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Abstract. We propose a new implementation scheme for XML transformation
languages through derivation of stream processors. Most of XML transforma-
tion languages are implemented as tree manipulation, where input XML trees are
completely stored in memory. It leads to inefficient memory usage in particu-
lar when we apply a facile transformation to large-sized inputs. In contrast, XML
stream processing can minimize memory usage and execution time since it begins
to output the transformation result before reading the whole input. However, it is
much harder to program XML stream processors than to specify tree manipula-
tions because stream processing frequently requires ‘stateful programming’. This
paper proposes an implementation scheme for XML transformation languages,
in which we can define an XML transformation as tree manipulation and also we
can obtain an XML stream processor automatically. The implementation scheme
employs a framework of a composition of attribute grammars.

1 Introduction

In recent years, various languages specialized for XML transformation have been pro-
posed[25, 28, 10, 3]. Since XML documents have tree structure, these languages sup-
port various functions of pattern matching for paths in order to access particular nodes.
These node accessing methods are generally implemented astree manipulationthat re-
quires the whole tree structure of an input XML document to be stored in memory. This
implementation might be inefficient in memory usage in particular when a facile trans-
formation, such as tag renaming and element filtering, is applied to large-sized XML
documents because it does not require all information about the tree structure.

XML stream processinghas been employed as one of solutions to reduce memory
usage[22, 5]. XML stream processing completes a transformation by storing no tree
structure of XML documents in memory. While taking advantage in memory usage,
XML stream processing has a problem that programs are quite complicated because
XML stream processing is defined by ‘stateful program’ in the sense that programmers
need to consider what to memorize on reading a start tag, what to output on reading
an end tag, and so on. It imposes a burden on programmers and causes error-prone
unreadable programs.

To release programmers from the bother of stream processing, two kinds of ap-
proaches have been proposed. The first approach is to add various primitive combi-
nators or functions for stream processing[11, 27]. Though it helps us to make stream
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processing programs, we still need to write programs with the prospect that the input
XML is not a tree but a stream. The second approach is to give a mechanism deriving a
stream processing program from a specification of a tree manipulation or node access-
ing[1, 17, 19, 4, 15]. We can write the program in tree manipulation style and need not
to bear in mind that the input XML is a stream. However, the derivation mechanism can
be applied to only a restricted class of XML transformations.

This paper basically takes the second approach, provided that the derivation method
can deal with a wider class of XML transformations than before. Our derivation mech-
anism is based on a framework ofattributed tree transducer(ATT)[6] which is a formal
computational model forattribute grammar(AG)[12]. The mechanism is summarized
by dividing it into three steps (Fig.1). In the first step (I), a given XML transforma-
tion is converted into an ATT specialized for XML transformation, called Xattt→s.
The Xattt→s represents a transformation from XML trees to XML streams. This pa-
per roughly shows how to convert an XML transformation into Xattt→s through two
kinds of practical XML transformation: XPath querying[24] and partial modification.
The former returns the collection of all elements specified by a given XPath expression.
It is useful in the case that the input XML is regarded as a database. The latter returns
an XML with a similar structure to the input XML where several fragments in the input
are replaced with different ones. We can write a variety of XML transformations by
combination of these basic transformations, though they are only a subset of the class
of XML transformation specified by Xattt→s. However, it does not show the limitation
of this approach. This paper claims that we can derive an XML stream processor from
every XML transformation program defined by Xattt→s which can deal with a wide
class of XML transformation as well as non-circular AG. If one wants to implement
an XML transformation language intended for stream processing, all he has to do is to
give a conversion method into Xattt→s for the language. The stream processor is derived
from an Xattt→s by the following two steps.

In the second step (II), we can obtain an Xatts→s, which represents a transforma-
tion from XML streams to XML streams, from an Xattt→s. We employ adescriptional
composition[8], which is a composition method for AGs. If two AGs are given, where
one represents a transformation from a languageLA to a languageLB and another rep-
resents a transformation from a languageLB to a languageLC, then we can obtain a
single AG fromLA to LC by descriptional composition. The obtained AG does not cre-
ate any expressions inLB even as intermediate result. The method can also be applied
to ATT[14, 16]. In our framework, we use this method to compose a given Xattt→s with
the other ATT representing a parsing function for XML and obtain an Xatts→s. When
more appropriate, the original descriptional composition cannot be applied to the pars-



ing ATT because of the restriction of the method. For this reason, we use an extended
descriptional composition[16] which can deal with ATTs with stack devices required in
the parsing ATT.

In the third step (III), from the Xatts→s derived in the previous step, we can obtain
an XML stream processor by specifying evaluation order for attributes in stream pro-
cessing style. The XML stream processor can be derived by dividing the computation
by Xatts→s into the computation for each input symbol. This generation method is sim-
ilar to Nakano and Nishimura’s method in [17, 19]. However, they failed to deal with a
large class of ATTs because they sticked to derivation of finite state transition machines
with dependency analysis.

This paper also shows benchmark results to illustrate effectiveness of our frame-
work. The author has implemented an XML transformation language XTiSP (an ab-
breviation for XML Transformation language intended for Stream Processing) based
on our framework. Using XTiSP, we can program an XML transformation as tree ma-
nipulation with XPath and obtain the corresponding XML stream processor for free.
We compare an implementation of XTiSP with two XSLT processors, Xalan[26] and
SAXON[23].

