized. To complete the conversion, we use one more atti®tdepropagate
information about whether the node is a descendant of the node satisfying the XPath
expression. The following attribute rules define the relation of the attributes:
R = {ul(ml) — True, u2(1tl) — False, u3(1l) — False, ...}

RV = {v1(1) — Or(Eqy(Str¢),v1(TR)), ul(Td) — False, ul(T2) — ud(Tv),
u2(md) — Or(u2(m), And(ul(T), Eqy(Stra))), u2(T2) — u2(1),
3(rd) — Or(u3(m), And(u2(11), And(Eqy,(Stry),vi(Td)))),
u3(m2) —, Or(u3(m), And(u2(1t), And(Eq,(Strp),vi(1d)))), ...}
R- = {v1(m) — False, ...}.

c

where several attribute rules are omitted. We use the same attribute rRlearsdR? of

Miq for attributessy,, sandi. The value of an attributel represents whether the node is
the child of the root; The value o2 represents whether the node is the descendant of an
a node which is the child of the root; The valuewdfrepresents whether either the node
or one of the following sibling node is@node. An XattS representing the intended
XPath querying is defined bylgue with eest= Or(u3(11), And(u2(11), And(Eqy(Strp),
vl(md)))). The expressiones;, Which equals to the right-hand side of the attribute rules
for u3, represents whether either the node or one of its ancestors satisfies the XPath.

Partial Modification Whereas XPath querying leaves the designate elements and strips
their contexts, partial modification leaves the context of the the designate elements and
replaces the elements with the other elements. The partial modification is converted into
an Xatt—s in similar way to XPath querying. Let us consider an XattM,oq which

has the same definition 84, except thaR'x is a set of the following rules:

es1 = Cat(Sx, Cat(Ex,s(12))), es2= Cat(Sx,S(Td)), &1 = a2 = Ex(s(TR2)).

whereeggg; is a certain expression for specifying the designate node. The element is
replaced with a no-child elementef.s; is evaluated to true at the node. Otherwise, the
node does not change since the attribute rules equals to thg.of

Let us see the other example of partial modification. Consider ari—Xatt’

mod
which has the same definition Bl,oq except that the first two rules &' is as follows:

es1= Cat(Sa, S(Tl)), €sp= Cat(Sy,S(1)), &1 = Cat(Ea,S(T2)), € = Cat(Ey, S(T2)).

The name of the node changes iatif ges;is evaluated to true at the node. Otherwise,
the node does not changed. This procedure is applied to every node of the input XML.

Now we show an example of X&tt® Mycsthat plays a role of partial modification. The
attribute rules oM csare comprised of

R = {sn(m) — s(m), i(d) — Z}
RY = {v1(m) — Or(Eqy(Strk),vl(T2)),

s(m) — Cat(If(And(Eqy(Stry),v1(1d)),Ss, Sx),S(Td)),
i(md) — Cat(If(And(Eqy(Strs),vl(d)), Es, Ex), s(TR)),
'(n2)—> (m}

= {s(m) — i(m), vA(1) — False}

where we useat(If (eest €1,€2),€3) instead oflf (eest, Cat(er, €3), Cat(ep, €3)) to ob-
tain efficient stream processors. The name of every node chang&shptd jcsonly if
the node satisfies an XPath expresgiescendant-or-self::J[child::k]

(=/13[K]),i.e., Myschanges the name of tienode having & node as its child into
S. For example, an XML<h><I><k/></I><J><k/></J><JI><c/></J></h>

is transformed inteh><I><k/></I><S> <k/></S> <J><c/></J></h> byMys
It uses no inherited attribute associated with the subexpref#ésecendant-or-

self:: since the expression should be satisfied at any node.

Combination of basic transformations The conversion of basic transformations is
easily extended by the other XML transformations. For instance, consider an XML
transformationTcompwhich returns the collection of results of partial modification only
for nodes specified by an XPath. We need two pairs of synthesized and inherited at-
tributes: one paifs;,i1) is used for a partial modification; another pgss,i-) is used

for collecting results for each nodes specified by XPath. The XML transformagign

is defined by Xatt”s with these attributes. The conversion of combination of basic
transformation into XaltS has been automatically done in the implementation of an
XML transformation language XTiSP introduced in Appendix B (see also [29]).

