
Streamlining Functional XML Processing∗

Keisuke Nakano

Department of Mathematical Informatics, University of Tokyo
Bunkyo-ku, Tokyo, 113-8656, Japan

ksk@mist.i.u-tokyo.ac.jp

Abstract

Since an XML document has tree structure, XML transformations are ordinarily defined as recursive
functions over the tree. Their direct implementation often causes inefficient memory usage because the input
XML tree needs to be completely stored in memory. In contrast, XML stream processing can minimize the
memory usage and execution time since it begins to output the transformation result before reading the
whole input. However, it is much harder to write the XML transformation program in stream processing
style than in functional style because stream processing requires stateful programming. In this paper, we
propose a method for automatic derivation of XML stream processor from XML tree transformation written
in functional style. We use an extension of macro forest transducers as a model of functional XML processing.
Since an XML parser is represented by (infinitary) top-down tree transducer, the automatic derivation of
XML stream processor is based on the composition of the top-down tree transducer and the extension of
macro forest transducers.

1 Introduction

Since an XML document has tree structure, it is natural to define XML transformations as recursive functions
over the tree. Such a style will be called functional XML processing . Several XML transformation languages
[8, 2, 22] have been presented in this style, in which programs are recursive functions over forests that are
sequences of labeled trees. This is mainly because each node in an XML tree can have an arbitrary number of
children.

Forests are defined by

f ::= σ[f]f | %[str] f | ()

where we write σ[f1]f2 for a sequence whose head is a σ-labeled tree with a child forest f1 and tail is a sibling
forest f2, %[str] f for a text node of strings s which has a sibling forest f , and () for the empty sequence. For
simplicity, we ignore attributes and allow the root to have sibling labeled trees. Text nodes are represented by
a labeled tree with no child. For instance, an XML fragment

<p> XML is forest. </p>

are represented by

p[%[XML is] em[%[forest]]]

Perst and Seidl [17] recently presented macro forest transducers (mft) which can be regarded as programs
based on recursive XML Transformation. Roughly speaking, mft’s can deal with recursive programs over
forests1. A mft specifies a forest transformation by defining mutual recursive functions over forests with accu-
mulating parameters. For example, we consider a simple XML transformation which creates a corresponding
XHTML code and adds an index including all key elements before a postscript paragraph at the end of the
input article. The transformation program is defined by a mft shown in Figure 1. The main function Main
transforms an XML

∗This work is partially supported by the Comprehensive Development of e-Society Foundation Software program of the Ministry
of Education, Culture, Sports, Science and Technology, Japan.

1This paper deals with mft’s extended for text nodes.

1

Main(article[$x1]$x2) = html[head[Title($x1) body[InArticle($x1, ())]] ()

Title(title[$x1]$x2) = title[$x1]

InArticle(title[$x1]$x2, $y1) = h1[$x1] InArticle($x2, $y1)

InArticle(para[$x1]$x2, $y1) = p[Key2Em($x1)] InArticle($x2, $y1 AllKeys($x1))

InArticle(postscript[$x1]$x2, $y1) = h2[%[Index]] ul[$y1] h2[%[Postscript]] $x1

Key2Em(key[$x1]$x2) = em[$x1] Key2Em($x2)

Key2Em(%[$s] $x) = %[$s] Key2Em($x)

Key2Em(()) = ()

AllKeys(key[$x1]$x2) = li[$x1] AllKeys($x2)

AllKeys(%[$s] $x) = AllKeys($x)

AllKeys(()) = ()

Figure 1: Example of a mft-style XML transformation program

<article>

<title>MFT</title>

<para> XML is <key>forest</key>. </para>

<para> <key>MFT</key> transforms forests. </para>

<para> MFT transforms XML. </para>

<postscript> MFT is quite expressive. </postscript>

</article>

into an XML

<html>

<head><title>MFT</title></head>

<body>

<h1>MFT</h1>

<p> XML is forest. </p>

<p> MFT transforms forests. </p>

<p> MFT transforms XML. </p>

<h2>Index</h2>

 forest MFT

<h2>Postscript</h2>

<p> MFT is quite expressive. </p>

</body>

</html>

using two auxiliary functions Title and InArticle. The function Main matches the argument with a pattern
article[x1]x2 and call the function InArticle with the sub-forest x1 and an extra argument (). The function
InArticle collects all em’s in para elements into the accumulating parameter using a function AllKeys. The
collection is appeared as an Index paragraph right before a copyright element. Every function matches the
first argument with a pattern para[x1]x2 or () and calls functions with x1 or x2 as the first argument.

