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Abstract. This paper presents a composition method for stack-attributed tree transduc-
ers. Stack-attributed tree transducers extend attributed tree transducers with a pushdown
stack device for attribute values. Stack-attributed tree transducers are more powerful than
attributed tree transducers due to the stack mechanism. We extend the existing composi-
tion method for attributed tree transducers to the composition method for stack-attributed
tree transducers. The composition method is proved to be correct and to enjoy a closure
property.

1 Introduction
Attribute grammars were introduced by Knuth [Knu68, Knu71] to describe semantics of context-
free languages. They specify the meaning of each derivation tree by allocating values to at-
tributes associated with every node of the tree. The framework of attribute grammars has been
utilized for the development of compilers [ASU86, Far84, RM89, KHZ82], editing environ-
ments [Rep84, HT85] and program transformations [Joh87, CDPR99].

Composition of attribute grammars is one of the well-studied issues on attribute grammars
when attribute grammars are regarded as tree transformations. Ganzinger and Giegerich [Gan83,
GG84, Gie88] invented descriptional composition, which enables a single attribute grammar to
be synthesized from two attribute grammars under the so-called single-use condition. Descrip-
tional composition, which was originally developed for composing compiler components, has
since then been applied in a wider scope. For example, Kühnemann [Küh98] and Correnson et
al. [CDPR99] independently applied descriptional composition to the transformation of func-
tional programs by utilizing the fact that attribute grammars are closely connected to functional
programs.

The class of attribute grammars to which descriptional composition can be applied is still
limited, however. There are significant instances of transformations where the composition
method cannot be applied. For instance, consider the transformation from the postfix repre-
sentation of numerical formulae, e.g., 2,1,2,+,× in Figure 1(a), to the infix representation,
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Figure 1(a): Postfix representation
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Figure 1(b): Infix representation

Figure 1: Two kinds of representations of numerical formulae

e.g., 2× (1 + 2) in Figure 1(b). The descriptional composition cannot deal with this transfor-
mation since it requires a pushdown stack device to store an unbounded number of subtrees of
the output tree.

Figure 2 gives a definition of postfix-to-infix transformation as an attribute grammar. The
symbols 1, 2, +, × and $ correspond to terminal symbols one, two, plus, multi and end, respec-
tively. For instance, the postfix representation in Figure 1(a) is expressed by two(one(two(plus(
multi(end))))) and the infix representation in Figure 1(b) by multi(two,plus(one, two)). The
inherited attribute s associated with a nonterminal symbol T has stacks of trees as values. We
write [ ] for the empty stack, t :: e for the stack obtained by pushing the tree t to the stack e,
hd(e) for the top-most element of the stack e and tl(e) for the stack e whose top-most element
is removed. The addition of these stack operations enhances the transformation power of the
attribute grammar. Existing composition methods, however, cannot deal with attribute gram-
mars that use a stack mechanism in particular when they appear as the first component of the
composition.

We present a new method to compose attribute grammars that use a pushdown stack de-
vice. The method is formalized in the framework of attributed tree transducers [Fül81] (att),
which is one of the formal computational models of attribute grammars. In this paper, we intro-
duce stack-attributed tree transducers (satt) by extending atts with a stack device and propose
a method to compose satts that extends descriptional composition. Satt’s are more powerful
than atts because of the pushdown storages. This relation is similar to that between push-
down automata and finite state automata: The class of languages accepted by the former, the
context-free languages, is larger than the class of languages accepted by the latter, the regular
languages [AU73].

S → T : S.a0 = T.a0
T.s = [ ]

T → one(T1) : T.a0 = T1.a0
T1.s = one :: T.s

T → two(T1) : T.a0 = T1.a0
T1.s = two :: T.s

T → plus(T1) : T.a0 = T1.a0
T1.s = (plus(hd(tl(T.s)),hd(T.s)))

:: (tl(tl(T.s)))
T → multi(T1) : T.a0 = T1.a0

T1.s = (multi(hd(tl(T.s)),hd(T.s)))
:: (tl(tl(T.s)))

T → end : T.a0 = hd(T.s)

Figure 2: An attribute grammar with a stack device for postfix-to-infix transformation
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TDTT ( ATT (1)
ATT ( MTT (2)

MTT wsu ( ATT (3)
ATT ( SATT (4)

TDTT ◦TDTT = TDTT (5)
ATT su ◦ATT su = ATT su (6)
TDTT ◦ATT = ATT (7)
TDTT ◦MTT = MTT (8)
ATT ◦ATT su = ATT (9)

MTT wsu ◦MTT nc = MTT (10)
ATT su ◦SATT su = SATT su (11)
TDTT ◦SATT = SATT (12)
ATT ◦SATT su = SATT (13)

Figure 3: The inclusion relations of various classes of tree transformations and their composi-
tions

We prove the correctness of our composition method by extending the composition method
of atts. As in the case of atts, our composition method only works under certain restrictions.
Roughly speaking an att is single-use if (the value of) each attribute is used at most once by the
other attribute is used at most once by the other attributes, and a satt is single-use if, moreover,
every element of (the value of) each attribute is used at most once by the other attribute is used
at most once by the other attributes. In the case of atts it is known that the composition of an att
M with an att M′ works whenever M is single-use or M′ has no inherited attributes. Moreover,
if both atts are single-use, then so is the resulting att. In this paper we compose a satt M with
an att M′. The main result of the paper is that our method works in the same cases as for atts:
whenever M is single-use or M′ has no inherited attributes; moreover, if both M and M′ are
single-use then so is the resulting satt.

Our composition method is proposed not only for theoretical interest. The method to com-
pose stack-attributed tree transducers is useful in practice for transformations over structured
documents such as XML [W3C]. Nakano and Nishimura [NN01] utilized descriptional com-
position to generate stream-to-stream document transformations from tree-to-tree document
transformations, where a stream means just a string. Given a tree-to-tree document transfor-
mation T , a stream-to-stream document transformation can be obtained by the composition of
three transformations Unparse, T and Parse: Unparse is an unparsing (tree-to-stream) trans-
formation; Parse is a parsing (stream-to-tree) transformation. Defining each transformation by
an attribute grammar, Nakano et al. applied descriptional composition to obtain a stream-to-
stream transformation. In their framework, they faced the problem that parsing requires a stack
mechanism, which cannot be dealt with by the existing descriptional composition method. They
circumvented the problem by fixing the maximum depth of nesting of the input documents and
by simulating the stack mechanism with a finite set of attributes. Our composition method
provides a general solution of the above problem in a straightforward way. If we give a tree-
to-tree transformation by a single-use att, we can get tree-to-stream transformation as an att by
composing it with Unparse. If we give a tree-to-stream transformation by an att, we can get
stream-to-stream transformation as a satt by our method because Parse can be represented by a
single-use satt.

There are a number of investigations on tree transducer composition. Figure 3 shows the
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inclusion relations of various classes of tree transformations and their compositions [FV98]. We
write TDTT , ATT , MTT and SATT to represent the classes of tree transformations defined
by top-down tree transducers [Rou70], attributed tree transducers [Fül81], macro tree transduc-
ers [Eng80, EV85] and stack-attributed tree transducers, respectively. The subscripts su, wsu
and nc indicate the subsets of tree transducers restricted by the conditions single-use [Gie88],
weakly single-use and non-copying [Küh98], respectively. For two classes T1 and T2 of tree
transformations, T1 ◦T2 denotes the class {τ | τ(x) = τ1(τ2(x)),τ1 ∈ T1,τ2 ∈ T2}. The relations
(1) and (7) are shown in [Fül81]; (2) and (8), in [EV85]; (3), in [Küh98]; (5), in [Rou70]; (6)
and (9) in [GG84, Gie88]; (10), in [VK04]. The relations (4), (11), (12) and (13), involving
SATT , are shown in this paper.

We say that the class T of tree transformations enjoys a full closure property if T ◦T = T .
Equations (5) and (6) show that TDTT and ATT su enjoy the full closure property. However,
TDTT and ATT su are not expressive enough.

We consider a weaker closure property than the full closure property. For two classes T1 and
T2 of tree transformations, we call T2 is left closed for T1 if T1 ◦T2 = T2. This paper shows that
SATT , together with SATT su, is one of the largest classes of tree transformations that enjoys
left closure property. Equation (12) shows that SATT is left closed for TDTT as well as ATT
and MTT seen in (7) and (8). Additionally, (11) shows that SATT su is left closed for ATT su.

Unfortunately, our result (13) does not show any closure porperty as well as (10) does not
enjoy any closure property. However, it generalizes equation (9) and it is helpful to implement
an XML transformation language intended for stream processing [Nak04], while (10) is helpful
to the transformation of functional programs [VK04].

Outline. The paper is comprised of five sections, including this introduction. In Section 2, we
define basic notions and notations. Section 3 introduces attributed tree transducers and stack-
attributed tree transducers with simple examples and shows that stack-attributed tree transducers
can be simulated by attributed tree transducers. Section 4 introduces the composition method for
attributed tree transducers, presents the composition method for stack-attributed tree transducers
and shows the correctness of the composition method. Finally Section 5 presents further work
and concludes the paper.

2 Preliminaries
The empty set is denoted by /0. We denote the set of non-negative integers including 0 by N, the
set of positive integers by N+ and the sets {1, . . . ,n} by [n] for n ∈ N, in particular, [0] = /0. The
disjoint union of two sets P and Q is denoted by P⊎Q and the cartesian product of two sets P
and Q is denoted by P×Q, i.e., P×Q = {〈p,q〉 | p ∈ P,q ∈ Q}. We assume that the cartesian
product is associative, i.e., (P×Q)×R and P×(Q×R) are identified and are written P×Q×R.
We denote the set of finite strings over a set P of symbols by P∗. The empty string is denoted
by ε.

The designated symbol ⊥ means an undefined value, which can be a symbol in any alphabet.
A function f from a set P to a set Q is denoted by f : P → Q, while dom( f ) and range( f ) denote
the domain of f and the range of f , respectively, such that dom( f ) = {x ∈ P | f (x) is defined}
and range( f ) = { f (x) ∈ Q | x ∈ dom( f )}. The composition of two functions f and g is defined
by f ◦g(x) = f (g(x)) for all x ∈ dom(g) with g(x) ∈ dom( f ). For sets of functions F and G , we
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write F ◦G for { f ◦g | f ∈ F ,g ∈ G}.
A reduction system is a system (A,⇒) where A is a set and ⇒ is a binary relation over A.

We write a1 ⇒n an+1 if ai ⇒ ai+1(i ∈ [n]) for some a1, . . . ,an+1 ∈ A. In particular, a ⇒0 a.
We also write a ⇒∗ b, a ⇒+ b and a ⇒? b when a ⇒m b holds for some m ∈ N, m ∈ N+ and
m ∈ {0,1}, respectively. We say that a ∈ A is reducible with respect to ⇒ if there exists b ∈ A
such that a ⇒ b. Otherwise, a ∈ A is irreducible. If a ⇒∗ b and b is irreducible, we say that b is
a normal form of a. If a has a unique normal form, we denote it by nf (⇒, a). If every a ∈ A has
at most one element b ∈ A such that a ⇒ b, we say that the reduction system is deterministic.
In a deterministic reduction system (A,⇒), every a ∈ A has at most one normal form.

A ranked set Σ is a set in which every symbol is associated with a non-negative integer called
its rank. A ranked alphabet is a finite ranked set. For every n ∈ N, Σ(n) is the set of symbols
of rank n. We denote the rank of a symbol σ by rank(σ). We may write σ(n) to indicate that
σ ∈ Σ(n). For a ranked alphabet Σ, the maximum rank of symbols in Σ is denoted by maxr(Σ),
i.e., maxr(Σ) = max{rank(σ) | σ ∈ Σ}. The designated symbol ⊥ is of rank 0. Let Σ be a
ranked alphabet and X be a set of variables disjoint with Σ. The set of Σ-labeled trees indexed
by X , denoted by TΣ(X) (or TΣ, if X is empty), is the smallest set T satisfying

• X ⊂ T and

• σ(t1, . . . , tn) ∈ T for every n ∈ N, σ ∈ Σ(n) and t1, . . . , tn ∈ T ,

We denote by t[x := s] the substitution of all occurrences of the variable x in t by s. Let
t,s1, . . . ,sn,u1, . . . ,un be trees in TΣ(X) such that every ui for i ∈ [n] is a subtree of t, provided
that ui is not a subtree of u j for any j ̸= i. The tree t[u1, . . . ,un := s1, . . . ,sn], or t[ui := si]i∈[n]
is obtained from t by simultaneously replacing all occurrences of the subtrees u1, . . . ,un by the
trees s1, . . . ,sn, respectively. A TΣ(X)-context E (or context, simply) is an element of TΣ(X ⊎
{•}) where the symbol •, called hole, occurs exactly once in E . The tree E [t] with t ∈ TΣ(X)
stands for E [• := t] ∈ TΣ(X).