Related work

The issue of automatic generation of stream processors has been studied for various
languages. Most of these studies, however, targeted for only query languages such as
XPath[1, 4, 9] and a subset of XQuery[15]. These querying languages have few express-
ibility to specify XML transformation. For example, they could not define the structure-
preserved transformation, such as renaming a tag namea into b. Our framework allows
not only querying functions but also ability to specify such transformation.

Our framework is based on the previous work[17, 19]. They succeeds in deriving a
stream processing program from the specification of XML tree transformation defined
by an ATT. However, in their framework, a set of ATTs we can deal with and input
XMLs for them are quite restricted because of the weak applicability of AG composi-
tion method[8]. Our framework solves this problem by using the extended composition
method[16].

Additionally, there are several work using a framework of attribute grammars for
XML transformation. Whereas we use binary representation for XML trees, [18, 2] im-
prove a traditional attribute grammar for unranked representation. However, their at-
tribute grammars do not have a framework of descriptional composition we require. Al-
though [13] employs an attribute grammar for XML stream processing, they uses only
L-attribute grammars. In our framework, attribute grammars for XML stream process-
ing are non-circular, which is wider class than L-attribute, and they are automatically
derived from tree manipulation programs.

Outline

The rest of this paper is comprised of seven sections, including introduction. Section 2
gives basic notations and a brief introduction of attributed tree transducers. In Section 3,
we show how to specify XML transformation by using Xattt→s. Section 4 presents a



composition method of Xattt→s and an XML parser. In Section 5, we mention how to
obtain an XML stream processor from Xatts→s. Then Section 6 shows several bench-
mark results to illustrate effectiveness of our framework. Finally we conclude this paper
in Section 7.

2 Preliminaries

2.1 Basic Notions

The empty set is denoted by/0. The set of natural numbers including 0 byN and the set
of natural numbers excluding 0 byN+. For everyn∈ N, the set{1, . . . ,n} is denoted
by [n]. In particular,[0] = /0. We denote a set of finite strings over a setP of symbols by
P∗. A null string is denoted byε.

A ranked alphabetΣ is a finite set in which every symbol is associated with a non-
negative integer calledrank. We denote the rank of a symbolσ by rank(σ). We may
write σ(n) to indicate thatrank(σ) = n. Let Σ be a ranked alphabet andA be a set of
variables disjoint withΣ. The set ofΣ-labeled trees indexed by A, denoted byTΣ(A) (or
TΣ, if A is empty), is the smallest supersetT of A such thatσ(t1, · · · , tn) ∈ T for every
σ(n) ∈ Σ andt1, · · · , tn ∈ T.

We denote byt[x := s] the substitutionof occurrences of a variablex by s. Let
t,s1, . . . ,sn,u1, . . . ,un be trees inTΣ(X) such that everyui for i ∈ [n]+ is a subtree oft,
provided thatui is not a subtree ofu j for any i and j with i 6= j. The treet[u1, . . . ,un :=
s1, . . . ,sn], or t[ui := si ]i∈[n]+ is obtained fromt by simultaneouslyreplacingevery sub-
tree at the points of occurrences ofu1, . . . ,un by the treess1, . . . ,sn, respectively. If
ρ = [u1, . . . := s1, . . .], then we may writeρ(t) for t[u1, . . . := s1, . . .].

The prefix-closed set of allpathsof t, denoted bypath(t)(⊆ N∗+), is defined by
path(σ(t1, · · · , tk)) = {ε}∪ {iw | i ∈ [k],w ∈ path(ti)} if σ(k) ∈ Σ. We write t|w for a
subtree of a treet at a pathw∈ path(t). Every pathw∈ path(t) refers to a corresponding
label of t, denoted bylabel(t,w), which is defined bylabel(σ(t1, · · · , tn),ε) = σ and
label(σ(t1, · · · , tn), iw) = label(ti ,w) for everyi ∈ [n] andw∈ path(ti).

A reduction systemis a system(A,⇒) whereA is a set and⇒ is a binary relation
over A. We writea1 ⇒n an+1 if ai ⇒ ai+1(i ∈ [n]) for somea1, · · · ,an+1 ∈ A. In par-
ticular, a⇒0 a. a ∈ A is irreducible with respect to⇒ if there is noc ∈ A such that
b⇒ c(6= b). If b is irreducible wherea⇒i b for somei ∈ N and there is no pair of
irreducible termb′(6= b) andi′ ∈ N such thata⇒i′ b′, we sayb is anormal formof a
and writenf(⇒, a) for b.

2.2 Attributed Tree Transducers

We give a brief introduction ofattributed tree transducer(ATT) which has been intro-
duced by F̈ulöp[6] as a formal computational model of attribute grammar(AG). See [7]
for detail. The ATTM is defined by a tupleM = (Syn, Inh,Σ,∆,sin, ],R), where

– Synis a set ofsynthesized attributes. Inh is a set ofinherited attributes. We denote
{s(πk) | s∈ Syn,k∈ [n]} and{i(π) | i ∈ Inh} by Πsyn(n) andΠinh, respectively.

– Σ and∆ are ranked alphabets, called theinput and output alphabet, respectively.



– sin is the initial (synthesized) attribute and] is the root symbol with rank 1. These
are used for specifying the computation result.

– R is a set of attribute rules such thatR= ∪σ∈Σ]{]}Rσ with finite setsRσ of σ-rules
satisfying the following conditions:

• For everys∈ Synandσ ∈ Σ, Rσ contains exactly one attribute rule of the form
of s(π)→ η whereη ∈ TΣ(Πsyn(rank(σ))∪Πinh).