In a mft-style XML transformation, only the first argument of every function is matched with several patterns
as a forest. The rest of arguments can be used for accumulating parameters such as y1 in the definition of
InArticle in the above example. Though several functions are partial, they can be extended to total functions
just by adding a rule F(,...) = () with a wild-card pattern .

Though a recursive XML processing is a handy style for XML transformations over forests, it frequently
causes inefficiency of memory usage and execution time because the entire XML stream has to be read and
passed to construct the complete input tree before the computation takes place. It is quite harmful in particular
when the input is extremely long.

XML stream processing improves the efficiency such as [21]. It minimizes memory usage and execution time
by not storing trees in memory. An XML stream processor begins to output the transformation result before
reading the whole input. A program written in stream processing style simply consists of initial buffered value
v0 and event-associated function P which takes the current buffered value and an input event and returns a
value to be buffered and a part of output where an input event is <σ>, </σ>, str or the end-of-file event EOF.

2

Input :

Output :

Buffer :

<article>

§̈ ¥¦v0 P

<title>

<html><head>

§̈ ¥¦v1 P

MFT

<title>

§̈ ¥¦v2 P

</title>

MFT

§̈ ¥¦v3 P

<para>

</title></head>

<body><h1>MFT</h1>

§̈ ¥¦v4 P

XML is

<p>

§̈ ¥¦v5 P

XML is

§̈ ¥¦v6

Figure 2: Example of stream processing flow

XML processing proceeds with updating a buffer as shown in Figure 2. First, the buffer has the initial value
v0. After that it processes the input stream depending on the event and the current buffered value for each
event read. Now the current event is the begin tag <article> and the current buffered value is v0. Then the
function P is called with the arguments the event <article> and the buffered value v0. In the result, a part
of the transformation result <html><head> is output and the buffered value is updated to v1. When the next
event <title> is read the function P is called in a similar way. Note that enough information should be stored
in the buffer since a stream processor cannot backtrack on the input stream in general. For example, v3 should
comprehend all child nodes of title element so that the stream processor can output an h1 element with these
nodes.

While stream processing saves memory usage and execution time, it is much harder to write a program in
stream processing style than in functional XML processing style because complicated stateful programming is
required.

This paper presents a method to automatically derive the XML stream processor from an XML transfor-
mation program written as recursive XML processing. To be more precise we give a method to obtain an XML
stream processing program from a mft. The method is based on the composition of a top-down tree transducer
(tdtt) and a mft. The tdtt represents an XML parser which transforms XML streams into XML forests. Though
we need a stack in order to parse XMLs by tdtt [15, 14], it can be simulated as an infinitary tdtt, that is a tdtt
with infinite number of states. The composition is done in a way similar to that of a (finitary) tdtt and a mtt
presented by Engelfriet and Vogler [5]. Though it has not been proved that an infinitary tdtt and a mft can be
composed by their method, we directly prove that the XML stream processor obtained by our method behaves
equivalently to the original mft in this paper.

Related Work

Several researchers have discussed the automatic derivation of XML stream processors from declarative pro-
grams. Most of them, however, deals with only query languages including XPath [1, 4, 6, 7] and a subset of
XQuery [11]. These querying languages are not expressive enough to specify XML transformation. For exam-
ple, they could not define the structure-preserved transformation, e.g., renaming the label a to b. In recursive
functional style, we can easily deal with this kind of transformation.