4 Composition with an XML Parsing Attributed Tree Transducer

This section introduces a method for obtaining an ATT which represents a transfor-
mation from XML streams to XML streams, denoted by Xatt An Xatt—S in the
previous section represents a transformation from XML trees to XML streams. In order
to derive Xatt—S, we compose the Xatt® with an XML-parsing ATTMpgrse to syn-
thesize a single ATT, wher®lparse represents a transformation from XML streams to
trees. The composition employs a composition methodtack-attributed tree trans-
ducergSATT)[16] because the parsing ATT requires a stack device which was harmful
for the original composition method [8, 14]. Since the composition method is rather in-
volved, we introduce the method specialized for the case of the composition &nXatt
and the parsing AT Mparse Whose definition is presented in Appendix A. By apply-
ing the composition method to a given Xatt andMparse the following composition
method is obtained. Although the composition method does not deal with annotations
of nodes, we can easily make extension of the method for them.

Let M = (SynlInh, Zyee, A, Sn, 1, R) be an Xaft"SwhereA includes primitive func-
tions such a€at, Sy, True, and so on. The corresponding Xatt is defined byM =
(Syﬁ, Inh/, zStreamA/, Sn, ﬁ, R) Whel‘e

— Syd={(s,s)| s €Syn sc {p,I}}, Inh' = {(i",;s) | I" € Inh, s€ {p,1}}
— N = AU{Head", Tail¥,Cong? Nil©},
— andR = R* URS«URE URZ with

R* = {sn — ¢[/() := (S, p)(T)]¢csyn| (Sn(T) — §) € R}
U {(i",p) — ¢[s' () := (3, p) (1) |gesyn| ('(T) — ¢) € R}
U {{i",1) — Nil | i € Inh}
R> = {(s,p)(m) — p(9) | (S() — ¢) e R™,S e Synp
U {(s,1)(1) — Tail((s,1)(m2)) | §' € Syn}
U {(i",p)(Td) — p(9) | ("(M) — ¢) € R™,i" € Inh}
U {(i",1y(rd) — Congp(d), (i",1) (1) | ("(T2) — &) € R¥,i’ € Inh}
REx — {< 7 (
(
(
(

),
) (1) — &[i"(10) := (i, p) (MW]ircinn | (S(1) — ¢) € R",s € Syn}
U {(s,1)(1) — Cong(s,p)(d), (s, 1)(1)) | §' € Syn}
U {(i",p)(m2) — Head(/",1) (1)) | i € Inh}
u {(i",1)(m) — Tail((i’,1)(1)) | i’ € Inh}

R% = {(s,p)(1) — ¢[i"(10) := (", p) (]iernn | (S(T) —) € R",S € Sy
U {(<,1)(1) — Nil | § € Synt

wherep = [s' (1), s (T2),i (1) := (s, p) (1), Head (s, 1) (1)), {i", p) (T s esyni'einn-

The added output symboleadTail,ConsandNil are caused by a stack operator in
Mparse Each of them has a meaning with respect to stack operadiead e) represents
the top-most element of a staekTail(e) represents a stackwhose top-most element
is removed;Conge;, &) represents a stack obtained by pushing a velu® a stack
&; Nil represents an empty stack.

For example, we obtain X&tt® M), from the definition of the Xaltts M s by the
above method. The attribute ruleshf, s are comprised of

R* = {sn(1) — (s,p)(TL), (i,p)(T) — Z, i,1)(Tl) — Nil},

R = {{s,p)(1) — Cat(If(And(Eqy(Stry), (v1,p)(dl)),Ss, Sx), (s.p) (1)),
(s1)(m) — Tail((s, 1) (1)),
(i,p) () — Cat(If (And(Eqy(Stry), (v1,p)(Td)), Es, Ex), Head (s, 1) (1)),
(i,1)(m) — Cong(i,p) (1, (i,1) (1),

(v1,p) (1) — Or(Eqy(Strc),Head (v1,1)(1d))), (v 1)(m) — Tail({v11)(m))},

R = {{s,p)(m) — (i,p) (1), (s,1)(1) — Cong(s,p)(m), (s.1)(m1)),

(i,p) (M) — Head((i,1) (1), (i,1)(m) — Tail({i,1)(10)),

{v1,p)(T) — False, (v11)(1) — Cong(v1p)(Td), (v11)(Td)},

(I)(

= {{sp) (1) — (i,p) (1), (s,1)(1) — Nil, (v1,p)(m) — False, (v1,1)(r) — Nil}.

5 Attribute Evaluation in Stream Processing Style

We show a method deriving an XML stream processor from arFXatfhe main idea
of the method is that attribute values the Xaftare evaluated in stream processing
style.