• For everyi ∈ Inh andσ ∈ Σ, Rσ contains exactly one attribute rule of the form
of i(πk)→ η wherek∈ [rank(σ)] andη ∈ TΣ(Πsyn(rank(σ))∪Πinh).

• R] contains exactly one attribute rule of the form ofsin(π) → η whereη ∈
TΣ(Πsyn(1)).

• For everyi ∈ Inh, R] contains exactly one attribute rule of the form ofi(π1)→η
whereη ∈ TΣ(Πsyn(1)).

where we useπ,π1,π2, · · · for path variables.
The computation byM for input treet ∈TΣ is defined by a reduction system(U,⇒M,](t))

whereU = T∆({a(w) | a∈ Syn∪ Inh,w∈ path(t)} and⇒M,t is defined by

– s(w)⇒M,t η[π := w] wheres∈ Syn, s(π)→ η ∈ Rσ andσ = label(t,w).
– i(wk)⇒M,t η[π := w] wherei ∈ Inh, s(πk)→ η ∈ Rσ andσ = label(t,w).
– δ(. . . ,ηk, . . .)⇒M,t δ(. . . ,η′k, . . .) whereδ ∈ ∆ andηk ⇒M,t η′k.

where [π := w] with w ∈ N∗ stands for a substitution[i(π),s(π1),s(π2), · · · := i(w),
s(w1),s(w2), · · · ]i∈Inh,s∈Syn. Thetransformation result by M for the input tree tis defined
by nf(⇒M,](t), sin(ε))(∈ T∆).

3 Attributed Tree Transducers for XML transformation

Our framework requires XML transformations to be defined by specialized ATTs in
order to obtain the corresponding XML stream processor. In this section, we first in-
troduce a model of XML trees and XML streams as annotated trees. Next we ex-
tend ATTs to ones that deal with annotated trees, calledattributed tree transducers
for XML(Xattt→s). Then we show several examples of Xattt→s which represent basic
XML transformations.

For simplicity, we deal with XML documents with no character data and no at-
tribute. Our framework can be easily extended with them and the actual implementa-
tion supports them. In the rest of paper, a bare word ‘attribute’ is not used for XML
attributes but for synthesized/inherited attributes in ATTs.

3.1 XML Trees and XML Streams

We use a binary representation for XML trees in which each left branch points to
the leftmost child and each right branch to the first sibling node to follow in the tree
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structure of XML. For example, consider a fragment of XML
<a><b/><c/><d/></a> . It has tree structure as shown in
the upper-right figure. In binary representation, the XML tree
is figured as shown in the lower-right one where a black bul-
let stands for a leaf which means the end of siblings. Every
tree in binary representation is defined by a tree overΣtree =
{N(2),L(0)} whereN is a binary symbol annotated with a label
andL is a nullary symbol corresponding a leaf. For instance, we
write Na(Nb(L,Nc (L,Nd(L,L))),L) for the XML tree above. The set of trees in binary
representation is denoted byTΣtree.

XML streams are defined by monadic trees overΣstream= {S(1),E(1),Z(0)} where
S andE are unary symbols corresponding a start tag and an end tag, respectively, each
of them is annotated with a label as well asN, andZ is a nullary symbol standing for
the end of stream. For instance, we writeSa(Sb(Eb(Sc (Ec (Ea(Z)))))) for a fragment
of XML <a><b/><c/><a> . The set of streams is denoted byTΣstream.

3.2 Extension of Attributed Tree Transducers with annotation

Xattt→s deals with annotated trees such as XML trees and XML streams as ATT deals
with trees. An Xattt→s is defined by a tuple ofM = (Syn, Inh,Σ,∆,R)1 in similar way to
an ATT, whereΣ = Σtree and∆ = Σstreamsince an Xattt→s represents a transformation
from XML trees to XML streams. The major difference from ATT is thatR is defined
by ∪σ∈ΣtreeR

σx with finite setsRσx of σx-rules in which we can use the annotationx in
a right-hand side of an attribute rule. For example,RNx may contain an attribute rule
s(π) → Sx(s(π1)). We show a simple example of Xattt→s which represents an iden-
tity XML transformation that takes an XML tree and returns the corresponding XML
stream. The Xattt→s Mid = (Syn, Inh,Σ,∆,R) is defined by

– Syn= {s} andInh = {i}
– R= R]∪RNx ∪RL where

• R] = {sin(π)→ s(π1), i(π1)→ Z}
• RNx = {s(π)→ Sx(s(π1)), i(π1)→ Ex(s(π2)), i(π2)→ i(π)}
• RL = {s(π)→ i(π)}.

Letting t = Na(Nb(L,Na(L,L)),L) be a given input XML tree and⇒ stand for⇒M,](t),
the transformation result ofMid is computed by

sin(ε) ⇒ s(1) ⇒ Sa(s(11)) ⇒ Sa(Sb(s(111))) ⇒ Sa(Sb(i(111)))
⇒ Sa(Sb(Eb(s(112)))) ⇒ Sa(Sb(Eb(Sa(s(1121))))) ⇒ Sa(Sb(Eb(Sa(i(1121)))))
⇒ Sa(Sb(Eb(Sa(Ea(s(1122)))))) ⇒ Sa(Sb(Eb(Sa(Ea(i(1122))))))
⇒ Sa(Sb(Eb(Sa(Ea(i(112)))))) ⇒ Sa(Sb(Eb(Sa(Ea(i(11))))))
⇒ Sa(Sb(Eb(Sa(Ea(Ea(s(12))))))) ⇒ Sa(Sb(Eb(Sa(Ea(Ea(i(12)))))))
⇒ Sa(Sb(Eb(Sa(Ea(Ea(i(1))))))) ⇒ Sa(Sb(Eb(Sa(Ea(Ea(Z)))))).
1 The initial attributesin and the root symbol] are omitted for simplicity.