The key idea of our framework was presented in the author’s preceding work [15, 16]. The previous work
is based on the composition of (stack-)attributed tree transducers [14]. The author has released the XML
transformation language XTiSP [15, 13]. All programs definable in XTiSP can be translated into attributed
tree transducers. It is well known that attributed tree transducers are less expressive than macro tree transducers
[5], i.e., our result in this paper is more powerful than before. Moreover, since the previous framework [15] does
not give the formal model of stream processors, some part of the implementation of XTiSP is ad-hoc and that
contains inefficient evaluation.

Kiselyov [9] gave an XML parser with a general folding function foldts over rose trees. They define an
XML transformation by applying three actions fup, fdown and fhere to foldts. These actions specify how to
accumulate the seed value. This programming style is not user-friendly and many function closures are stored
during the processing. Furthermore, his framework does not mention whether the processor can output a part
of the result when reading a single XML event, e.g., a begin tag <a>.

STX [3] is a template-based XML transformation language that operates on stream of SAX [21] events. While
the programmers can define the XML transformation program as well as XSLT [22], they have to explicitly
write when and how to store the temporary information like stream processing style.

TransformX presented by Scherzinger and Kemper [18] gives the framework for syntax-directed transforma-
tions of XML streams. We can obtain XML stream processors by defining a kind of attribute grammar on the
regular tree of the type schema for inputs. Even in their framework, however, we must still keep in mind which

3

information should be buffered before and after reading each subtree in the input.
Kodama, Suenaga, Kobayashi and Yonezawa [10, 19] propose a translation method from tree processing

programs to XML stream processors where the programmer does not have to consider which information should
be buffered. Their tree processing language only deals with binary trees which can be easily parsed without
end tags, that is rather far from practical XML transformation languages.

Outline

In Section 2, we introduce a simplified model of XML documents and macro forest transducers. In Section 3
we give the formal model of XML stream processors and its derivation from our transducers. We discuss an
extension of our framework for applying the existing functional XML transformation languages in Section 4.
Finally Section 5 concludes the paper.

2 Model of XML and its Transformation

This section formalizes a model of XML documents. For simplicity, we deal with a simplified model of XML
documents. Firstly, we deal with only element nodes. Our framework is easily extended for other kinds of
nodes, such as text nodes and attributes. Secondly, we assume that the input XML is well-formed , i.e., all
begin/end tags are balanced. Therefore, in the input and output, we ignore the names of end tags The names
can be recovered by keeping a stack of names whose size coincides with the depth of the XML tree.

2.1 Trees, Forests and XML Streams

Let Σ be an alphabet. Then Σ-trees and Σ-forests are defined by the following syntax:

t ::= σ[f] | %[σ] f ::= () | tf

where σ ∈ Σ and () denotes the empty forest. Σ-forest is also called Σ-hedge [12] and seen as a list of rose trees.
Every tree t ∈ TΣ can be seen as a forest t() ∈ FΣ even if it is written as t. We denote TΣ and FΣ for sets of
Σ-trees and Σ-forests, respectively. A Σ-tree a[%[bar]b[%[foo]()]()] with certain Σ corresponds to an XML
fragment <a>barfoo. For two forests f1, f2 ∈ FΣ, we write f1f2 for a Σ-forest t1 . . . tnu1 . . . um()
where f1 = t1 . . . tn() and f2 = u1 . . . um().

An XML stream is modeled by a sequence of named begin/end tags and texts. The model of XML stream
is defined by a sequence of Σ-events which is an alphabet {<σ> | σ ∈ Σ}∪ {</σ> | σ ∈ Σ} ∪Σ denoted by Σ</>,
provided that the sequence is well-formed, i.e., every begin tag has a corresponding end tag and vice versa. For
instance, an XML fragment <a>barfoo is represented in our model by the sequence of six symbols,
<a>, bar, , foo, and . We denote by Σ∗

</> a set of well-formed sequences of Σ-events and denote
by ε the empty sequence. The set Σ∗

</> is a subset of FΣ</>
where every tree has no child. The symbol EOF

denotes the end of an XML stream, which is also regarded as an event. We write Σ</>EOF for Σ</> ∪ {EOF}.
Let Σ be an alphabet. The streaming of a forest is the function ⌊ ⌋ : FΣ → Σ</> defined by

⌊σ[f1]f2⌋ = <σ> ⌊f1⌋ </σ> ⌊f2⌋ ⌊%[σ]f⌋ = σ ⌊f⌋ ⌊()⌋ = ε.