The prefix-closed set of all paths of t ∈ TΣ(X), denoted by path(t)(⊂ N∗
+), is defined by

path(σ(t1, . . . , tn)) = {ε}∪{iw | i ∈ [n],w ∈ path(ti)} if σ ∈ Σ(n). Note that path(σ(0)) = {ε}.
We write subt(w) for the subtree of a tree t at a path w ∈ path(t). Every path w ∈ path(t) refers
to a corresponding label of t, denoted by labelt(w), which is defined by labelσ(t1,...,tn)(ε) = σ
and labelσ(t1,...,tn)(iw) = labelti(w) for every i ∈ [n] and w ∈ path(ti). We use π,π1,π2, . . . for
path variables. A substitution [π,π1,π2, . . . := w,w1,w2, . . . ] is simply denoted by [π := w] for
w ∈ N∗

+.

3 Stack-Attributed Tree Transducers
In this section, we give the definition of attributed tree transducers (for short, att) and stack-
attributed tree transducers (for short, satt). We also show that satts are simulated by atts when the
set of input trees are restricted to a certain set. We follow the definition of atts in [Küh97, FV98]
and give the definition of satts as an extension of atts.

3.1 Attributed Tree Transducers
Following [FV98], we start with a definition of the set of trees occurring in the right-hand sides
of attribute rules in the specification of atts.

5



Definition 3.1 Let ∆ be a ranked alphabet, Syn and Inh be countable sets of unary ranked sym-
bols and k ∈ N. The set RHS(Syn, Inh,∆,k) of right-hand sides over Syn, Inh and ∆ is the
smallest subset RHS of T∆∪Syn∪Inh({π,π1, . . . ,πk}) that satisfies the following conditions:

• For every a ∈ Syn and 1 ≤ i ≤ k, the term a(πi) is in RHS.

• For every b ∈ Inh, the term b(π) is in RHS.

• For every δ ∈ ∆(l) with l ∈ N and η1, . . . ,ηl ∈ RHS, the term δ(η1, . . . ,ηl) is in RHS.

2

Definition 3.2 An attributed tree transducer (att) is a septuple M = (Syn, Inh,Σ,∆, in, ♯,R)
where

• Syn and Inh are countable sets of unary ranked symbols satisfying Syn∩ Inh = /0, whose
elements are called synthesized attributes and inherited attributes, respectively,

• Σ and ∆ are ranked alphabets such that (Syn∪ Inh)∩(Σ∪∆) = /0, called the input alphabet
and the output alphabet, respectively,

• in ∈ Syn is a designated attribute, called the initial attribute,

• ♯ ̸∈ Σ∪ Syn∪ Inh is a unary ranked symbol, called the initial symbol; we write Σ+ for
Σ⊎{♯},

• R is a set of attribute rules such that R =
S

σ∈Σ+ Rσ with finite sets Rσ of σ-rules satisfying
the following conditions:

– for every a ∈ Syn, the set Rσ contains exactly one attribute rule of the form a(π) σ→
ησ,

– for every b ∈ Inh and i ∈ [rank(σ)], the set Rσ contains exactly one attribute rule of
the form b(πi) σ→ ησ,

where ησ with σ ∈ Σ is in RHS(Syn, Inh,∆,rank(σ)) and η♯ is in RHS(Syn, /0,∆,1).

Moreover, an att whose set Syn∪ Inh of attributes is finite is called finitary att. 2

Our definition is slightly different from [FV98] in how an att is specified. We use no en-
vironment describing values of inherited attributes of the root of the input tree. Instead, we
define the values of those inherited attributes in the attribute rules for the initial symbol, fol-
lowing [Gie88, Küh97, Küh98]. We assume the input and output alphabets implicitly contain
the designated symbol ⊥ whose rank is 0. For that symbol, all atts implicitly have the set R⊥

of attribute rules a(π) ⊥→⊥ for every synthesized attribute a in the att. Note that the set of at-
tributes is allowed to be countably infinite unlike usual definition. It will be helpful to simulate
a stack-attributed tree transducer by an att as mentioned later.

The readers who are familiar with attribute grammars may understand the specification of
atts by considering a(π) and b(πi) as attribute occurrences P.a and Pi.b in attribute rules for a
production rule P → σ(P1, . . . ,Pk), in the classical representation of attribute grammars where
P and Pi are nonterminal symbols and σ is a terminal symbol representing the name of the
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production. For example, an attribute rule a(π) σ→ δ(b(π1)) with rank(σ) = 2 corresponds to
an attribute rule P.a = δ(P1.b) for a production rule P → σ(P1,P2). Below we give an example
of an att and its attribute grammar counterpart.

Example 3.3 We give a (finitary) att Mitop for an infix-to-postfix conversion of simple nu-
merical formulae, e.g., 2 × (1 + 2) to 2,1,2,+,× (see Figure 1). For the sake of simplic-
ity, we assume that they are built up from the integers 1 and 2 by using the two binary op-
erators + and ×. The infix representation is specified by a binary tree in which internal
nodes and leaves are numerical operators and numbers, respectively. The postfix representa-
tion is specified by a monadic tree whose nodes are numerical operators or numbers. The att
Mitop = (Syn, Inh,Σ,∆,a0, ♯,R) is given as follows:

• Syn = {a0}, Inh = {a1}.

• Σ = {one(0), two(0),plus(2),multi(2)}.

• ∆ = {one(1), two(1),plus(1),multi(1),end(0)}.

• R is the following set of attribute rules:

a0(π)
♯→ a0(π1) (14)

a1(π1)
♯→ end (15)

a0(π) one→ one(a1(π)) (16)

a0(π) two→ two(a1(π)) (17)

a0(π)
plus→ a0(π1) (18)

a1(π1)
plus→ a0(π2) (19)

a1(π2)
plus→ plus(a1(π)) (20)

a0(π) multi→ a0(π1) (21)

a1(π1) multi→ a0(π2) (22)

a1(π2) multi→ multi(a1(π)) (23)

Figure 4 shows the attribute grammar counterpart of the att Mitop. The rules (14) and (15),
namely R♯, correspond to the set of two attribute rules for the production rule S → T in the
attribute grammar. Similarly, Rone, Rtwo, Rplus and Rmulti correspond to the attribute rules for the
production rules T → one, T → two, T → plus(T1,T2) and T → multi(T1,T2), respectively. 2

We define the semantics of atts. The computation of an att M for an input tree t is defined
by a reduction system, whose definition is given below.

Definition 3.4 Let M = (Syn, Inh,Σ,∆, in, ♯,R) be an att, t ∈ TΣ+ . The derivation relation in-
duced by M on t is the smallest binary relation ⇒M,t over T∆({a(w) | a∈ Syn∪Inh,w∈ path(t)})
such that:

• a(w) ⇒M,t η[π := w] where a ∈ Syn, a(π) σ→ η ∈ R and σ = labelt(w).
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• b(wi) ⇒M,t η[π := w] where b ∈ Inh, b(πi) σ→ η ∈ R and σ = labelt(w).

• δ(η1, . . . ,ηi, . . . ,ηn) ⇒M,t δ(η1, . . . ,η′
i, . . . ,ηn) where δ ∈ ∆(n), ηi ⇒M,t η′

i and ηk ∈ T∆
for every k ∈ [i−1].

We may omit the subscripts M and t when they are clear from the context. Note that there is
no clause such as “E [η1] ⇒ E [η2] if η1 ⇒ η2”. That implies that, for every tree s, there is at
most one tree s′ such that s ⇒ s′, i.e., this reduction system is deterministic. Therefore a normal
form, if it exists, must be unique.

The attribute value of a(w) for an att M and an input tree t ∈TΣ is defined by nf (⇒M,♯(t), a(w)),
if it exists, where a∈ Syn∪Inh, w∈ path(♯(t)) and 〈a,w〉 ̸∈ Inh×{ε}. Note that nf (⇒M,♯(t), a(w))
is a tree over the output alphabet ∆(∪{⊥}) of M. This is because any term having subterms of
the form a′(w′) with a′ ∈ Inh∪Syn and a path w′ is always reducible unless a′ ∈ Inh and w′ = ε.
If 〈a,w〉 ̸∈ Inh×{ε}, b(ε) with b ∈ Inh does not occur in the derivation induced by M on ♯(t)
with t ∈ TΣ because of the specification of η♯ in Definition 3.2. 2

We cannot always compute all attribute values for a given att M and an input tree t. For
instance, an attribute value a(w) cannot be computed in the case that we have a derivation
a(w) ⇒+

M,♯(t) E [a(w)] for some context E . In order to avoid the problem, we require the usual
well-definedness (or noncircularity) property for an att.

Definition 3.5 Let M = (Syn, Inh,Σ,∆, in, ♯,R) be an att. The semantics of M is the function
[[M]] : TΣ → T∆ such that for all t ∈ TΣ, [[M]](t) = nf (⇒M,♯(t), in(ε)) if it exists. The att M is
well-defined if nf (⇒M,♯(t), a(w)) exists for every t ∈ TΣ, a ∈ Syn∪ Inh and w ∈ path(♯(t)) with
〈a,w〉 ̸∈ Inh×{ε}. 2

Example 3.6 Let M be the att given in Example 3.3. The computation of M for the input tree
t = multi(two,plus(one, two)) is shown below. We obtain that

[[M]](multi(two,plus(one, two))) = two(one(two(plus(multi(end)))))

S → T : S.a0 = T.a0
T.a1 = end

T → one : T.a0 = one(T.a1)
T → two : T.a0 = two(T.a1)

T → plus(T1,T2) : T.a0 = T1.a0
T1.a1 = T2.a0
T2.a1 = plus(T.a1)

T → multi(T1,T2) : T.a0 = T1.a0
T1.a1 = T2.a0
T2.a1 = multi(T.a1)

Figure 4: The attribute grammar counterpart of Example 3.3
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by the following reduction steps:

a0(ε) ⇒♯,ε a0(1) (24)
⇒multi,1 a0(11) (25)
⇒two,11 two(a1(11)) (26)
⇒multi,1 two(a0(12)) (27)
⇒plus,12 two(a0(121)) (28)
⇒one,121 two(one(a1(121))) (29)
⇒plus,12 two(one(a0(122))) (30)
⇒two,122 two(one(two(a1(122)))) (31)
⇒plus,12 two(one(two(plus(a1(12))))) (32)
⇒multi,1 two(one(two(plus(multi(a1(1)))))) (33)
⇒♯,ε two(one(two(plus(multi(end))))) (34)

where the superscripts of ⇒σ,w indicate that the derivation relation is based on a σ-rule at the
path w. For example, the reduction step ⇒plus,12 at (32) is derived by replacing π with the path
12 in ♯(t) in the plus-rule at (20). 2

An att M is called a top-down tree transducer (tdtt) if there is no inherited attribute in M.
We define the sets of tree transformations ATT = {[[M]] | M is a well-defined finitary att} and
TDTT = {[[M]] | M is a finitary tdtt}. It is well known that TDTT ( ATT [Fül81].

3.2 Stack-Attributed Tree Transducers
The stack-attributed tree transducers (satts) extend atts with a new type of attributes, called
stack attributes. Thus, there are two types of attributes in a satt, output attributes and stack
attributes. Output attributes have trees over the output alphabet as values, similar to attributes
in atts. Stack attributes have pushdown stacks of trees over the output alphabet as values. The
following definition introduces the notion of stack system specifying sets of output expressions
and stack expressions which are used for the definition of a satt.

Definition 3.7 A stack system over ∆ is a triple S = (Xo ,Xs ,∆) where Xo and Xs are disjoint
sets of trees and ∆ is a ranked alphabet. For a stack system S , we define the set EXPo(S) of
output expressions and the set EXPs(S) of stack expressions as the smallest set EXPo and EXPs

of trees such that:

• EXPo ⊃ Xo and EXPs ⊃ Xs .

• δ(e1, . . . ,en) ∈ EXPo if ei ∈ EXPo(i ∈ [n]) and δ ∈ ∆(n) with n ∈ N.

• Cons(2)(e1,e2) ∈ EXPs if e1 ∈ EXPo and e2 ∈ EXPs .

• Empty(0) ∈ EXPs .