In the attribute evaluation for X&ttS, we use extra rules for primitive functions as
well as the reduction rules specified by the definition of ATT. The definition oft X&tt
allows to use primitive functions such #s And andCat. At the previous stage, they
have been regarded as constructor symbols since the composition method for ATTs
cannot be applied to primitive functions destroying tree structures. The attribute evalu-
ation deals with them as meaningful functions to obtain the transformation result. For
instance, we have the following rules:

If(True,e1,€) = e, If(False,e1,e) = e, Eqy(Strx) = True,
And(True,e;) = ey, And(False,e;) = False,

It is obvious that these rules do not conflict with the reduction rules defined by ATT.

We use a running example of the Xatt M), g to show a method for deriving an
XML stream processor. Suppose that an inpuMggsist = S; (Sk (Ex (Si (Ei (E3(2))))))
corresponding to an XMkJ><k/><I/></J> . Let=- stand for:>M3kSﬂ(t> in the rest
of this section. From the definition by ATT, we obtain the transformation reshjt
r =nf(=, sn(€)). An XML stream processor fav}, 5 computes the normal form by
integrating a partial result for each input symt#y, Si, Ex, Sy, E| , E; andZ.

Before any input symbol is read, we find thats computed asf(=-, (s,p)(1)).
since we havesy(g) = (s,p)(1) from the attribute rule oR* in M, We cannot
progress the computation until the first symbol is read. Additionally, in preparation
for the following computation, we evaluate two attribute valgiep)(1) and(i,l)(1)
which may be needed when the next symbol is read. These values are compuied into
andNil, respectively, by the attribute rules &f.

When an input symbd3; is read, we find that is computed asf (=, (s,p)(1)).
since we have

(s.p)(1) = Cat(If(And(Eq,(Stry), (v1,p)(11)),Ss,Ss), (s,p)(11))
= Cat(lf(And(True7 <V17 p>(11))v SS,SJ)7 <S7 p>(11))
= Cat(If({v1,p)(11),5s,S;),(s,p)(11))
from the attribute rule oR* in M), g Eq,(Strx) = True andAnd(True,e1) = e;. We
cannot progress the computation until the next symbol is read for computing the value of
(s,p)(11) and (vl p)(11). Additionally, in preparation for the following computation,

we evaluate two attribute valuéisp)(11) and(i,)(11) which may be needed when the
next symbol is read. These values are computed as follows:

(i,p)(11) =~ Cat(If({(v1 p)(11),Es, Ey),Head (s 1)(11)))
(i,1)(11) = Cong(i,p)(1),(i,1)(1)) = CongZ,Nil)
where we use the values @fp)(1) and(i,l)(1) that is prepared by the last step. The

attribute value of(i, p)(11) is just partially computed since it requires the following
input symbol to know the values ¢¥1,p)(11) and(s,1)(11).

1MB 2MB 4MB 8MB 1MB 2MB 4MB 8MB
Figure 3(a): Excecution time Figure 3(b): Memory usage

Bl xTrise 7JsaxoN [Zixalan

Fig. 3. Benchmark results

When the next input symb8k is read, we find thatis computed asf (=, (s,p)(1)).
since we have

Cat(If(v1p)(11),55,53), (5P} (11)

= Cat(If (Or(Eqy (Strk),Head (v1,1)(111))),Ss,Ss), (s,p)(11))

= Cat(If(Or(True,Head (v1,1)(111))),Ss,Ss), (s,p)(11))
If(True,Ss,S3), (s,p)(11)) = Cat(Ss,(s,p)(11)

= Cat(Ss, Cat(If(And(Eqy (Strs), (v1,p)(111)),Ss, Sk),

= Cat(Ss, Cat(If (And(False, (v1,p)(111)),Ss, Sk), (S, p)

= Cat(Ss, Cat(If (False,Ss,Sk), (s,p)(111)))

= Cat(Ss, Cat(Sk, (s,p)(111))).

Note that twoCat applications inCat(Ss,Cat(Sk,...)) will not be modified by the
following computation. Therefore the XML stream processor can output the §ging
andSy, correspondingS><k>, and the rest of result is computed &yp)(111). The
output is a desirable behavior for XML stream processing. The transformatibhay
replaces every element intds only when the node haskeelement as its child. Thought
the transformation cannot return any symbol even if an input symb»lis read, the
symbol<S> and its children are output once an input symbo$ is found at the child
position. If no<k> element is found at the child position ofJaclement, then thé
element are output without changing the element name.