For example, ⌊a[%[bar]b[%[foo]()]()]⌋ = <a>barfoo.

2.2 Macro Forest Transducers

Macro forest transducers (for short, mft) were proposed by Perst and Seidl [17] to define transformations from
forests to (sets of) forests. They extend macro tree transducer (for short, mtt) [5] with the concatenation
operator for forests as a primitive. Let us write N for the set of non-negative integers including 0.

Definition 2.1 A macro forest transducer (mft) is a tuple M = (Q, Σ,∆, in, R), where

• Q is a finite set of ranked states whose ranks are obtained by rank : Q → N \ {0},

• Σ and ∆ are alphabets with Q∩(Σ∪∆) = ∅, called the input alphabet and the output alphabet, respectively,

• in ∈ Q is the initial ranked state,

4

• R is a set of rules such that R =
∪

q∈Q Rq with sets Rq of q-rules of the form q(pat , y1, . . . , yn) → rhs
with rank(q) = n + 1 and variables yi where

– pat is either () or σ[x1]x2 with σ ∈ Σ,
– rhs ranges over expressions defined by

rhs ::= q′(xi, rhs, . . . , rhs) | yj | () | δ[rhs] | %[δ] | rhs rhs

with q′ ∈ Q, δ ∈ ∆, i = 1, 2 and j = 1, . . . , n. Additionally, no variable xi occurs in rhs when
pat = ().

Next we define the semantics of mft’s such that every state is translated into a function with accumulating
parameters following [17].

Definition 2.2 Let M = (Q, Σ,∆, in, R) be a mft and f ∈ FΣ. The semantics of states q ∈ Q with n = rank(q)
is given by the function [[q]] : FΣ × (F∆)n → F∆. The functions are inductively defined by q-rules in M as
follows:

• [[q]]((), ϕ1, . . . , ϕn) = [[rhs]]ρ where (q((), y1, . . . , yn) → rhs) ∈ R and ρ(yj) = ϕj for j = 1, . . . , n,

• [[q]](σ[ω1]ω2, ϕ1, . . . , ϕn) = [[rhs]]ρ where (q(σ[x1]x2, y1, . . . , yn → rhs) ∈ R, ρ(xi) = ωi for i = 1, 2 and
ρ(yj) = ψj for j = 1, . . . , n,

• [[q]](%[σ]ω, ϕ1, . . . , ϕn) = [[rhs]]ρ where (q(%[σ]x, y1, . . . , yn → rhs) ∈ R, ρ(x) = ω for i = 1, 2 and
ρ(yj) = ψj for j = 1, . . . , n,

where [[]]ρ denotes the evaluation of a right-hand side expression for states with respect to the binding ρ of the
formal parameters xi and yj that is defined by

[[q′(xi, rhs1, . . . , rhsm)]]ρ = [[q′]](ρ(xi), [[rhs1]]ρ, . . . , [[rhsm]]ρ)
[[yj]]ρ = ρ(yj) [[()]]ρ = ()

[[δ[rhs]]]ρ = δ[[[rhs]]ρ] [[%[δ]]]ρ = %[δ] [[rhs rhs ′]]ρ = [[rhs]]ρ[[rhs ′]]ρ.

Our definition is different from [17] in that we deal with text nodes explicitly and consider only deterministic
mft’s, i.e., every semantics of states ranges over a set of forests instead of a power set of them. Note that the
semantics of a state is a partial function when there is no rule for the state and a certain pattern. For such
uncovered state and pattern, we assume that the mft implicitly has rules whose right-hand side is a leaf. Then
we can claim that the semantics is total. In the rest of paper, we deal with only total mft’s though we may
omit these additional rules.