Fig.2 visualizes the above computation. It shows the input XML treet annotated with
attributes and their dependencies. For example,i(1121) is computed byEa(s(1122))
because of the attribute rule(i(π1)→ Ex(s(π2))) ∈ RNx with π = 112 andx = a from
label(](t),112) = Na.

The Xattt→s Mid transforms from XML trees into the corresponding XML stream.
Using two attributessandi, we can make an evaluation in depth-first right-to-left order.
Note that we do not directly use this Xattt→s for stream processing. Since we use an
ATT obtained by the composition of the original Xattt→s and parsing transformation,
the above evaluation does not mean that stream processing cannot start to output any
result before it reads the complete input.

Xattt→s can deal with symbols other than output symbols inΣstream in right-hand
sides of the attribute rules. Let us consider an Xattt→s M′

id has the same definition as
Mid except thatRNx is a set of the following rules:

s(π)→ Cat(Sx,s(π1)), i(π1)→ Cat(Ex,s(π2)), i(π2)→ i(π).

The computation byM′
id is done in similar to that byMid. For example, ifMid outputs

Sa(Sb(Eb(. . .))) for an input,M′
id outputsCat(Sa,Cat(Sb,Cat(Eb, . . .))) for the same

input. The symbolsSx andEx are used as nullary symbols and the binary symbolCat
means a concatenation of outputs and In the rest of paper we use these symbols instead
of unary symbolsSx andEx for output symbols. It will be helpful for us to obtain XML
stream processors.

Furthermore, our framework allows the output alphabet of Xattt→s to include the
other symbols such asStrx, Eqx, And, Or and If: the nullary symbolStrx means a
string valuex; the unary symbolEqx means a boolean value representing whether the
argument matches a string valuex or not; the binary symbolsAnd andOr represent
boolean operations in usual way; the 3-ary symbolIf means a conditional branch by
the first argument. These symbols are useful for us to define a wide variety of XML
transformations.

sin(ε) ] Z

s(1) N
i(1)

a s(12) L i(12)

s(11) N
i(11)

b s(112) N
i(112)

a s(1122) L i(1122)

s(111) L i(111)
s(1121) L i(1121)

Ea
Sa

Eb Ea
Sb Sa

Fig. 2.The computation byMid for the inputNa(Nb(L,Na(L,L)),L)



3.3 Conversion from Practical XML Transformations to Xatt t→s

This section gives practical examples and several hints for converting XML transfor-
mation into Xattt→s. A basic idea of the conversion is that we give a number of pairs
of synthesized attributesand inherited attributesi whose attribute rules forNx have the
following form:

s(π)→ If(etest,es1,es2), i(π1)→ If(etest,ei1,ei2), i(π2)→ i(π) (1)

whereetest, es1, es2, ei1 andei2 are right-hand side expressions for Xattt→s. By adjusting
these expressions we can convert a variety of XML transformations into Xattt→s. For
example, let us consider an Xattt→s Mfil which has the same definition asM′

id except
thatRNx has attribute rules of the form (1) where

etest= Eqx(Strb), es1 = s(π2), es2 = Cat(Sx,s(π1)), ei1 = ei2 = Cat(Ex(s(π2)))2.

The Xattt→s Mfil gives a transformation which outputs the input tree with nob element,
which can be figured out as follows. Ifx 6= b, thenRNx of Mfil equals to that ofM′

id
because we take the second branchCat(Sx,s(π1)) for If. Suppose thatx = b. Since
we take the first branchs(π2), the dotted arrow which points tos(11) in Fig.2 comes
from s(112) instead ofs(111). It implies that all nodes under the first branch ofNb is
skipped in the evaluation. Therefore we get the transformation result which is the input
tree with nob element. In the following, we show how to convert XML transformations
to Xattt→s for two practical examples,XPath queryingandpartial modification. Each
transformation is defined by a pair of synthesized and inherited attributes. A number
of XML transformation programs can be regarded as the combination of these basic
transformations.

XPath Querying and its extensionXPath[24] is a syntax for defining parts of an XML
tree by using paths on the XML tree. For example,/child::a/descendant::b
[child::c] designatesb elements each of which is descendant of ana node and
has ac node as its child. XPath querying collects all elements satisfying the XPath
expression.

A part of XPath querying can be converted into Xattt→s. We consider querying by
absolute XPath expressions in which only forward axes are used,i.e. , the expression
cannot contain backward axes such asparent andancestor . Note that this restric-
tion is not too excessive. All backward axes in absolute XPath can be removed by the
method introduced by Olteanu et al.[21].

XPath querying is converted into Xattt→s Mquewhich contains conditional branches
of the form (1) where

es1 = Cat(Sx,s(π1)), es2 = s(π1), ei1 = Cat(Ex,s(π2)), ei2 = s(π2).