• Head(1)(e) ∈ EXPo if e ∈ EXPs .

• Tail(1)(e) ∈ EXPs if e ∈ EXPs . 2
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The four ranked symbols Cons, Empty, Head and Tail are called stack operators: Cons(e1,e2)
denotes the stack obtained by adding a value e1 to the top of the stack e2; Empty denotes the
empty stack; Head(e) denotes the value at the head of the stack e; Tail(e) denotes the stack
obtained by removing its head from the stack e.

We specify the set of right-hand sides of attribute rules in satts before giving the definition
of satts. The right-hand sides are defined by output and stack expressions of a stack system over
an output alphabet. We use bold-faced symbols, e.g., a,a1, . . . , to represent stack attributes for
the purpose of distinguishing them from output attributes.

Definition 3.8 Let ∆ be a ranked alphabet, let Syn, Inh, StSyn and StInh be disjoint unary ranked
alphabets, let k ∈ N and let S∆,k be a stack system (Xo ,Xs ,∆) with

Xo = {a(πi) | a ∈ Syn, i ∈ [k]}∪{b(π) | b ∈ Inh} (35)
Xs = {a(πi) | a ∈ StSyn, i ∈ [k]}∪{b(π) | b ∈ StInh}. (36)

• The set RHSo(Syn, Inh,StSyn,StInh,∆,k) of output right-hand sides over Syn, Inh, StSyn,
StInh and ∆ is EXPo(S∆,k).

• The set RHSs(Syn, Inh,StSyn,StInh,∆,k) of stack right-hand sides over Syn, Inh, StSyn,
StInh and ∆ is EXPs(S∆,k).

2

Definition 3.9 A stack-attributed tree transducer (satt) is a nonuple

M = (Syn, Inh,StSyn,StInh,Σ,∆, in, ♯,R)

where

• Syn, Inh, Σ, ∆, in and ♯ are the same as in Definition 3.2 and Σ+ is defined by Σ⊎{♯}. We
call Syn and Inh output synthesized attributes and output inherited attributes, respectively.

• StSyn and StInh are unary ranked alphabets with StSyn∩ StInh = /0, whose elements are
called stack synthesized attributes and stack inherited attributes, respectively. They are
also disjoint with Syn, Inh, Σ and ∆.

• R is a set of attribute rules such that R =
S

σ∈Σ+ Rσ with finite sets Rσ of σ-rules satisfying
the following conditions. For every σ ∈ Σ+ whose rank is k ∈ N,

– for every a ∈ Syn, the set Rσ contains exactly one attribute rule of the form a(π) σ→
ησ,

– for every b ∈ Inh and i ∈ [k], the set Rσ contains exactly one attribute rule of the
form b(πi) σ→ ησ,

– for every a ∈ StSyn, the set Rσ contains exactly one attribute rule of the form a(π) σ→
ζσ,

– for every b ∈ StInh and i ∈ [k], the set Rσ contains exactly one attribute rule of the
form b(πi) σ→ ζσ,

10



where ησ and ζσ with σ ∈ Σ are in RHSo(Syn, Inh,StSyn,StInh,∆,k) and RHSs(Syn, Inh,
StSyn,StInh,∆,k), respectively, and η♯ and ζ♯ are in RHSo(Syn, /0,StSyn, /0,∆,1) and RHSs(
Syn, /0,StSyn, /0,∆,1), respectively.

A satt whose set Syn∪ Inh of attributes is finite is called finitary satt.
Let M = (Syn, Inh,StSyn,StInh,Σ,∆, in, ♯,R) be a satt. We define RHSo(M) and RHSs(M)

as follows:

RHSo(M) = RHSo(Syn, Inh,StSyn,StInh,∆,maxr(Σ)) (37)
RHSs(M) = RHSs(Syn, Inh,StSyn,StInh,∆,maxr(Σ)) (38)

2

As for atts, we assume that the input and output alphabets of satts implicitly contain the des-
ignate symbol ⊥ and that the set R⊥ of attribute rules a(π) ⊥→⊥ for every synthesized output

attribute a and attribute rules a(π) ⊥→ Empty for every synthesized stack attribute a is implicitly.
The following example Mptoi represents the inverse transformation of the att Mitop defined

in Example 3.3. The satt Mptoi converts postfix representations into infix representations. This
transformation requires a stack device.

Example 3.10 The postfix-to-infix conversion in Section 1 can be expressed by the (finitary)
satt Mptoi, which corresponds to the attribute grammar in Figure 2. The satt Mptoi = (Syn, Inh,
StSyn,StInh,Σ,∆,a0, ♯,R) is given as follows:

• Syn = {a0}, Inh = /0.

• StSyn = /0, StInh = {s}.

• Σ = {one(1), two(1),plus(1),multi(1),end(0)}.

• ∆ = {one(0), two(0),plus(2),multi(2)}.

• R is the following set of attribute rules:

a0(π)
♯→ a0(π1) (39)

s(π1)
♯→ Empty (40)

a0(π) one→ a0(π1) (41)

s(π1) one→ Cons(one,s(π)) (42)

a0(π) two→ a0(π1) (43)

s(π1) two→ Cons(two,s(π)) (44)

a0(π)
plus→ a0(π1) (45)

s(π1)
plus→ Cons(plus(Head(Tail(s(π))),Head(s(π))),Tail(Tail(s(π)))) (46)

a0(π) multi→ a0(π1) (47)

s(π1) multi→ Cons(multi(Head(Tail(s(π))),Head(s(π))),Tail(Tail(s(π)))) (48)

a0(π) end→ Head(s(π)) (49)

2
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We define the semantics of satts by a reduction system defined in much of the same way as
that of atts in Definition 3.4.

Definition 3.11 Let M =(Syn, Inh,StSyn,StInh,Σ,∆, in, ♯,R) be a satt, t ∈TΣ+ and S =(Xo ,Xs ,∆)
the stack system with

Xo = {a(w) | a ∈ Syn∪ Inh, w ∈ path(t)}
Xs = {a(w) | a ∈ StSyn∪StInh, w ∈ path(t)}.

The derivation relation induced by M on t is the smallest binary relation ⇒M,t ⊂ (EXPo(S)×
EXPo(S))∪ (EXPs(S)×EXPs(S)) such that:

• a(w) and b(wi) with a ∈ Syn, b ∈ Inh, w ∈ path(t) and i ∈ N+ are related by ⇒M,t in the
same way as in Definition 3.4.

• a(w) ⇒M,t ζ[π := w] where a ∈ StSyn, a(π) σ→ ζ ∈ R and σ = labelt(w).

• b(wi) ⇒M,t ζ[π := w] where b ∈ StInh, b(πi) σ→ ζ ∈ R and σ = labelt(w).

• Head(ζ) ⇒M,t


η′ (if ζ = Cons(η′,ζ′))
⊥ (if ζ = Empty)
Head(ζ′) (otherwise, if ζ ⇒M,t ζ′)

where η′ ∈ EXPo(S) and ζ,ζ′ ∈ EXPs(S).

• Tail(ζ) ⇒M,t

 ζ′ (if ζ = Cons(η′,ζ′))
Empty (if ζ = Empty)
Tail(ζ′) (otherwise, if ζ ⇒M,t ζ′)

where η′ ∈ EXPo(S) and ζ,ζ′ ∈ EXPs(S).

• Cons(η,ζ) ⇒M,t

{
Cons(η′,ζ) (if η ⇒M,t η′)
Cons(η,ζ′) (if η ∈ T∆ and ζ ⇒M,t ζ′)

where η,η′ ∈ EXPo(S) and ζ,ζ′ ∈ EXPs(S).

• δ(η1, . . . ,ηi, . . . ,ηn) ⇒M,t δ(η1, . . . ,η′
i, . . . ,ηn) where δ ∈ ∆(n), ηi ⇒M,t η′

i and ηk ∈ T∆
for every k ∈ [i−1].

Similar to reduction systems for atts, uniqueness of the normal form is guaranteed since for
every expression e there is at most one expression e′ such that e ⇒M,t e′. We may omit the
subscripts M and t when they are clear from the context. The attribute value of a(w) for a satt
M and an input tree t is defined by nf (⇒M,♯(t), a(w)), if it exists, where a ∈ Inh∪Syn∪StSyn∪
StInh and w ∈ path(♯(t)) with 〈a,w〉 ̸∈ (Inh∪StInh)×{ε}. 2

The following statement guarantees that all attribute values of output attributes range over
output trees.

Proposition 3.12 Let M = (Syn, Inh,StSyn,StInh,Σ,∆, in, ♯,R) be a satt, t ∈ TΣ, a ∈ Syn∪ Inh,
and w ∈ path(♯(t)). If nf (⇒M,♯(t), a(w)) exists, then it is in T∆. 2
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Proof. Let EXPo and EXPs be as given by EXPo(S) and EXPs(S) in Definition 3.11.
Suppose that there exists t ′ = nf (⇒M,♯(t), a(w)). By the definition of ⇒M,♯(t), we have

t ′ ∈ EXPo . We prove the proposition by analyzing the structure of t ′. First, we show that the
pattern a(w) with a ∈ Syn∪ Inh∪StSyn∪StInh does not occur in t ′. Second, we show that the
patterns Cons(η,ζ) and Empty do not occur in t ′. Finally, we show that the patterns Head(ζ)
and Tail(ζ) do not occur in t ′. These facts imply that t ′ ∈ T∆.

The pattern a(w) with a ∈ Syn∪ Inh∪ StSyn∪ StInh does not occur in t ′ since all terms
having occurrences of a(w) are reducible by the reduction rules based on the attribute rules.

It can be shown that the pattern Cons(η,ζ) does not occur in t ′ by contradiction. Assume
that t ′ = E [Cons(η,ζ)], provided that there is no occurrence of Cons in E . Since we have
t ′ ∈ EXPo and Cons(η,ζ)∈ EXPs , there exists a context E ′ such that either E = E ′[Head(•)] or
E = E ′[Tail(•)]. This contradicts with the fact that t ′ is irreducible. Thus the pattern Cons(η,ζ)
does not occur in t ′. Similarly, we can show that Empty does not occur in t ′.

It can be shown that the patterns Head(ζ) and Tail(ζ) do not occur in t ′ as follows. Since
every stack expression has the form of Cons(e), Empty or a(w) with a ∈ StSyn∪StInh, we can
assume that there is no occurrence of stack expressions in t ′ using the facts we have shown
above. It implies that the patterns Head and Tail do not occur in t ′ because their arguments
must be stack expressions. 2

The semantics of satts is defined by the value of the initial attribute at the root in the same
way as that of atts.

Definition 3.13 Let M = (Syn, Inh,StSyn,StInh,Σ,∆, in, ♯,R) be a satt. The semantics of a satt
M is the function [[M]] : TΣ → T∆ such that for all t ∈ TΣ, [[M]](t) = nf (⇒M,♯(t), in(ε)) if it exists.
The satt M is well-defined if nf (⇒M,♯(t), a(w)) exists for every t ∈ TΣ, a ∈ Syn∪ Inh∪StSyn∪
StInh and w ∈ path(♯(t)) with 〈a,w〉 ̸∈ (Inh∪StInh)×{ε}. 2

Example 3.14 Let M be the satt given in Example 3.10. Figure 5 shows the reduction steps for
deriving

[[M]](two(one(two(plus(multi(end)))))) = multi(two,plus(one, two))

where t = two(one(two(plus(multi(end))))) is the input tree and the superscripts of ⇒σ,w in-
dicate that the derivation relation is based on a σ-rule at the path w. The superscripts HC
and TC indicate the applied rule in Definition 3.11, i.e., HC for Head(Cons(η,ζ)) and TC for
Tail(Cons(η,ζ)). 2

We write SATT for the set of tree transformations {[[M]] | M is a well-defined finitary satt}.
We can prove that ATT ( SATT by showing the existence of a transformation that is not in
ATT but in SATT , called a parenthesis balance checker.

Theorem 3.15 ATT ( SATT .