The XML stream processor computes the transformation result by repeating the
similar procedure to above for the following input. Lettinbpl¥ be the number of in-
herited attributes of an X&tts M, the stream processor computes the fixed number
#inh+ 1 of values for each input symbol: one is used for the transformation result to
be output afterward, the others may be needed at the next computation as values of
inherited attributes.

)
(sp)(111)))
(

(
(
(

= Cat(
(
(111)))
(

6 Experimental Results

We have implemented our framework as an XML transformation language XTiSP[29],
in which we can use two kinds of primitive transformations: XPath iteration and par-

tial modification. See Appendix B for summary of XTiSP. The implemented system
takes an XTiSP program and returns a stream processing program written in Objective
Caml[20]. The system itself is also written in Objective Caml.

We compared a program in XTiSP, which is converted iMitps with the corre-
sponding program written in XSLT[25]. We used Xalan[26] and SAXON[23] as XSLT
processors. The comparison was done for an input XML generated randomly such that
each tag name is, J ork. The experiments were conducted on a PC (PowerMacintosh
G5/Dual 2GHz, 1GB memory). We measured execution time and memory usage for
several inputs whose size are 1MB, 2MB, 4MB and 8MB. Fig.3(a) and Fig.3(b) show
the comparison results. Our implementation is much faster and much more memory-
efficient than the others. We also tried more complicated examples of XML transforma-
tion such as XML database into XHTML and then our implementation won definitely.

However we cannot always benefit from automatic derivation of stream processors.
As an extreme example, X&t€ can define a mirror transformation which reverses the
order of child elements at every node. In this case, the program cannot output anything
except for the start tag of the root until the end tag of the last child of the root is read
whose next tag is the end tag of the root, that is the last token event of the input. This
kind of transformation is not appropriate to stream processing. Although we have no
way to find whether a given XML transformation is appropriate or not, we can easily
add a mechanism to measure growth of stacks required by stream processing.

7 Conclusion

We have shown an implementation scheme for XML transformation language intended
for stream processing. If one wants to implement an XML transformation language,
all he has to do is to give a conversion method into X&ttfor the language. The
programmer can obtain an efficient stream processing program without writing stateful
programs like SAX.

Additionally, we have implemented an XML transformation language XTiSP, which
has its encoding method into Xatf, and have compared with other XML tree trans-
formation languages to confirm effectiveness of our system. XTiSP works much faster
than the other implementations. because that it can output until the whole input is read.

Recently the author is addressing automatic generation from programs written in
XSLT into Xatt—S. If we automatically obtain Xdtt’S from XSLT programs, we can
also obtain the corresponding XML stream processor for XSLT.

Acknowledgment

This work is partially supported by tf@omprehensive Development of e-Society Foun-
dation Softwargorogram of the Ministry of Education, Culture, Sports, Science and
Technology, Japan. The author also thanks anonymous reviewers for their comments.

References

1. M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective dissemi-
nation of information. Innternational Conference on Very Large Databas2@00.

n

o Ul

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.
23.
24.
25.
26.
27.

28.
29.

M. Benedikt, C. Y. Chan, W. Fan, R. Rastogi, S. Zheng, and A. Zhou. Dtd-directed publishing
with attribute translation grammars. International Conference on Very Large Databases
2002.

. V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-purpose lan-

guage. Innternational Conference on Functional Programmi@gM Press, 2003.

. Y. Diao, P. Fischer, M. J. Franklin, and R. To. YFilter: Efficient and scalable filtering of

XML documents. Innternational Conference on Data Engineerjr&p02.

. Expat XML parserhttp://expat.sourceforge.net
. Z. Rilép. On attributed tree transducefscta Cyberneticab: 261 280, 1980.
. Z. Rildop and H. VoglerSyntax-directed semantics—Formal models based on tree transduc-

ers Monographs in Theoretical Computer Science. Springer-Verlag, 1998.

. H. Ganzinger and R. Giegerich. Attribute coupled grammarsSyimposium on Compiler

Construction SIGPLAN Notices, 1984.

. T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with deter-

ministic automata. Iinternational Conference of Database Theorglume 2572 o NCS

2003.

H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing languagi!
Transactions on Internet Technolq@(2):117-148, May 2003.

O. Kiselyov. A better XML parser through functional programmingPtactical Aspects of
Declarative Languagesolume 2257 o£ NCS 2002.

D. E. Knuth. Semantics of context-free languag®fathematical Systems Theoi3(2),

1968.

C. Koch and S. Scherzinger. Attribute grammars for scalable query processing on XML
streams. Innternational Workshop on Database Programming Languag@es.