In the computation byMque, the node is copied ifetest is evaluated to true at the node.
Otherwise, no copy is created for the node. Thus we need to specify how to giveetest

for each XPath expression in order to convert the XPath querying into Xattt→s3.
2 The conditional branchIf is useless fori(π1)-rule becauseei1 = ei2.
3 This conversion assumes that the node whose ancestor is queried is not queried by a given

XPath expression. In order to query such nested nodes, the other conversion is required.



The conversion is defined by associating all subexpressions of a given XPath ex-
pression. with a synthesized or inherited attribute in an Xattt→s. Subexpressions in
bracketed qualifiers (also called predicates) in the XPath are associated with synthe-
sized attributes. The other subexpressions are related with inherited attributes. Con-

sider an absolute XPath expression

u1︷ ︸︸ ︷
/child ::a/descendant︸ ︷︷ ︸

u2

::b [child::c]︸ ︷︷ ︸
v1

.

We take three subexpressions as shown by curly braces each of which is associated
with an attribute assigned to the brace. The attributesu1 andu2 are inherited andv1
is synthesized. To complete the conversion, we use one more attributeu3 to propagate
information about whether the node is a descendant of the node satisfying the XPath
expression. The following attribute rules define the relation of the attributes:

R] = {u1(π1)→ True, u2(π1)→ False, u3(π1)→ False, . . .}
RNx = {v1(π)→ Or(Eqx(Strc ),v1(π2)), u1(π1)→ False, u1(π2)→ u1(π),

u2(π1)→ Or(u2(π),And(u1(π),Eqx(Stra))), u2(π2)→ u2(π),
u3(π1)→ Or(u3(π),And(u2(π),And(Eqx(Strb),v1(π1)))),
u3(π2)→, Or(u3(π),And(u2(π),And(Eqx(Strb),v1(π1)))), . . .}

RL = {v1(π)→ False, . . .}.
where several attribute rules are omitted. We use the same attribute rules asRL andR] of
Mid for attributessin, sandi. The value of an attributeu1 represents whether the node is
the child of the root; The value ofu2represents whether the node is the descendant of an
a node which is the child of the root; The value ofv1 represents whether either the node
or one of the following sibling node is ac node. An Xattt→s representing the intended
XPath querying is defined byMque with etest = Or(u3(π),And(u2(π),And(Eqx(Strb),
v1(π1)))). The expressionetest, which equals to the right-hand side of the attribute rules
for u3, represents whether either the node or one of its ancestors satisfies the XPath.

Partial Modification Whereas XPath querying leaves the designate elements and strips
their contexts, partial modification leaves the context of the the designate elements and
replaces the elements with the other elements. The partial modification is converted into
an Xattt→s in similar way to XPath querying. Let us consider an Xattt→s Mmod which
has the same definition asM′

id except thatRNx is a set of the following rules:

es1 = Cat(Sx,Cat(Ex,s(π2))), es2 = Cat(Sx,s(π1)), ei1 = ei2 = Ex(s(π2)).

whereetest is a certain expression for specifying the designate node. The element is
replaced with a no-child element ifetest is evaluated to true at the node. Otherwise, the
node does not change since the attribute rules equals to that ofM′

id.
Let us see the other example of partial modification. Consider an Xattt→s M′

mod
which has the same definition asMmodexcept that the first two rules ofRNx is as follows:

es1= Cat(Sa,s(π1)), es2= Cat(Sx,s(π1)), ei1 = Cat(Ea,s(π2)), ei2 = Cat(Ex,s(π2)).

The name of the node changes intoa if etest is evaluated to true at the node. Otherwise,
the node does not changed. This procedure is applied to every node of the input XML.



Now we show an example of Xattt→s MJkS that plays a role of partial modification. The
attribute rules ofMJkSare comprised of

R] = {sin(π)→ s(π1), i(π1)→ Z}
RNx = {v1(π)→ Or(Eqx(Strk ),v1(π2)),

s(π)→ Cat(If(And(Eqx(StrJ ),v1(π1)),SS,Sx),s(π1)),
i(π1)→ Cat(If(And(Eqx(StrJ ),v1(π1)),ES,Ex),s(π2)),
i(π2)→ i(π)}

RL = {s(π)→ i(π), v1(π)→ False}
where we useCat(If(etest,e1,e2),e3) instead ofIf(etest,Cat(e1,e3),Cat(e2,e3)) to ob-
tain efficient stream processors. The name of every node changes intoS by MJkSonly if
the node satisfies an XPath expression/descendant-or-self::J[child::k]
(= //J[k] ), i.e. , MJkSchanges the name of theJ node having ak node as its child into
S. For example, an XML<h><I><k/></I><J><k/></J><J><c/></J></h>
is transformed into<h><I><k/></I><S> <k/></S> <J><c/></J></h> byMJkS.
It uses no inherited attribute associated with the subexpression/descendant-or-
self:: since the expression should be satisfied at any node.

Combination of basic transformations The conversion of basic transformations is
easily extended by the other XML transformations. For instance, consider an XML
transformationTcombwhich returns the collection of results of partial modification only
for nodes specified by an XPath. We need two pairs of synthesized and inherited at-
tributes: one pair〈s1, i1〉 is used for a partial modification; another pair〈s2, i2〉 is used
for collecting results for each nodes specified by XPath. The XML transformationTcomb

is defined by Xattt→s with these attributes. The conversion of combination of basic
transformation into Xattt→s has been automatically done in the implementation of an
XML transformation language XTiSP introduced in Appendix B (see also [29]).