Proof. Since ATT ⊂ SATT by the definitions of finitary att and finitary satt, it suffices to show
that this inclusion is proper, i.e., there is a satt M which cannot be simulated by any finitary
att. Consider the transformation τpbc from TΣ to T∆ with Σ = {parenL(1),parenR(1),end(0)}
and ∆ = {⊤(0)(,⊥(0))} such that τpbc returns ⊤ iff every right parenthesis parenR has its left
counterpart parenL and vice versa in the input. This problem is a well-known example which
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a0(ε) ⇒♯,ε a0(1)

⇒two,1 a0(11)

⇒one,11 a0(111)

⇒two,111 a0(1111)

⇒plus,1111 a0(11111)

⇒multi,11111 a0(111111)

⇒end,111111 Head(s(111111))

⇒multi,11111 Head(Cons(multi(Head(Tail(s(11111))),Head(s(11111))),

Tail(Tail(s(11111)))))

⇒HC multi(Head(Tail(s(11111))),Head(s(11111)))

⇒plus,1111 multi(Head(Tail(Cons(plus(Head(Tail(s(1111)),Head(s(1111)))),

Tail(Tail(s(1111)))))),Head(s(11111)))

⇒TC multi(Head(Tail(Tail(s(1111)))),Head(s(11111)))

⇒two,111 multi(Head(Tail(Tail(Cons(two,s(111))))),Head(s(11111)))

⇒TC multi(Head(Tail(s(111))),Head(s(11111)))

⇒one,11 multi(Head(Tail(Cons(one,s(11)))),Head(s(11111)))

⇒TC multi(Head(s(11)),Head(s(11111)))

⇒two,1 multi(Head(Cons(two,s(1))),Head(s(11111)))

⇒HC multi(two,Head(s(11111)))

⇒plus,1111 multi(two,Head(Cons(plus(Head(Tail(s(1111))),Head(s(1111))),

Tail(Tail(s(1111))))))

⇒HC multi(two,plus(Head(Tail(s(1111))),Head(s(1111))))

⇒two,111 multi(two,plus(Head(Tail(Cons(two,s(111)))),Head(s(1111))))

⇒TC multi(two,plus(Head(s(111)),Head(s(1111))))

⇒one,11 multi(two,plus(Head(Cons(one,s(11))),Head(s(1111))))

⇒HC multi(two,plus(one,Head(s(1111))))

⇒two,111 multi(two,plus(one,Head(Cons(two,s(111)))))

⇒HC multi(two,plus(one, two))

Figure 5: The reduction steps by the derivation relation ⇒M,t
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cannot be solved by any finite state automaton. In this proof, we first illustrate that all atts
from TΣ to T∆ have an equivalent finite state automaton to show that there is no att M such that
[[M]] = τpbc. Finally, we illustrate that there is a satt Mpbc such that [[Mpbc]] = τpbc.

For any att from TΣ to T∆, we can construct an equivalent finite state automaton that ac-
cepts {t ∈ TΣ | [[M]](t) = ⊤}. The construction is similar to the finite state transition ma-
chine construction introduced in [NN01], where a more detailed account for the construction
is given. Let M = (Syn, Inh,Σ,∆,a0, ♯,R) be a well-defined att where Syn = {a0,a1, . . . ,am}
and Inh = {b1, . . . ,bn}. Note that every symbol in Σ (and ∆) has rank at most 1 (and 0, re-
spectively). Therefore the right-hand side of every rule in R is an element of ∆∪{a(π1) | a ∈
Syn}∪{b(π) | b ∈ Inh}. We define a function rhsσ : Syn∪ Inh → ∆∪Syn∪ Inh with σ ∈ Σ by
removing any path information from the rules in Rσ. For instance, rhsσ(a0) =⊤, rhsσ(a1) = b1

and rhsσ(b1) = a0 with attributes a0,a1 ∈ Syn and b1 ∈ Inh are defined by a0(π) σ→⊤ , a1(π) σ→
b1(π) and b1(π1) σ→ a0(π1) in Rσ, respectively.

The set of states of the automaton corresponding to M is (∆∪Syn)n+1 where n is the cardi-
nality of Inh. It is finite since ∆, Syn and Inh are finite. The initial state is 〈rhs♯(a0),rhs♯(b1), . . . ,rhs♯(bn)〉.
The set of final states is {⊤}× (∆∪Syn)n. The transition rules of the states are defined by the
disentangling algorithm, Algorithm 2 in [NN01]. When the current state is 〈v0,v1, . . . ,vn〉 and
the input symbol σ is read, the next state is defined by consulting Rσ as follows. If v0 is either
⊤ or ⊥, then the state does not change. Otherwise v0 is ak ∈ Syn with k ∈ [m]∪{0}. Let us
define two functions f : Syn∪ Inh → ∆∪Syn and g : Inh → ∆∪Syn such that

f (a) =
{

rhsσ(a) (if rhsσ(a) ∈ ∆∪Syn)
g(rhsσ(a)) (if rhsσ(a) ∈ Inh)

g(bi) =
{

vi (if vi ∈ ∆)
f (vi) (if vi ∈ Syn)

The next state is defined by 〈 f (ak), f (b1), . . . , f (bn)〉. The above recursion always terminates
because M is well-defined.

On the other hand, the transformation τpbc can be defined by the satt

Mpbc = ({a0}, /0,{s}, /0,Σ,∆,a0, ♯,R)

with the set R of the following attribute rules:

a0(π)
♯→ Head(s(π1))

a0(π)
parenL→ ⊥ s(π)

parenL→ Tail(s(π1))

a0(π)
parenR→ ⊥ s(π)

parenR→ Cons(⊥,s(π1))

a0(π) end→ ⊥ s(π) end→ Cons(⊤,Empty)

2

3.3 Simulation of Stack-Attributed Tree Transducers with Attributed Tree
Transducers

This section shows that every satt can be simulated by an att as long as the inputs are restricted.
It helps us to prove the correctness of the composition of satts by using that of atts. For a given
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〈a,1〉(π) σ→ η
〈a,2〉(π) σ→ 〈a,1〉(π1)

...
〈a,n〉(π) σ→ 〈a,n−1〉(π1)

Figure 6(a): For a(π) σ→ Cons(η,a(π1))

〈a,1〉(π) σ→ 〈a,2〉(π1)
...

〈a,n−1〉(π) σ→ 〈a,n〉(π1)

〈a,n〉(π) σ→ ⊥

Figure 6(b): For a(π) σ→ Tail(a(π1))

Figure 6: Attribute rules of an att simulating those of a satt.

input tree, the depth of stacks involved in the derivation relation induced by a well-defined satt
is finitely bounded. This is clear from the fact that the length of the derivation is finite and the
increase of the depth of the stacks in every derivation step is finite. This implies that, once the
input is fixed, a satt can be simulated by an att obtained by replacing stack attributes with a
finite number of output attributes. For example, suppose that the number of trees to be stored
in a stack is less than n. Then, an attribute rule a(π) σ→ Cons(η,a(π1)) with a synthesized
stack attribute a in the satt can be replaced with the attribute rules in Figure 6(a), where each
〈a, i〉(i ∈ [n]) is a synthesized attribute of an att that indicates the i-th top-most stack element.
An attribute rule a(π) σ→ Tail(a(π1)) in the satt is replaced with the attribute rules in Figure 6(b).
Since any elements deeper than level n are not referred to by the stack, we can use ⊥ instead of
〈a,n+1〉(π1) in the right-hand side of the last rule.

We first introduce two kinds of simulating functions αo and αs for a stack system S . The two
functions αo and αs are defined over EXPo(S) and EXPs(S)×N+, respectively: αo represents
a map from EXPo(S) onto T∆(A) and αs represents a map from EXPs(S)×N+ onto T∆(A)
where A is a set of variables. The value of αs(e, i) corresponds to the value of the i-th element
in the stack represented by e. Both simulating functions eliminate all occurrences of the stack
operators – Cons, Empty, Head and Tail.

Definition 3.16 (Simulating functions for a stack system) Let S = (Xo ,Xs ,∆) be a stack sys-
tem, Γo : Xo → A and Γs : Xs ×N+ → A be functions, called base simulating functions, where
A is a set of variables, and n ∈ N+. We define two simulating functions αS ,Γo ,Γs ,n

o : EXPo(S) →
T∆(A) and αS ,Γo ,Γs ,n

s : EXPs(S)×N+ → T∆(A) as follows:

αS ,Γo ,Γs ,n
o (e) = Γo(e) if e ∈ Xo . (50)

αS ,Γo ,Γs ,n
s (e, i) = Γs(e, i) if e ∈ Xs . (51)

αS ,Γo ,Γs ,n
o (δ(e1, . . . ,em)) = δ(αS ,Γo ,Γs ,n

o (e1), . . . ,αS ,Γo ,Γs ,n
o (em)) (52)

αS ,Γo ,Γs ,n
s (Cons(e1,e2), i) =

{
αS ,Γo ,Γs ,n

o (e1) (if i = 1)
αS ,Γo ,Γs ,n

s (e2, i−1) (otherwise)
(53)

αS ,Γo ,Γs ,n
s (Empty, i) = ⊥ (54)

αS ,Γo ,Γs ,n
o (Head(e)) = αS ,Γo ,Γs ,n

s (e,1) (55)

αS ,Γo ,Γs ,n
s (Tail(e), i) =

{
⊥ (if i ≥ n)
αS ,Γo ,Γs ,n

s (e, i+1) (otherwise)
(56)

We write AS ,Γo ,Γs ,n
o (e) with e ∈ EXPo(S) for the subset of EXPo(S)∪ (EXPs(S)× [n]) which
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consists of all e′o and 〈e′s , i′〉 such that αS ,Γo ,Γs ,n
o (e′o) and αS ,Γo ,Γs ,n

s (e′s , i′) occur in the computa-
tion of αS ,Γo ,Γs ,n

o (e). Similarly, we write AS ,Γo ,Γs ,n
s (e, i) with e ∈ EXPs(S) and i ∈ [n] for the set

of occurrences in the computation of αS ,Γo ,Γs ,n
s (e, i). For example, for n≥ 2, AS ,Γo ,Γs ,n

o (Head(Tail(e)))=
{Head(Tail(e)),〈Tail(e),1〉} ∪AS ,Γo ,Γs ,n

s (e,2). From the definition, e1 and e2 are subexpres-
sions of e when e1 ∈ AS ,Γo ,Γs ,n

o (e) and 〈e2, i〉 ∈ AS ,Γo ,Γs ,n
o (e). This property holds for As as

well. We may omit the superscripts of αo , αs , Ao and As when they are clear from the context.
2

We first show the following lemma describing that both simulating functions are context-
independent.

Lemma 3.17 Let S = (Xo ,Xs ,∆) be a stack system, let Γo and Γs be base simulating functions
onto A where A is a set of variables, and let =α be a binary relation over EXPo(S)∪EXPs(S)
such that η1 =α η2 only if one of the two following conditions holds, either αS ,Γo ,Γs ,n

o (η1) =
αS ,Γo ,Γs ,n

o (η2) holds where η1,η2 ∈ EXPo(S) or αS ,Γo ,Γs ,n
s (η1, i) = αS ,Γo ,Γs ,n

s (η2, i) holds for
any i where η1,η2 ∈ EXPs(S). Then we have

E [η1] =α E [η2] if η1 =α η2

for any (EXPo(S)∪EXPs(S))-context E .

Proof. This lemma can be proved by an easy induction on the structures of E . 2

A satt can be simulated by an att if the input tree is fixed. The simulation is defined as
follows.

Definition 3.18 (n-depth simulation of a satt) Let M = (Syn, Inh,StSyn,StInh,Σ,∆, in, ♯,R) be
a satt, and S = (Xo ,Xs ,∆) be the stack system with

Xo = {a(ϕ) | a ∈ Syn∪ Inh, ϕ ∈ Π} and
Xs = {a(ϕ) | a ∈ StSyn∪StInh, ϕ ∈ Π}

where Π = {π,π1,π2, . . .}. Let Γo be the function such that Γo(a(ϕ)) = a(ϕ) for every a(ϕ) ∈
Xo and Γs the function such that Γs(a(ϕ), i) = 〈a, i〉(ϕ) for every a(ϕ) ∈ Xs and i ∈ N+. The
n-depth simulation simn(M) for n ∈ N+ is the following att:

simn(M) = (Syn′, Inh′,Σ,∆, in, ♯,R′)

where Syn′ = Syn∪ (StSyn× [n]), Inh′ = Inh∪ (StInh× [n]) and R′ is defined by

R′ = {a(ϕ) σ→ αS ,Γo ,Γs ,n
o (η) | a(ϕ) σ→ η ∈ R}

∪ {〈a, i〉(ϕ) σ→ αS ,Γo ,Γs ,n
s (ζ, i) | i ∈ [n], a(ϕ) σ→ ζ ∈ R}

2

Example 3.19 Let Mptoi be the satt defined in Example 3.10. The 3-depth simulation of Mptoi
is specified by sim3(Mptoi) = (Syn′, Inh′,Σ,∆,a0, ♯,R′) where

• Syn′ = {a0}, Inh′ = {〈s,1〉,〈s,2〉,〈s,3〉},
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• Σ and ∆ are the same as those of Mptoi,

• R′ is the following set of attribute rules:

a0(π)
♯→ a0(π1)) 〈s,1〉(π1)

♯→ ⊥
〈s,2〉(π1)

♯→ ⊥
〈s,3〉(π1)

♯→ ⊥
a0(π) one→ a0(π1) 〈s,1〉(π1) one→ one

〈s,2〉(π1) one→ 〈s,1〉(π)
〈s,3〉(π1) one→ 〈s,2〉(π)

a0(π) two→ a0(π1) 〈s,1〉(π1) two→ two
〈s,2〉(π1) two→ 〈s,1〉(π)
〈s,3〉(π1) two→ 〈s,2〉(π)

a0(π)
plus→ a0(π1) 〈s,1〉(π1)

plus→ plus(〈s,2〉(π),〈s,1〉(π))

〈s,2〉(π1)
plus→ 〈s,3〉(π)

〈s,3〉(π1)
plus→ ⊥

a0(π) multi→ a0(π1) 〈s,1〉(π1) multi→ multi(〈s,2〉(π),〈s,1〉(π))

〈s,2〉(π1) multi→ 〈s,3〉(π)

〈s,3〉(π1) multi→ ⊥
a0(π) end→ 〈s,1〉(π)

Then we have

[[sim3(Mptoi)]](two(one(two(plus(multi(end)))))) = multi(two,plus(one, two))

just as for Mptoi. On the other hand,

[[sim3(Mptoi)]](two(one(two(one(plus(multi(plus(end))))))))

does not return the same value as Mptoi because the depth of the stack is limited.