A. Kihnemann. Berechnungsétken von Teilklassen primitiv-rekursiver Programm-
schemataPhD thesis, Technical University of Dresden, 1997. Shaker Verlag, Aachen.

B. Ludascher, P. Mukhopadhayn, and Y. Papakonstantinou. A transducer-based XML query
processor. Innternational Conference on Very Large Databas2@02.

K. Nakano. Composing stack-attributed tree transducers. Technical Report METR—2004-01,
Department of Mathematical Informatics, University of Tokyo, Japan, 2004.

K. Nakano and S. Nishimura. Deriving event-based document transformers from tree-based
specifications. IWorkshop on Language Descriptions, Tools and Applicatieoisime 44-2

of Electronic Notes in Theoretical Computer Sciern2@01.

F. Neven. Extensions of attribute grammars for structured document quetigsriational
Workshop on Database Programming Languagetume 1949 of NCS 1999.

S. Nishimura and K. Nakano. XML stream transformer generation through program compo-
sition and dependency analys8cience of Computer Programmin@o appear.

The Caml language homepadgtp://caml.inria.fr/ .

D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking forwardEDBT Workshop

on XML Data Managementolume 2490 o NCS 2002.

SAX: The simple API for XML.http://www.saxproject.org/

SAXON: The XSLT and XQuery processtittp://saxon.sourceforge. net/

XML path language (XPathhttp://www.w3c.org/TR/xpath/

XSL transformations (XSLThttp://www.w3c.org/TR/xslt/

Xalan-Java homepagettp://xml.apache.org/xalan-j/

XP++: XML processing plus plus.http://www.alphaworks. |bm com/tech/
xmlprocessingplusplus

XQuery 1.0: An XML query languagéttp://iww.w3.org/TR/xquery/

XTiSP: An implementation framework of XML transformation Ianguages intended for
stream processindnttp://xtisp.psdlab.org/

A Stack-Attributed Tree Transducers Mparse

Stack-attributed tree transducer(SATT) is an extension of attributed tree transducer(ATT).
See [16] for detail. The major difference from ATT is that SATT can deal with a stack
device for attribute values. Roughly speaking, SATT can simulate an ATT with an arbi-
trary number of attributes. In SATT, attributes are divided into two kinds of attributes,
stack attributes and output attributes. Only stack attributes have a stack value which
can be operated biyead Tail andCons An XML parsing transformatioMparse is an
example of SATT. An SAT Mparseis defined by

Mparse= (SynlInh, StSynStinh Zsyream Ztree; Sin, £, R)
whereSyn= {p}, Inh = 0, StSyn= {I}, Stinh= 0 andR = R* UR>* UREx UR? with

R = {sn(m) — p(1)}, R> = {p(m) — Nx(p(md),Head(I(m1))), |(m) — Tail(I(mal))}
R™ = {p(m) — L, I(m) — Congp(m),|(m))}, R = {p(r) — L, I(10) — Nil}

B Summary of XTiSP

We summarize our language XTiSP[29]. A program written in XTiSP specifies a trans-
formation from an XML to an XML. A simplified syntax of XTiSP is defined by

exp="f(exp ---, exp | <exp>[exd | expg exp| xpath
|if expthen expelse exp endif
|invite xpath do exp done
| visit xpath do exp done

A symbol f represents a function which takes a fixed number of strings or boolean
values and returns a string or a boolean value. An expressan| e is used for
constructing an element whose tag name and children are given by evaluagibanaf
e2 respectively. An expressial; e2returns a concatenation of evaluation results for
elande2 A symbolxpathstands for an XPath expression which returns a collection
of elements satisfying the XPath. Ah clause represents a conditional branch in a
usual wayinvite andvisit are used for XPath-based iteration mentioned below.
An expression betweetto anddone is callediteration body

The transformation by XTiSP is defined by changingebgent nodelnitially, the
current node is the root node of an input XML. When an iteration bodyrfate /
visit is evaluated, the current node is changed into a node specified by XPath as-
signed with the iteration. Amvite iteration returns a collection of results returned
by evaluating the iteration body where the current node is changed into every node sat-
isfying the XPath. Arvisit iteration returns a subtree of the input XML whose root
is the current node, provided that every nedstisfying the XPath is replaced with the
result returned by the iteration body where the current body is changed.into

All XTiSP programs can be converted into Xatt. Roughly speaking, an XTiSP
program is converted by associating each subexpression of the program, in particular
invite Jvisit iteration, with a pair of synthesized and inherited attributes.