4 Composition with an XML Parsing Attributed Tree Transducer

This section introduces a method for obtaining an ATT which represents a transfor-
mation from XML streams to XML streams, denoted by Xatts→s. An Xattt→s in the
previous section represents a transformation from XML trees to XML streams. In order
to derive Xatts→s, we compose the Xattt→s with an XML-parsing ATTMparse to syn-
thesize a single ATT, whereMparse represents a transformation from XML streams to
trees. The composition employs a composition method forstack-attributed tree trans-
ducers(SATT)[16] because the parsing ATT requires a stack device which was harmful
for the original composition method [8, 14]. Since the composition method is rather in-
volved, we introduce the method specialized for the case of the composition an Xattt→s

and the parsing ATTMparse whose definition is presented in Appendix A. By apply-
ing the composition method to a given Xattt→s andMparse, the following composition
method is obtained. Although the composition method does not deal with annotations
of nodes, we can easily make extension of the method for them.



Let M = (Syn, Inh,Σtree,∆,sin, ],R) be an Xattt→sẇhere∆ includes primitive func-
tions such asCat, Sx, True, and so on. The corresponding Xatts→s is defined byM =
(Syn′, Inh′,Σstream,∆′,sin, ],R′) where

– Syn′ = {〈s′,s〉 | s′ ∈ Syn, s∈ {p, l}}, Inh′ = {〈i′,s〉 | i′ ∈ Inh, s∈ {p, l}}
– ∆′ = ∆∪{Head(1),Tail(1),Cons(2),Nil(0)},
– andR′ = R′]∪R′Sx ∪R′Ex ∪R′Z with

R′] = {sin → ϕ[s′(π1) := 〈s′,p〉(π1)]s′∈Syn | (sin(π)→ ϕ) ∈ R]}
∪ {〈i′,p〉 → ϕ[s′(π1) := 〈s′,p〉(π1)]s′∈Syn | (i′(π1)→ ϕ) ∈ R]}
∪ {〈i′, l〉 → Nil | i′ ∈ Inh}

R′Sx = {〈s′,p〉(π)→ ρ(ϕ) | (s′(π)→ ϕ) ∈ RNx,s′ ∈ Syn}
∪ {〈s′, l〉(π)→ Tail(〈s′, l〉(π1)) | s′ ∈ Syn}
∪ {〈i′,p〉(π1)→ ρ(ϕ) | (i′(π1)→ ϕ) ∈ RNx, i′ ∈ Inh}
∪ {〈i′, l〉(π1)→ Cons(ρ(ϕ),〈i′, l〉(π)) | (i′(π2)→ ϕ) ∈ RNx, i′ ∈ Inh}

R′Ex = {〈s′,p〉(π)→ ϕ[i′(π) := 〈i′,p〉(π)]i′∈Inh | (s′(π)→ ϕ) ∈ RL,s′ ∈ Syn}
∪ {〈s′, l〉(π)→ Cons(〈s′,p〉(π1),〈s′, l〉(π1)) | s′ ∈ Syn}
∪ {〈i′,p〉(π1)→ Head(〈i′, l〉(π)) | i′ ∈ Inh}
∪ {〈i′, l〉(π1)→ Tail(〈i′, l〉(π)) | i′ ∈ Inh}

R′Z = {〈s′,p〉(π)→ ϕ[i′(π) := 〈i′,p〉(π)]i′∈Inh | (s′(π)→ ϕ) ∈ RL,s′ ∈ Syn}
∪ {〈s′, l〉(π)→ Nil | s′ ∈ Syn}

whereρ = [s′(π1),s′(π2), i′(π) := 〈s′,p〉(π1),Head(〈s′, l〉(π1)),〈i′,p〉(π)]s′∈Syn,i′∈Inh.

The added output symbolsHead,Tail,ConsandNil are caused by a stack operator in
Mparse. Each of them has a meaning with respect to stack operation:Head(e) represents
the top-most element of a stacke; Tail(e) represents a stacke whose top-most element
is removed;Cons(e1,e2) represents a stack obtained by pushing a valuee1 to a stack
e2; Nil represents an empty stack.

For example, we obtain Xatts→s M′
JkS from the definition of the Xattt→s MJkSby the

above method. The attribute rules ofM′
JkSare comprised of

R′] = {sin(π)→ 〈s,p〉(π1), 〈i,p〉(π1)→ Z, 〈i, l〉(π1)→ Nil},
R′Sx = {〈s,p〉(π)→ Cat(If(And(Eqx(StrJ ),〈v1,p〉(π1)),SS,Sx),〈s,p〉(π1)),

〈s, l〉(π)→ Tail(〈s, l〉(π1)),
〈i,p〉(π1)→ Cat(If(And(Eqx(StrJ ),〈v1,p〉(π1)),ES,Ex),Head(〈s, l〉(π1))),
〈i, l〉(π1)→ Cons(〈i,p〉(π),〈i, l〉(π)),
〈v1,p〉(π)→ Or(Eqx(Strk ),Head(〈v1, l〉(π1))), 〈v1, l〉(π)→ Tail(〈v1, l〉(π1))},

R′Ex = {〈s,p〉(π)→ 〈i,p〉(π), 〈s, l〉(π)→ Cons(〈s,p〉(π1),〈s, l〉(π1)),
〈i,p〉(π1)→ Head(〈i, l〉(π)), 〈i, l〉(π1)→ Tail(〈i, l〉(π)),
〈v1,p〉(π)→ False, 〈v1, l〉(π)→ Cons(〈v1,p〉(π1),〈v1, l〉(π1)},

R′Z = {〈s,p〉(π)→ 〈i,p〉(π), 〈s, l〉(π)→ Nil, 〈v1,p〉(π)→ False, 〈v1, l〉(π)→ Nil}.