2

Let M be a satt and t a fixed input tree. If we take an n large enough, the derivations induced
by simn(M) and M on t coincide as shown by the following lemma and theorem. We consider
the n-depth simulation for a derivation by M on t.

Definition 3.20 (n-depth simulation for derivations by a satt) Let M =(Syn, Inh,StSyn,StInh,
Σ,∆, in, ♯,R) be a satt, t ∈ TΣ+ , n ∈ N+, let S = (Xo ,Xs ,∆) be the stack system defined in
Definition 3.11, and let ψ ∈ EXPo(S) satisfy in(ε) ⇒∗

M,t ψ. The n-depth simulation of ψ is

αS ,Γo ,Γs ,n
o (ψ) where Γo and Γs are the base simulating functions such that Γo(a(w)) = a(w) for

every a(w) ∈ Xo and Γs(a(w), i) = 〈a, i〉(w) for every a(w) ∈ Xs and i ∈ N+. 2

Choosing the first branch of (56) in the computation of the n-depth simulation indicates that
the stack depth is shorter than required. The following lemma shows that, if ⊥ is derived by
⇒M,t , then ⊥ is derived by ⇒simn(M),t or the stack is overflowed.
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Lemma 3.21 Let M = (Syn, Inh,StSyn,StInh,Σ,∆, in, ♯,R) be a satt, t be an input tree for M
such that [[M]](t) can be defined, ψ be a term such that in(ε) ⇒∗

M,♯(t) ψ, n ∈ N+ and S ,Γo ,Γs

be as given in Definition 3.20. Let us write αo and αs for αS ,Γo ,Γs ,n
o and αS ,Γo ,Γs ,n

s , respectively.
Suppose that n > max{i | 〈e, i〉 ∈ Ao(ψ)}. If αo(η) and αs(η, j) occur in the computation of
αo(ψ), then the following statements are true:

(i) If αo(η) is reducible by ⇒simn(M),♯(t), then η is reducible by ⇒M,♯(t).

(ii) If αs(ζ,k) with k ∈ [n−1] is reducible by ⇒simn(M),♯(t), then Head(Tailk−1(ζ)) is reducible
by ⇒M,♯(t).

where Tail0(e) = e and Tailk(e) = Tail(Tailk−1(e)) for k ∈ N+.

Proof. We prove these statements by induction on the structure of η and ζ.
(CASE η = a(w) FOR (i) AND ζ = a(w) FOR (ii)) It is clear that (i) and (ii) hold because a(w)

and a(w) are always reducible by the definition of ⇒M,♯(t).
(CASE η = δ(η1, . . . ,ηm) FOR (i)) Suppose αo(η) is reducible by ⇒simn(M),♯(t). Then αo(ηk)

is reducible by ⇒simn(M),♯(t) by for some k. From the induction hypothesis, ηk is reducible by
⇒M,♯(t). Hence η is reducible by ⇒M,♯(t). Therefore (i) holds.

(CASE ζ = Cons(η′,ζ′) FOR (ii)) If k = 1, then (ii) holds since Head(ζ) = Head(Cons(η′,ζ′))
is reducible into η′. If k > 1, then (ii) holds since Head(Tailk−1(ζ)) = Head(Tailk−2(Tail(Cons
(η′,ζ′)))) is reducible into Head(Tailk−2(ζ′)).

(CASE ζ = Empty FOR (ii)) Since Head(Tailk−1(Empty)) is reducible to ⊥, (ii) holds.
(CASE η = Head(ζ′) FOR (i)) Suppose that αo(η) = αs(ζ′,1) is reducible by ⇒simn(M),♯(t).

Head(ζ′) is reducible from the induction hypothesis of (ii). Therefore (i) holds.
(CASE ζ = Tail(ζ′) FOR (ii)) We have αs(ζ,k) = αs(ζ′,k + 1) from k < n which is the as-

sumption on n and k in this lemma. From the induction hypothesis, Head(Tailk(ζ′)) is reducible.
Since Head(Tailk(ζ′)) = Head(Tailk−1(ζ)), (ii) holds. 2

The next theorem shows that given any satt with a fixed input, there exists an n-depth simu-
lation for some n large enough such that it can mimic the original satt for the input.

Theorem 3.22 Let M be a satt and t be an input tree for M. There exists nt ∈ N such that
[[simn(M)]](t) = [[M]](t) for every n ≥ nt .

Proof. Let M = (Syn, Inh,StSyn,StInh,Σ,∆, in, ♯,R) be a satt, t ∈ TΣ be an input tree for M
such that the output tree t ′ = [[M]](t) is defined and n ∈ N+. Let S , Γo and Γs be as given in
Definition 3.20. We use αo , αs for αS ,Γo ,Γs ,n

o and αS ,Γo ,Γs ,n
s , respectively. Let S ′, Γ′

o and Γ′
s

be S , Γo and Γs as given in Definition 3.18, respectively. We use α′
o and α′

s for αS ′,Γ′
o ,Γ′

s ,n
o and

αS ′,Γ′
o ,Γ′

s ,n
s , respectively.

Let Ao(t) denote the union of all Ao(ψ) with in(ε)⇒∗
M,♯(t) ψ. Suppose that n > max{i | 〈e, i〉 ∈

Ao(t)}. We show that, for ψ ∈ EXPo(S) and ψ ∈ EXPs(S), respectively,

(i) If ψ ∈ Ao(t) and ψ ⇒M,♯(t) ψ′, then αo(ψ) ⇒?
simn(M),♯(t) αo(ψ′).

(ii) If 〈ψ, j〉 ∈ Ao(t), ψ ⇒M,♯(t) ψ′ and j ∈ [n−1], then αs(ψ, j) ⇒?
simn(M),♯(t) αs(ψ′, j).
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This implies nf (⇒simn(M),♯(t), αo(in(ε))) = αo(nf (⇒M,♯(t), in(ε))) from Lemma 3.21. Since
we have αo(in(ε)) = in(ε) and αo(t ′) = t ′ because of t ′ ∈ T∆ and the definition of αo , we can
conclude [[simn(M)]](t) = [[M]](t).

We prove the statements (i) and (ii) by induction on the structure of ϕ. The possible cases
on ϕ are specified by left-hand sides of the derivation relation induced by ⇒M,♯(t) in Defini-
tion 3.11.

(CASE ϕ = a(w) WITH a ∈ Syn) We have ϕ ⇒M,♯(t) η[π := w] where a(π) σ→ η ∈ R. Since

simn(M) has a rule a(π) σ→ α′
o(η), we have a(w) ⇒simn(M),♯(t) α′

o(η)[π := w]. Now we can
show αo(η[π := w]) = α′

o(η)[π := w] by simple induction on η with the definitions of αo and
α′

o . Since we have αo(a(w)) = a(w), (i) holds.
(CASE ϕ = b(w) WITH b ∈ Inh) Similar to the previous case.
(CASE ϕ = a(w) WITH a ∈ StSyn) We have ϕ ⇒M,♯(t) ζ[π := w] where a(π) σ→ ζ ∈ R.

Since simn(M) has a rule 〈a, j〉(π) σ→ α′
s(ζ, j) for every j ∈ [n], we have 〈a, j〉(w) ⇒simn(M),♯(t)

α′
s(ζ, j)[π := w]. Similar to the first case, we can show α′

s(ζ, j)[π := w] = αs(ζ[π := w], j).
Then (ii) holds.

(CASE ϕ = b(wi) WITH b ∈ StInh) Similar to the previous case.
(CASE ϕ = Head(Cons(η,ζ))) We have ϕ⇒M,♯(t) η. Since we have αo(Head(Cons(η,ζ))) =

αo(η), (i) holds.
(CASE ϕ = Head(Empty)) We have ϕ ⇒M,♯(t) ⊥. Since we have αo(Head(Empty)) = ⊥ and

αo(⊥) = ⊥, (i) holds.
(CASE ϕ = Head(ζ) WITH ζ ̸= Cons(η1,ζ1) AND ζ ̸= Empty) We have ϕ ⇒M,♯(t) Head(ζ′)

where ζ ⇒M,♯(t) ζ′. We find αs(ζ,1)⇒?
simn(M),♯(t) αs(ζ′,1) from the induction hypothesis. Since

we have αo(Head(ρ)) = αs(ρ,1) with ρ = ζ,ζ′, (i) holds.
(CASE ϕ = Tail(Cons(η,ζ))) We have ϕ ⇒M,♯(t) ζ. Since we have αs(Tail(Cons(η,ζ)), j) =

αs(ζ, j) for 1 ≤ j < n from the assumption on n, (ii) holds.
(CASE ϕ = Tail(Empty)) We have ϕ⇒M,♯(t) Empty. Since αs(Tail(Empty), j)= αs(Empty, j+

1)(= ⊥) for any j, (ii) holds.
(CASE ϕ = Tail(ζ) WITH ζ ̸= Cons(η1,ζ1) AND ζ ̸= Empty) We have ϕ ⇒M,♯(t) Tail(ζ′)

where ζ ⇒M,♯(t) ζ′. We find αs(ζ, j− 1) ⇒?
simn(M),♯(t) αs(ζ′, j− 1) with j > n from the induc-

tion hypothesis and the assumption on n. Since αs(Tail(ρ), j) = αs(ρ, j−1) with ρ = ζ,ζ′, (ii)
holds.

(CASE ϕ = δ(η1, . . . ,ηk, . . . ,ηm) WHERE ηk ⇒M,♯(t) η′
k AND η1, . . . ,ηk−1 ARE IRREDUCIBLE)

We have δ(η1, . . . ,ηk, . . . ,ηm) ⇒M,♯(t) δ(η1, . . . ,η′
k, . . . ,ηm) by the definition of ⇒M,♯(t). By

Lemma 3.21 (i), αo(η1), . . . , αo(ηk−1) are irreducible. We find αo(ηk) ⇒?
simn(M),♯(t) αo(η′

k)
from the induction hypothesis, Then we have δ(αo(η1), . . . , αo(ηk), . . . ,αo(ηm)) ⇒?

simn(M),♯(t)
δ(αo(η1), . . . ,αo(η′

k), . . . ,αo(ηm)). Therefore (i) holds. 2

For a satt M and an input tree t, we write lub(M, t) to denote the minimum possible number
nt in Theorem 3.22.

Corollary 3.23 Let M be a satt. If simn(M) is a well-defined att for any n ∈ N+, M is a well-
defined satt.

Proof. Let M be a satt (Syn, Inh,StSyn,StInh,Σ,∆, in, ♯,R). From Definition 3.13, it suffices to
show that there exists nf (⇒M,♯(t), in(ε)) for every input t ∈ TΣ if simn(M) is a well-defined att
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for any n ∈ N+.
Let t ∈ TΣ and nt ≥ lub(M, ♯(t)). Suppose that simn(M) is a well-defined att for any n ∈ N+.