5 Attribute Evaluation in Stream Processing Style

We show a method deriving an XML stream processor from an Xatts→s. The main idea
of the method is that attribute values the Xatts→s are evaluated in stream processing
style.

In the attribute evaluation for Xatts→s, we use extra rules for primitive functions as
well as the reduction rules specified by the definition of ATT. The definition of Xattt→s

allows to use primitive functions such asIf, And andCat. At the previous stage, they
have been regarded as constructor symbols since the composition method for ATTs
cannot be applied to primitive functions destroying tree structures. The attribute evalu-
ation deals with them as meaningful functions to obtain the transformation result. For
instance, we have the following rules:

If(True,e1,e2)⇒ e1, If(False,e1,e2)⇒ e2, Eqx(Strx)⇒ True,

And(True,e1)⇒ e1, And(False,e1)⇒ False, · · ·
It is obvious that these rules do not conflict with the reduction rules defined by ATT.

We use a running example of the Xatts→s M′
JkS to show a method for deriving an

XML stream processor. Suppose that an input forM′
JkSis t =SJ (Sk (Ek (Sl (El (EJ (Z))))))

corresponding to an XML<J><k/><l/></J> . Let⇒ stand for⇒M′
JkS,](t)

in the rest
of this section. From the definition by ATT, we obtain the transformation resultr by
r = nf(⇒, sin(ε)). An XML stream processor forM′

JkS computes the normal form by
integrating a partial result for each input symbol,SJ , Sk , Ek , Sl , El , EJ andZ.

Before any input symbol is read, we find thatr is computed asnf(⇒, 〈s,p〉(1)).
since we havesin(ε) ⇒ 〈s,p〉(1) from the attribute rule ofR′] in M′

JkS. We cannot
progress the computation until the first symbol is read. Additionally, in preparation
for the following computation, we evaluate two attribute values〈i,p〉(1) and 〈i, l〉(1)
which may be needed when the next symbol is read. These values are computed intoZ
andNil, respectively, by the attribute rules ofR′].

When an input symbolSJ is read, we find thatr is computed asnf(⇒, 〈s,p〉(1)).
since we have

〈s,p〉(1) ⇒ Cat(If(And(EqJ (StrJ ),〈v1,p〉(11)),SS,SJ ),〈s,p〉(11))
⇒ Cat(If(And(True,〈v1,p〉(11)),SS,SJ ),〈s,p〉(11))
⇒ Cat(If(〈v1,p〉(11),SS,SJ ),〈s,p〉(11))

from the attribute rule ofR′] in M′
JkS, Eqx(Strx)⇒ True andAnd(True,e1)⇒ e1. We

cannot progress the computation until the next symbol is read for computing the value of
〈s,p〉(11) and〈v1,p〉(11). Additionally, in preparation for the following computation,
we evaluate two attribute values〈i,p〉(11) and〈i, l〉(11) which may be needed when the
next symbol is read. These values are computed as follows:

〈i,p〉(11) ⇒∗ Cat(If(〈v1,p〉(11),ES,EJ ),Head(〈s, l〉(11)))
〈i, l〉(11) ⇒ Cons(〈i,p〉(1),〈i, l〉(1)) = Cons(Z,Nil)

where we use the values of〈i,p〉(1) and〈i, l〉(1) that is prepared by the last step. The
attribute value of〈i,p〉(11) is just partially computed since it requires the following
input symbol to know the values of〈v1,p〉(11) and〈s, l〉(11).
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When the next input symbolSk is read, we find thatr is computed asnf(⇒, 〈s,p〉(1)).
since we have

Cat(If(〈v1,p〉(11),SS,SJ ),〈s,p〉(11))
⇒ Cat(If(Or(Eqk (Strk ),Head(〈v1, l〉(111))),SS,SJ ),〈s,p〉(11))
⇒ Cat(If(Or(True,Head(〈v1, l〉(111))),SS,SJ ),〈s,p〉(11))
⇒ Cat(If(True,SS,SJ ),〈s,p〉(11)) ⇒ Cat(SS,〈s,p〉(11))
⇒ Cat(SS,Cat(If(And(Eqk (StrJ ),〈v1,p〉(111)),SS,Sk ),〈s,p〉(111)))
⇒ Cat(SS,Cat(If(And(False,〈v1,p〉(111)),SS,Sk ),〈s,p〉(111)))
⇒ Cat(SS,Cat(If(False,SS,Sk ),〈s,p〉(111)))
⇒ Cat(SS,Cat(Sk ,〈s,p〉(111))).

Note that twoCat applications inCat(SS,Cat(Sk , . . .)) will not be modified by the
following computation. Therefore the XML stream processor can output the stringSS

andSk , corresponding<S><k> , and the rest of result is computed by〈s,p〉(111). The
output is a desirable behavior for XML stream processing. The transformation byMJkS

replaces everyJ element intoSonly when the node has ak element as its child. Thought
the transformation cannot return any symbol even if an input symbol<J> is read, the
symbol<S> and its children are output once an input symbol<k> is found at the child
position. If no<k> element is found at the child position of aJ element, then theJ
element are output without changing the element name.