Then there exists nf (⇒simnt (M),♯(t), in(ε)) which is [[simnt (M)]](t). Since [[M]](t)= [[simnt (M)]](t)
holds from Theorem 3.22, there exists nf (⇒M,♯(t), in(ε)) which is [[M]](t). 2

4 Composing Stack-Attributed Tree Transducers
We present a composition method of SATTs by extending a composition method of ATTs. In
this section, we first review the descriptional composition[GG84, Gie88], a composition method
for attribute grammars, in terms of ATTs. Next we introduce a composition method of SATTs
by extending an algorithm of descriptional composition. Finally we prove the correctness of the
algorithm and the closure property of the composition.

4.1 Descriptional Composition
We present an algorithm of descriptional composition following the presentation in [CDPR99].
Here, the algorithm is formalized in terms of ATTs. Let us first give a condition, called syntactic
single use requirement in [GG84, Gie88], under which descriptional composition is successfully
applied.

Definition 4.1 An ATT M = (Syn, Inh,Σ,∆,a0, ♯,R) satisfies the single use requirement(sur)
if there is no pair of rules x1

σ→ E1[a(ϕ)] and x2
σ→ E2[a(ϕ)] in Rσ for every σ ∈ Σ ∪ {♯},

a ∈ Syn∪ Inh, and ϕ ∈ {π,π1,π2 · · ·} where E1 and E2 are contexts. We write ATT su for a set
of tree transformers such that ATT su = {[[M]] | M is a well-defined sur-ATT.}.

For given two ATTs M1 and M2, we write M1 ⊙M2 to denote a single ATT which is the
result of descriptional composition of M1 and M2. The ATT M1⊙M2 computes a transformation
equivalent to [[M1]]◦ [[M2]], thus M1 ⊙M2 takes a tree over the input alphabet of M2 and returns
a tree over the output alphabet of M1. The descriptional composition is divided into three steps:
projection, symbolic evaluation and renaming.

Definition 4.2 Let M1 = (Syn1, Inh1,Σ1,∆1,a1, ♯1,R1) and M2 = (Syn2, Inh2,Σ2,∆2,a2, ♯2,R2)
be ATTs with ∆2 ⊂ Σ1 and let Σ′

2 = Σ2 ⊎{♯2}. The ATT M1 ⊙M2 is obtained by ren ◦ seM1 ◦
projM1

(M2), where three functions ren, seM1 and projM1
are defined as follows:

• projM1
(M2) returns U = (Syn2, Inh2,Σ2,∆2,a2, ♯2,R) where

R = {a(x)
γ→ a(ηx,γ) | a ∈ Syn1, x

γ→ η ∈ R2, γ ∈ Σ′
2}

∪{b(ηx,γ)
γ→ b(x) | b ∈ Inh1, x

γ→ η ∈ R2, γ ∈ Σ′
2}

ηx,γ =
{

♯1(η) (if x = a2(π) and γ = ♯2)
η (otherwise)

The calculation of projM1
(M2) is called projection. Note that U is just an intermediate

representation and is not an ATT.
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• seM1(U) with U = (Syn2, Inh2,Σ2,∆2,a2, ♯2,
S

γ∈Σ′
2
Rγ) returns

(Syn2, Inh2,Σ2,∆2,a2, ♯2,
[

γ∈Σ′
2

nf (⇒SE, Rγ))

where the binary relation ⇒SE is defined by the following clause. P ⇒SE Q holds iff

P = {bi(σ(e1, · · · ,en))
γ→ ζi | 1 ≤ i ≤ m} ⊎ Rγ

misc

Q =
{

bi(e j)
γ→ θ(η) bi(π j) σ→ η ∈ Rσ

1 ,
1 ≤ i ≤ m,1 ≤ j ≤ n

}

∪

x
γ→ ρ∗(η)

x
γ→ η ∈ Rγ

misc,
ρ = [ak(σ(e1, · · · ,en)) := θ(ψk)]1≤k≤l,

ak(π) σ→ ψk ∈ Rσ
1 ,1 ≤ k ≤ l


θ = [bi(π) := ζi]1≤i≤m[π j := e j]1≤ j≤n

with γ ∈ Σ′
2, σ ∈ ∆(n)

2 , Syn1 = {a1, · · · ,al} and Inh1 = {b1, · · · ,bm}. The calculation of
seM1(U) is called symbolic evaluation. Note that both sides of any rule in nf (⇒SE, Rγ)
do not have occurrences of expressions of the form a(σ(η1, · · · ,ηn)).

• ren(U) with U = (Syn2, Inh2,Σ2,∆2,a2, ♯2,R) returns

(Syn, Inh,Σ2,∆1,〈a1,a2〉, ♯2,Θ(R)∪Rdmy)

where

Syn = {〈a,a′〉 | 〈a,a′〉 ∈ Syn1 ×Syn2 ∪ Inh1 × Inh2}
Inh = {〈a,a′〉 | 〈a,a′〉 ∈ Syn1 × Inh2 ∪ Inh1 ×Syn2}

Θ(R) = {x′ σ→ η′ | x′ = θ(x),η′ = θ(η),x σ→ η ∈ R}
θ = [a(a′(ϕ)) := 〈a,a′〉(ϕ)]a∈Att1,a′∈Att2,ϕ∈{π,π1,π2,···}

with Att1 = Syn1 ∪ Inh1 and Att2 = Syn2 ∪ Inh2. Rdmy is a set of dummy rules which
gives a rule 〈a,a′〉(ϕ) σ→ ⊥ for any rule a(a′(ϕ)) σ→ ζ ̸∈ R, a ∈ Att1, a′ ∈ Att2 and ϕ ∈
{π,π1,π2, · · ·}. The calculation of ren(U) is called renaming.

The correctness of the descriptional composition method is guaranteed by the following theo-
rem.

Theorem 4.3 (⊙-Correctness, Ganzinger[Gan83] and Giegerich[Gie88]) If M1 and M2 are
well-defined sur-ATTs, then M1⊙M2 is a well-defined sur-ATT such that [[M1]]◦ [[M2]] = [[M1⊙
M2]].

Corollary 4.4 ATT su ◦ATT su = ATT su.

Proof. The statement follows immediately from the fact that ATT su contains the identical tree
transformation and that ATT su ◦ATT su ⊆ ATT su holds from Theorem 4.3. 2

Consider the case where M1 in Definition 4.2 is a TDTT, i.e., M1 has no inherited attribute.
Then the descriptional composition method is equivalent to the composition method of a TDTT
and an ATT presented in [Fül81]. Therefore we have the following theorem. This composition
requires no condition such as the sur-condition required in Theorem 4.3.
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Theorem 4.5 (⊙-Correctness, Fülöp[Fül81]) If M1 is a TDTT and M2 is a well-defined ATT,
then M1 ⊙M2 is a well-defined ATT such that [[M1]]◦ [[M2]] = [[M1 ⊙M2]].

Corollary 4.6 TDTT ◦ATT = ATT .

Proof. The statement follows immediately from the fact that TDTT contains the identical tree
transformation and that TDTT ◦ATT ⊆ ATT holds from Theorem 4.5. 2

4.2 Extended Descriptional Composition
We extend the above descriptional composition to apply to SATTs. As mentioned in Section 1,
we consider a composition of ATTs and SATTs. The result of the composition is obtained as
a single SATT. We first present the condition under which the extended composition method is
successfully applied before introducing the method. As the method is defined by an extension
of the algorithm in Definition 4.2, the condition is also presented by an extension of the sur
condition in Definition 4.1.

Definition 4.7 A SATT M is a sur-SATT if simn(M) is a sur-ATT for any n ∈ N+. We write
SATT su for a set of tree transformers such that SATT su = {[[M]] | M is a well-defined sur-SATT.}.

The above definition is not directly applied to check if a SATT satisfies the sur-condition, since
we need to check the sur-condition for infinitely many ATTs simn(M) for any n∈N+. We do not
discuss a checking method for the sur-condition of SATTs. However, there is a finitely checking
method for the sur-condition of SATT. For instance, we can claim that Mptoi in Example 3.10
is a sur-SATT. Although s(π) is referred three times in a plus-rule (46), these three references
do not overlap each other: Head(s(π)) represents a reference to the first element of the stack;
Head(Tail(s(π))) represents a reference to the second element of the stack; Tail(Tail(s(π)))
represents a reference to a stack comprised elements following the second element of the stack.

An algorithm of the extended descriptional composition is also divided into three steps. The
intermediate results of the first and second step, projection and symbolic evaluation, do not have
the form of SATTs similarly as in the original composition method for ATTs. A set of terms
occurring at the both sides of attribute rules in the intermediate result is defined by the set BHSo

or BHSs , as defined below.

Definition 4.8 Let M1 = (Syn1, Inh1,Σ1,∆1,a1, ♯1,R1) and M2 = (Syn2, Inh2,StSyn2,StInh2,Σ2,
∆2,a2, ♯2,R2) be an ATT and a SATT with Σ1 ⊃ ∆2, respectively, and let S = (Xo ,Xs ,∆1) be a
stack system with

Xo = {a(η) | a ∈ Syn1 ∪ Inh1,η ∈ RHSo(M2)}
∪{a(♯1(η)) | a ∈ Syn1 ∪ Inh1,η ∈ RHSo(M2)}

Xs = {a(ζ) | a ∈ Syn1 ∪ Inh1,ζ ∈ RHSs(M2)}.

The set BHSo(M1,M2) and the set BHSs(M1,M2) are defined by the following sets:

BHSo(M1,M2)
def
= EXPo(S) and BHSs(M1,M2)

def
= EXPs(S).
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We present the extended descriptional composition method for SATTs below. The major
difference from the original one is found in the step of symbolic evaluation. The original sym-
bolic evaluation process is intend to eliminate occurrences of trees of the form a(σ(e1, · · · ,en)).
In addition to this, the extended one is intend to eliminate occurrences of trees of the forms
a(Cons(e1,e2)), a(Empty), a(Head(e)) and a(Tail(e)).

Definition 4.9 Let M1 = (Syn1, Inh1,Σ1,∆1,a1, ♯1,R1) and M2 = (Syn2, Inh2,StSyn2,StInh2,Σ2,

∆2,a2, ♯2,R2) be an ATT and a SATT with ∆2 ⊂ Σ1, respectively, let R be a set {η1
σ→ η2 |

〈η1,η2〉 ∈ BHSo(M1,M2)×BHSo(M1,M2)∪BHSs(M1,M2)×BHSs(M1,M2)} and let Π = {π,

π1,π2, · · ·}. The SATT M1⊙̂M2 is obtained by r̂en ◦ ŝeM1 ◦ p̂rojM1
(M2), where three functions

r̂en, ŝeM1 and p̂rojM1
are defined as follows:

• p̂rojM1
(M2) returns U = (Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2, ♯2,R) where R ⊂ R is de-

fined in the same way as in Definition 4.2. The calculation of p̂rojM1
(M2) is called pro-

jection.

• ŝeM1(U) with U = (Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2, ♯2,
S

γ∈Σ2∪{♯2}Rγ) returns

(Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2, ♯2,
[

γ∈Σ2∪{♯2}
nf (⇒ŜE, Rγ))

where the binary relation ⇒ŜE over R is defined as follows:

1. ϕ ⇒ŜE ψ if ϕ ⇒SE ψ where ⇒SE is the relation defined in Definition 4.2.

2. {x
γ→ E [a(Head(ζ))]}⊎R ⇒ŜE {x

γ→ E [Head(a(ζ))]}⊎R.

3. {x
γ→ E [a(Tail(ζ))]}⊎R ⇒ŜE {x

γ→ E [Tail(a(ζ))]}⊎R.

4. {x
γ→ E [a(Cons(η,ζ))]}⊎R ⇒ŜE {x

γ→ E [Cons(a(η),a(ζ))]}⊎R.

5. {x
γ→ E [a(Empty)]}⊎R ⇒ŜE {x

γ→ E [Empty]}⊎R.

6. (i)

{
a(Head(ζ))

γ→ η′

a(Tail(ζ))
γ→ ζ′

}
⊎R ⇒ŜE {a(ζ)

γ→ Cons(η′,ζ′)}⊎R.

(ii) {a(Head(ζ))
γ→ η′}⊎R ⇒ŜE {a(ζ)

γ→ Cons(η′,Empty)}⊎R,
if R contains no rule whose left hand side is in the form of a(Tail(ζ)).

(iii) {a(Tail(ζ))
γ→ ζ′}⊎R ⇒ŜE {a(ζ)

γ→ Cons(⊥,ζ′)}⊎R,
if R contains no rule whose left hand side is in the form of a(Head(ζ)).

7. {a(Cons(η,ζ))
γ→ ζ′}⊎R ⇒ŜE

{
a(η)

γ→ Head(ζ′)
a(ζ) σ→ Tail(ζ′)

}
⊎R.

8. {a(Empty)
γ→ ζ′}⊎R ⇒ŜE R.

where a∈ Syn1∪Inh1, η∈RHSo(M2), ζ∈RHSs(M2), η′ ∈BHSo(M1,M2), ζ′ ∈BHSs(M1,
M2) and E is a context, provided that the rewriting rule of 1 and 6 is applied only when
no other rewriting rule can be applied.
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The calculation of ŝeM1(U) is called symbolic evaluation. Note that both sides of any
rule in nf (⇒ŜE, Rγ) do not include the form of a(σ(η1, · · · ,ηn)), a(Head(ζ)), a(Tail(ζ)),
a(Cons(η,ζ)) or a(Empty).

• r̂en(U) with U = (Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2, ♯2,R) returns

(Syn, Inh,StSyn,StInh,Σ2,∆1,〈a1,a2〉, ♯2,Θ(R)∪Rdmy)

where Syn and Inh is given is the same way as ren in Definition 4.2 and

StSyn = {〈a,a′〉 | 〈a,a′〉 ∈ Syn1 ×StSyn2 ∪ Inh1 ×StInh2}
StInh = {〈a,a′〉 | 〈a,a′〉 ∈ Syn1 ×StInh2 ∪ Inh1 ×StSyn2}
Θ(R) = {x′ σ→ η′ | x′ = θ(x),η′ = θ(η),x σ→ η ∈ R}

θ = [a(a′(ϕ)) := 〈a,a′〉(ϕ)]a∈Att1,a′∈Att2∪StAtt2,ϕ∈Π

with Att1 = Syn1 ∪ Inh1, Att2 = Syn2 ∪ Inh2 and StAtt2 = StSyn2 ∪StInh2. Rdmy is the set
of dummy rules which gives

– 〈a,a′〉(ϕ) σ→ ⊥ for any rule a(a′(ϕ)) σ→ ζ ̸∈ R, a ∈ Att1, a′ ∈ Att2, ϕ ∈ Π and σ ∈
Σ1 ⊎{♯1}, and

– 〈a,a′〉(ϕ) σ→ Empty for any rule a(a′(ϕ)) σ→ ζ ̸∈ R, a ∈ Att1, a′ ∈ StAtt2, ϕ ∈ Π and
σ ∈ Σ1 ⊎{♯1}.

The calculation of r̂en(U) is called renaming.

We give a partial example of our descriptional composition, where an ATT Mitop and an
SATT Mptoi are composed. First, p̂rojM1

yields a set of the following attribute rules from an
attribute rule (42) in M2:

a0(s(π1)) one→ a0(Cons(one,s(π))) (57)

a1(Cons(one,s(π))) one→ a1(s(π1)). (58)

Next, ŝeM1 yields a set of the following attribute rules from (58):

a1(one) one→ Head(a1(s(π1))) (59)

a1(s(π)) one→ Tail(a1(s(π1))), (60)

where a1(one) is intended to be rewritten by the rule 1 of symbolic evaluation. Finally, r̂en
yields a following attribute rule from (60):

〈a1,s〉(π) one→ Tail(〈a1,s〉(π1)). (61)

Figure 7 shows the final result Mptop of the composition of Mitop and Mptoi. Considering the
roles of Mitop and Mptoi, the role of Mptop is expected to be that of the identical transformation
mapping prefix representations onto prefix representations. In fact, Mptop does not behave as
an identical transformation for an input tree which is invalid as a prefix representation, such as
1,2,×,+. That is because Mptoi fails to return a tree representing an infix representation for
such an invalid input.

We prove the correctness of the extended descriptional method, i.e., [[M1⊙̂M2]] = [[M1]] ◦
[[M2]] for an ATT M1 and a SATT M2. The proof is completed by simulating each step in Defi-
nition 4.9 with the corresponding step in Definition 4.2. First, we define the n-depth simulation
for an intermediate result of projection or symbolic evaluation.
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Mptop = (Syn, Inh,StSyn,StInh,Σ,∆,〈a0,a0〉, ♯2,R), where

• Syn = {〈a0,a0〉}, Inh = {〈a1,a0〉},

• StSyn = {〈a1,s〉}, StInh = {〈a0,s〉},

• Σ = ∆ = {one(1), two(1),plus(1),multi(1),end(0)},

• R = { 〈a0,a0〉(π)
♯2→ 〈a0,a0〉(π1),

〈a1,a0〉(π1)
♯2→ end,

〈a0,s〉(π1)
♯2→ Empty,

〈a0,a0〉(π) one→ 〈a0,a0〉(π1),

〈a1,a0〉(π1) one→ 〈a1,a0〉(π),

〈a1,s〉(π) one→ Tail(〈a1,s〉(π1)),

〈a0,s〉(π1) one→ Cons(one(Head(〈a1,s〉(π1))),〈a0,s〉(π))

〈a0,a0〉(π) two→ 〈a0,a0〉(π1),

〈a1,a0〉(π1) two→ 〈a1,a0〉(π),

〈a1,s〉(π) two→ Tail(〈a1,s〉(π1)),

〈a0,s〉(π1) two→ Cons(two(Head(〈a1,s〉(π1))),〈a0,s〉(π))

〈a0,a0〉(π)
plus→ 〈a0,a0〉(π1),

〈a1,a0〉(π1)
plus→ 〈a1,a0〉(π),

〈a1,s〉(π)
plus→ Cons(plus(Head(〈a1,s〉(π1))),

Cons(Head(〈a0,s〉(π)),Tail(〈a1,s〉(π1)))),

〈a0,s〉(π1)
plus→ Cons(Head(Tail(〈a0,s〉(π))),Tail(Tail(〈a0,s〉(π)))),

〈a0,a0〉(π) multi→ 〈a0,a0〉(π1),

〈a1,a0〉(π1) multi→ 〈a1,a0〉(π),

〈a1,s〉(π) multi→ Cons(multi(Head(〈a1,s〉(π1))),
Cons(Head(〈a0,s〉(π)),Tail(〈a1,s〉(π1)))),

〈a0,s〉(π1) multi→ Cons(Head(Tail(〈a0,s〉(π))),Tail(Tail(〈a0,s〉(π)))),

〈a0,a0〉(π) end→ Head(〈a0,s〉(π)),

〈a1,s〉(π) end→ Cons(〈a1,a0〉(π),Empty) }

Figure 7: A SATT Mptop obtained by composing an ATT Mitop and a SATT Mptoi
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(i) (ii) (iii)
? ? ? ?

simn simx
n simx

n simn

- - -p̂rojM1 ŝeM1 r̂en

- - -
projM1

seM1 ren

Figure 8: The extended descriptional composition and its simulation

Definition 4.10 Let M = (Syn, Inh,StSyn,StInh,Σ,∆,a, ♯,R) be one of the intermediate results
at a step of descriptional composition for an ATT M1 = (Syn1, Inh1,Σ1,∆1,a1, ♯1,R1) and a
SATT M2 = (Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2, ♯2,R2), Π = {π,π1,π2, · · ·}, S be a stack sys-
tem (Xo ,Xs ,∆1) with

Xo = {a(η) | a ∈ Syn1 ∪ Inh1,η ∈ RHSo(M2)}
∪{a(♯1(η)) | a ∈ Syn1 ∪ Inh1,η ∈ RHSo(M2)}

Xs = {a(ζ) | a ∈ Syn1 ∪ Inh1,ζ ∈ RHSs(M2)}

and Γo ,Γs be functions given by

Γo(a(η)) = a(αS ′,Γ′
o ,Γ′

s ,n
o (η))

Γs(a(ζ), i) =

{
⊥ (if αS ′,Γ′

o ,Γ′
s ,n

s (ζ, i) = ⊥)
a(αS ′,Γ′

o ,Γ′
s ,n

s (ζ, i)) (otherwise)

where S ′ is a stack system (X ′
o ,X

′
s ,∆2) with X ′

o = {a(ϕ) | a ∈ Syn2 ∪ Inh2,ϕ ∈ Π}, X ′
s =

{a(ϕ) | a ∈ StSyn2∪StInh2,ϕ ∈ Π}, and two functions Γ′
o and Γ′

s are given by Γ′
o(a(ϕ)) = a(ϕ)

and Γ′
s(a(ϕ), i) = 〈a, i〉(ϕ) with ϕ ∈ Π. The n-depth simulation simx

n(M) is defined by the fol-
lowing septuple:

simx
n(M)

def
= (Syn′, Inh′,Σ,∆∪{⊥},a, ♯,αS ,Γo ,Γs ,n

R (R))

where Syn′ = Syn∪{〈a, i〉 | a ∈ StSyn,1 ≤ i ≤ n} and Inh′ = Inh∪{〈a, i〉 | a ∈ StInh,1 ≤ i ≤ n}.

We prove that every diagram in Figure 8 commutes i.e., each step in the extended descrip-
tional composition is simulated by the corresponding step in the original descriptional compo-
sition.

Lemma 4.11 Let M1 be an ATT. The three functions p̂rojM1
, ŝeM1 and r̂en which are defined in

Definition 4.9 satisfy the following equations:

(i) simx
n ◦ p̂rojM1

= projM1
◦ simn

(ii) simx
n ◦ ŝeM1 = seM1 ◦ simx

n

(iii) simn ◦ r̂en = ren◦ simx
n
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Proof. Let M1 = (Syn1, Inh1,Σ1,∆1,a1, ♯1,R1) and M2 = (Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2,
♯2,R2) be an ATT and a SATT with ∆2 ⊂ Σ1. We use S , Γo , Γs , S ′, Γ′

o and Γ′
s , each of which

is as given in Definition 4.10, and functions αo , αs , αR , α′
o and α′

s be respectively defined by

αS ,Γo ,Γs ,n
o , αS ,Γo ,Γs ,n

s , αS ,Γo ,Γs ,n
R , αS ′,Γ′

o ,Γ′
s ,n

o and αS ′,Γ′
o ,Γ′

s ,n
s .

(i) Neither projM1
nor p̂rojM1

change the sets of attributes. Each of the functions simn and
simx

n changes the sets of attributes but they coincide. Hence simx
n ◦ p̂rojM1

(M2) and projM1
◦

simn(M2) have the same sets of attributes. It is enough to show that simx
n ◦ p̂rojM1

(M2) and

projM1
◦ simn(M2) yield the same set of rules for every rule x

γ→ η ∈ R2. If η ∈ RHSo(M2)∪
{♯2(η′) | η′ ∈ RHSo(M2)} and ζ ∈ RHSs(M2), from Definition 4.10, the following equations
hold:

αo(a(η)) = Γo(a(η))
= a(α′

o(η))
αs(a(ζ), i) = Γs(a(ζ), i)

= a(α′
s(ζ, i)).

This implies that simx
n ◦ p̂rojM1

(M2) and projM1
◦ simn(M2) have the same set of rules.

(ii) Let U = (Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2, ♯2,
S

γ∈Σ2∪{♯2}Rγ) be an intermediate re-
sult. It is enough to show that

αR (Φ) ⇒?
SE αR (Ψ) if Φ ⇒ŜE Ψ. (62)

If the above clause holds, we have αR (R) ⇒∗
SE αR (nf (⇒ŜE, R)). Since nf (⇒ŜE, R) has no

reducible form for ⇒SE by the definition of ⇒ŜE and αR yields no reducible form for ⇒SE,
αR (nf (⇒ŜE, R)) is irreducible. Therefore, nf (⇒SE, αR (R)) = αR (nf (⇒ŜE, R)) holds. This
means that every Rγ with γ ∈ Σ2∪{♯2} yields the same set of rules in the computation of simx

n ◦
ŝeM1(U) and seM1 ◦ simx

n(U).
We prove (62) by case analysis on rewriting rules for ⇒ŜE in Definition 4.9.

(CASE 1) Let R be the following set of rules:

{bi(σ(e1, · · · ,en))
γ→ ζi | 1 ≤ i ≤ m}⊎Rγ

misc.