The XML stream processor computes the transformation result by repeating the
similar procedure to above for the following input. Letting #Inh be the number of in-
herited attributes of an Xatts→s M, the stream processor computes the fixed number
#Inh+ 1 of values for each input symbol: one is used for the transformation result to
be output afterward, the others may be needed at the next computation as values of
inherited attributes.

6 Experimental Results

We have implemented our framework as an XML transformation language XTiSP[29],
in which we can use two kinds of primitive transformations: XPath iteration and par-



tial modification. See Appendix B for summary of XTiSP. The implemented system
takes an XTiSP program and returns a stream processing program written in Objective
Caml[20]. The system itself is also written in Objective Caml.

We compared a program in XTiSP, which is converted intoMJkS, with the corre-
sponding program written in XSLT[25]. We used Xalan[26] and SAXON[23] as XSLT
processors. The comparison was done for an input XML generated randomly such that
each tag name isI , J or k . The experiments were conducted on a PC (PowerMacintosh
G5/Dual 2GHz, 1GB memory). We measured execution time and memory usage for
several inputs whose size are 1MB, 2MB, 4MB and 8MB. Fig.3(a) and Fig.3(b) show
the comparison results. Our implementation is much faster and much more memory-
efficient than the others. We also tried more complicated examples of XML transforma-
tion such as XML database into XHTML and then our implementation won definitely.

However we cannot always benefit from automatic derivation of stream processors.
As an extreme example, Xattt→s can define a mirror transformation which reverses the
order of child elements at every node. In this case, the program cannot output anything
except for the start tag of the root until the end tag of the last child of the root is read
whose next tag is the end tag of the root, that is the last token event of the input. This
kind of transformation is not appropriate to stream processing. Although we have no
way to find whether a given XML transformation is appropriate or not, we can easily
add a mechanism to measure growth of stacks required by stream processing.

7 Conclusion

We have shown an implementation scheme for XML transformation language intended
for stream processing. If one wants to implement an XML transformation language,
all he has to do is to give a conversion method into Xattt→s for the language. The
programmer can obtain an efficient stream processing program without writing stateful
programs like SAX.

Additionally, we have implemented an XML transformation language XTiSP, which
has its encoding method into Xattt→s, and have compared with other XML tree trans-
formation languages to confirm effectiveness of our system. XTiSP works much faster
than the other implementations. because that it can output until the whole input is read.

Recently the author is addressing automatic generation from programs written in
XSLT into Xattt→s. If we automatically obtain Xattt→s from XSLT programs, we can
also obtain the corresponding XML stream processor for XSLT.
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A Stack-Attributed Tree Transducers Mparse

Stack-attributed tree transducer(SATT) is an extension of attributed tree transducer(ATT).
See [16] for detail. The major difference from ATT is that SATT can deal with a stack
device for attribute values. Roughly speaking, SATT can simulate an ATT with an arbi-
trary number of attributes. In SATT, attributes are divided into two kinds of attributes,
stack attributes and output attributes. Only stack attributes have a stack value which
can be operated byHead, Tail andCons. An XML parsing transformationMparse is an
example of SATT. An SATTMparse is defined by

Mparse= (Syn, Inh,StSyn,StInh,Σstream,Σtree,sin, ],R)

whereSyn= {p}, Inh = /0, StSyn= {l}, StInh= /0 andR= R]∪RSx ∪REx ∪RZ with

R] = {sin(π)→ p(π1)}, RSx = {p(π)→ Nx(p(π1),Head(l(π1))), l(π)→ Tail(l(π1))}
REx = {p(π)→ L, l(π)→ Cons(p(π1), l(π1))}, RZ = {p(π)→ L, l(π)→ Nil}

B Summary of XTiSP

We summarize our language XTiSP[29]. A program written in XTiSP specifies a trans-
formation from an XML to an XML. A simplified syntax of XTiSP is defined by

exp= f ( exp, · · · , exp) | <exp>[ exp] | exp; exp| xpath

| if exp then exp else exp endif

| invite xpath do exp done

| visit xpath do exp done

A symbol f represents a function which takes a fixed number of strings or boolean
values and returns a string or a boolean value. An expression<e1>[ e2] is used for
constructing an element whose tag name and children are given by evaluation ofe1and
e2, respectively. An expressione1; e2 returns a concatenation of evaluation results for
e1ande2. A symbolxpathstands for an XPath expression which returns a collection
of elements satisfying the XPath. Anif clause represents a conditional branch in a
usual way.invite andvisit are used for XPath-based iteration mentioned below.
An expression betweendo anddone is callediteration body.

The transformation by XTiSP is defined by changing thecurrent node. Initially, the
current node is the root node of an input XML. When an iteration body forinvite /
visit is evaluated, the current node is changed into a node specified by XPath as-
signed with the iteration. Aninvite iteration returns a collection of results returned
by evaluating the iteration body where the current node is changed into every node sat-
isfying the XPath. Anvisit iteration returns a subtree of the input XML whose root
is the current node, provided that every nodeν satisfying the XPath is replaced with the
result returned by the iteration body where the current body is changed intoν.

All XTiSP programs can be converted into Xattt→s. Roughly speaking, an XTiSP
program is converted by associating each subexpression of the program, in particular
invite /visit iteration, with a pair of synthesized and inherited attributes.