We have R ⇒ŜE P⊎Q where

P =
{

bi(e j)
γ→ θ(η) bi(π j) σ→ η ∈ Rσ

1 ,
1 ≤ i ≤ m,1 ≤ j ≤ n

}

Q =

x
γ→ ρ∗(η)

x
γ→ η ∈ Rγ

misc,
ρ = [ak(σ(e1, · · · ,en)) := θ(ψk)]1≤k≤l,

ak(π) σ→ ψk ∈ Rσ
1 ,1 ≤ k ≤ l


θ = [bi(π) := ζi]1≤i≤m[π j := e j]1≤ j≤n
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and we also have αR (R) ⇒SE P′⊎Q′ where

P′ =
{

bi(αo(e j))
γ→ θ′(η) bi(π j) σ→ η ∈ Rσ

1 ,
1 ≤ i ≤ m,1 ≤ j ≤ n

}

Q′ =

x
γ→ ρ∗(η)

x
γ→ η ∈ αR (Rγ

misc),
ρ = [ak(σ(αo(e1), · · · ,αo(en))) := θ′(ψk)]1≤k≤l,

ak(π) σ→ ψk ∈ Rσ
1 ,1 ≤ k ≤ l


θ′ = [bi(π) := αo(ζi)]1≤i≤m[π j := αo(e j)]1≤ j≤n.

We can show that P′ = αR (P) and Q′ = αR (Q). Hence αR (R) ⇒SE αR (P⊎Q).

(CASE 2) Let P be a set of attribute rules {x
γ→ E [a(Head(ζ))]} with ζ ∈ RHSs(M2). Then we

have P⊎R ⇒ŜE Q⊎R where Q = {x
γ→ E [Head(a(ζ))]}. The following equations

hold:

αo(a(Head(ζ))) = Γo(a(Head(ζ)))
= a(α′

s(ζ,1))
αo(Head(a(ζ))) = αs(a(ζ),1)

= Γs(a(ζ),1)
= a(α′

s(ζ,1)).

From Lemma 3.17, we obtain E [a(Head(ζ))] =α E [Head(a(ζ))] where =α is given
in Lemma 3.17. This implies αR (P) = αR (Q). Hence, αR (P⊎R) = αR (Q⊎R)
holds.

(CASE 3) Let P be a set of attribute rules {x
γ→ E [a(Tail(ζ))]} with ζ ∈ RHSs(M2). Then we

have P⊎R ⇒ŜE Q⊎R where Q = {x
γ→ E [Tail(a(ζ))]}. The following equations

hold:

αs(a(Tail(ζ)), i0) =
{

⊥ (if α′
s(Tail(ζ), i0) = ⊥)

a(α′
s(Tail(ζ), i0)) (otherwise)

=
{

⊥ (if i0 = n or α′
s(ζ, i0 +1) = ⊥)

a(α′
s(ζ, i0 +1)) (otherwise)

αs(Tail(a(ζ)), i0) =
{

⊥ (if i0 = n)
α′

s(a(ζ), i0 +1) (otherwise)

=
{

⊥ (if i0 = n or α′
s(ζ, i0 +1) = ⊥)

a(α′
s(ζ, i0 +1)) (otherwise)

for any 1 ≤ i0 ≤ n. From Lemma 3.17, E [a(Tail(ζ))] =α E [Tail(a(ζ))] with =α
given in Lemma 3.17 holds. This implies αR (P) = αR (Q). Hence, αR (P⊎R) =
αR (Q⊎R) holds.

(CASE 4) Similar to CASE 3.

(CASE 5) Similar to CASE 3.
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(CASE 6) Consider the case 6 (i) in Definition 4.9. Let P be a set of attribute rules {a(Head(ζ))
γ→

η′,a(Tail(ζ))
γ→ ζ′} with ζ∈RHSs(M2), η′ ∈BHSo(M1,M2) and ζ′ ∈BHSs(M1,M2).

We have P⊎R ⇒ŜE Q⊎R where Q = {a(ζ)
γ→ Cons(η′,ζ′)}. Since a(Head(ζ)) ∈

BHSo(M1,M2) and a(Tail(ζ)) ∈ BHSs(M1, M2), we have

αR (P) = {x
γ→ e | x = αo(a(Head(ζ))) ̸= ⊥, e = αo(η′)}

∪{xi
γ→ ei | xi = αs(a(Tail(ζ)), i) ̸= ⊥, ei = αs(ζ′, i), 1 ≤ i ≤ n}

= {x
γ→ e | x = a(αs(ζ,1)), αs(ζ,1) ̸= ⊥, e = αo(η′)}

∪
{

xi
γ→ ei

xi = a(αs(ζ, i+1)), αs(ζ, i+1) ̸= ⊥, ei = αs(ζ′, i),
1 ≤ i ≤ n−1

}
( from αs(Tail(ζ),n) = ⊥. )

αR (Q) = {xi
γ→ ei | xi = αs(a(ζ), i), ei = αs(Cons(η′,ζ′), i), 1 ≤ i ≤ n}

= {x1
γ→ e1 | x1 = αs(a(ζ),1) ̸= ⊥, e1 = αo(η′)}

∪{xi
γ→ ei | xi = αs(a(ζ), i) ̸= ⊥, ei = αs(ζ′, i−1), 2 ≤ i ≤ n}

= {x1
γ→ e1 | x1 = a(α′

s(ζ,1)), α′
s(ζ,1) ̸= ⊥, e1 = α′

o(η
′)}

∪{xi
γ→ ei | xi = a(α′

s(ζ, i)), α′
s(ζ, i) ̸= ⊥, ei = α′

s(ζ
′, i−1), 2 ≤ i ≤ n}

Then αR (P) = αR (Q) holds, hence αR (P⊎R) = αR (Q⊎R). We can similarly show
the statement in the cases 6 (ii), (iii).

(CASE 7) Similar to CASE 6.

(CASE 8) Let P be a set of attribute rules {a(Empty)
γ→ ζ′} with ζ′ ∈ BHSs(M1,M2). We have

P⊎R ⇒ŜE R. αs(a(Empty), i) = ⊥ since α′
s(Empty, i) = ⊥. This implies αR (P) = /0,

hence αR (P⊎R) = αR (R).

(iii) Let U = (Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2, ♯2,R) be an intermediate result after the
symbolic evaluation, let Π be a set {π,π1, · · · ,πm} with m = max{k | Σ(k)

1 ̸= /0}. and θ,θ′ be
replacements represented by

θ = [a(a′(ϕ)) := 〈a,a′〉(ϕ)]a∈Att1,a′∈Att2,ϕ∈Π

θ′ = [a(a′(ϕ)) := 〈a,a′〉(ϕ)]a∈Att1,a′∈Att2∪StAtt2,ϕ∈Π,

respectively, where Att1 = Syn1 ∪ Inh1, Att2 = Syn2 ∪ Inh2 and StAtt2 = StSyn2 ∪StInh2.
We prove the statement (iii) by showing that

αo(θ′(η)) = θ(α′
o(η)) (63)

αs(θ′(ζ), i) = θ(α′
s(ζ, i)) (64)

for any η ∈ BHSo , ζ ∈ BHSs and 1 ≤ i ≤ n where BHSo and BHSs are subsets of BHSo(M1,M2)
and BHSs(M1,M2) such that their elements have no occurrence of the expression of the form
a(σ(η1, · · · ,ηn)), a(Head(ζ)), a(Tail(ζ)), a(Cons(η,ζ)) or a(Empty). The equations (63) and
(64) can be proved by induction on the structure of η or ζ, if (63) and (64) hold where η =
a(a′(ϕ)) and ζ = a(a′(ϕ)) for a ∈ Att1, a′ ∈ Att2, a′ ∈ StAtt2 and ϕ ∈ Π. If a ∈ Att1, a′ ∈ Att2
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and ϕ ∈ Π, then αo(a(a′(ϕ))) = a(a′(ϕ)). Hence (63) holds. If a ∈ Att1, a′ ∈ StAtt2, ϕ ∈ Π and
i0, then

θ(α′
s(a(a′(ϕ)), i0)) = θ(a(α′

s(a
′(ϕ), i0)))

= θ(a(〈a′, i0〉(ϕ)))
= 〈a,〈a′, i0〉〉(ϕ)
= 〈a,a′, i0〉(ϕ)

because α′
s(a′(ϕ), i0) = 〈a′, i0〉(ϕ) ̸= ⊥. From the definition of αs ,

αs(θ′(a(a′(ϕ))), i0) = αs(〈a,a′〉(ϕ), i0)
= 〈〈a,a′〉, i0〉(ϕ)
= 〈a,a′, i0〉(ϕ).

Hence (64) holds. (63) and (64) imply that simn(r̂en(U)) and ren ◦ simx
n(U) have the same set

of attribute rules because it is trivial that both sets of dummy rules produced by simn ◦ r̂en and
ren◦ simx

n coincide. Therefore simn ◦ r̂en(U) = ren◦ simx
n(U). 2

It follows from this lemma that the n-depth simulation of the composition of an ATT M1
and a SATT M2 equals to the composition of an ATT M1 and n-depth simulation of a SATT M2.

Proposition 4.12 Let M1 and M2 be a sur-ATT a sur-SATT, respectively. Then

[[M1 ⊙ simn(M2)]] = [[simn(M1⊙̂M2)]]

holds for any n.

Proof.

M1 ⊙ simn(M2) = ren◦ seM1 ◦projM1
◦ simn(M2) (by Definition 4.2)

= simn ◦ r̂en◦ ŝeM1 ◦ p̂rojM1
(M2) (by Lemma 4.11)

= simn(M1⊙̂M2) (by Definition 4.9)

2

The correctness of the extended descriptional composition is an immediate consequence of
this proposition.

Theorem 4.13 (⊙̂-Correctness, I) If M1 is a well-defined sur-ATT and M2 is and a well-defined
sur-SATT, then M1⊙̂M2 is a well-defined sur-SATT such that [[M1]]◦ [[M2]] = [[M1⊙̂M2]], i.e., [[M1]]◦
[[M2]](t) = [[M1⊙̂M2]](t) for any input t.

Proof. Assume that t is an arbitrary input tree in dom([[M2]]), M1 is a well-defined sur-ATT
and M2 is a well-defined sur-SATT. Then simn(M2) is a sur-ATT for any n by Definition 4.7.
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Letting n = max{lub(M2, t), lub(M1⊙̂M2, t)}, we have

[[M1⊙̂M2]](t) = [[simn(M1⊙̂M2)]](t) (by Theorem 3.22)
= [[M1⊙simn(M2)]](t) (by Proposition 4.12)
= [[M1]]◦[[simn(M2)]](t) (by Theorem 4.3)
= [[M1]]([[simn(M2)]](t)) (by the definition of ◦)
= [[M1]]([[M2]](t)) (by Theorem 3.22)
= [[M1]]◦[[M2]](t) (by the definition of ◦)

It follows that M1⊙simn(M2) is a well-defined sur-ATT for any n from Theorem 4.3. Hence,
simn(M1⊙̂M2) is a well-defined sur-ATT for any n. Therefore M1⊙̂M2 is a well-defined sur-
SATT from Definition 4.7 and Corollary 3.23. 2

The transition by equations in the above proof does not depend on the sur-condition of M1
and M2. Therefore we obtain the following theorem by using Theorem 4.5 instead of Theo-
rem 4.3.

Theorem 4.14 (⊙̂-Correctness, II) If M1 is a TDTT and M2 is a well-defined SATT, then M1⊙̂M2
is a well-defined SATT such that [[M1]]◦ [[M2]] = [[M1⊙̂M2]].

The closure properties are corollaries to these theorems.

Corollary 4.15

(i) ATT su ◦SATT su = SATT su.

(ii) TDTT ◦SATT = SATT .

Proof. The first statement follows immediately from the fact that ATT su contains the identical
tree transformation and that ATT su ◦SATT su ⊆ SATT su holds from Theorem 4.13. Similarly,
the second statement follows from Theorem 4.14. 2

5 Conclusion
We have presented a composition method for stack-attributed tree transducers (satt) and proved
the correctness of it. Stack-attributed tree transducers are more powerful than attributed tree
transducers (att) due to a stack mechanism. Our composition method is based upon the fact that
stack-attributed tree transducers are approximated by attributed tree transducers once an input
tree is fixed.

We proved also that the composition method enjoys a closure property under the restriction
called single-use restriction (sur). This indicates that the composition of a sur-att and a sur-satt
results in a single sur-satt, which can be subject to composition with another sur-att.

This paper has only dealt with the composition of an att and an satt. We believe that the result
of the composition of two satt’s cannot be obtained by a single satt. Instead, we would obtain
an attributed tree transducers whose attribute values have nested stack structures, i.e., stack
of stacks. It would be interesting to compare the result with the composition of other tree
transducers: macro tree transducer [EV85], macro attributed tree transducer [KV94], n-iterated
pushdown tree transducer [EV88], et al.
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[Fül81] Z. Fülöp. On attributed tree transducers. Acta Cybernetica, 5:261–280, 1981.
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