The transformation of a forest f by an mft is defined by applying the semantics of the initial state to f and
an adequate number of leaves.

Definition 2.3 The transformation induced by a mft M = (Q, Σ,∆, in, R) is the function τM : FΣ → F∆

defined by
τM (f) = [[in]](f, (), . . . , ()).

We show two examples of XML transformation written in mft’s. First example Mhtm is an XML transfor-
mation shown in Section 1.

Example 2.4 Let the mft Mhtm = (Q, Σ,∆,Main, R) be defined by

Q = {Main,Title, InArticle,Key2Em,AllKeys,Copy},
Σ = ∆ = (proper alphabet),
R = { Main(article[x1]x2) → html[head[Title(x1)]body[InArticle(x1, ())]()],

Title(title[x1]x2) → title[Copy(x1)],
InArticle(title[x1]x2, y1) → h1[Copy(x1)]InArticle(x2, y1),
InArticle(para[x1]x2, y1) → p[Key2Em(x1)]InArticle(x2, y1AllKeys(x1)),
InArticle(postscript[x1]x2, y1) → h2[%[Index]] ul[y1] h2[%[Postscript]] Copy(x1),
Key2Em(key[x1]x2) → em[Copy(x1)] Key2Em(x2),
Key2Em(%[σ]x) → %[σ]Key2Em(x) (σ ∈ Σ), Key2Em(()) → (),
AllKeys(key[x1]x2) → li[Copy(x1)]AllKeys(x2), AllKeys(%[σ]x) → AllKeys(x) (σ ∈ Σ),
AllKeys(()) → (),

5

Copy(σ[x1]x2) → σ[Copy(x1)]Copy(x2) (σ ∈ Σ), Copy(()) → () }

Almost rules of Mhtm are the same as the function definition in Figure 1. However, the variables matched with a
pattern cannot occur in the right-hand side of rules except for the case where they are used as the first argument
of the states according to the definition of rhs. For example, the right-hand side of the definition of Title is
title[$x1] in Figure 1. The definition of mft’s does not allows the expression title[x1] in a right-hand side
of rules. The mft Mhtm solves the problem by using a state Copy whose semantics is an identity function, i.e.,
we can use title[Copy(x1)] instead of title[x1].

Second example of a mft represents an XML transformation which reverses all descendants of rev node in
the input. For instance, when the input XML fragment is

<a>

<rev><c></c><d></d><e></e></rev>

<f><rev><g></g><h></h></rev></f>

,

the transformation returns

<a>

<rev><e></e><d></d><c></c></rev>

<f><rev><h></h><g></g></rev></f>

.

The transformation can be given by an mft with only two states.

Example 2.5 Let the mft Mmir = (Q, Σ,∆,Main, R) be defined by

Q = {Main,Rev}, Σ = ∆ = (proper alphabet),
R = { Main(rev[x1]x2) → rev[Rev(x1, ())]Main(x2),

Main(σ[x1]x2) → σ[Main(x1)]Main(x2) (σ ̸= rev), Main(%[σ]x) → %[σ]Main(x) (σ ̸= rev),
Main(()) → (),
Rev(σ[x1]x2, y1) → Rev(x2, σ[Rev(x1, ())]y1) Rev(%[σ]x, y1) → Rev(x, %[σ]y1) (σ ∈ Σ),
Rev((), y1) → y1 }.

3 XML Stream Processors and Its Derivation

This section presents a formal model of XML stream processors and its derivation method based on the com-
position of tree transducers. Since the set Σ∗

</> is a subset of FΣ</>
, XML stream processor (for short, xsp) can

be defined in a way similar to the definition of tree transducers such as mft’s.

3.1 XML Stream Processors

An XML stream processor proceeds an XML transformation by updating the buffered value. In our framework,
we consider a partially-evaluated result, called temporary expression, as the buffered value. The value will be
the transformation result itself after all input events are read. Additionally, the stream processor can output
a part of the transformation result by squeezing some decided output events at the head of the temporary
expression before completing reading all input events.

Our XML stream processor consists of rules which specifies how to update the temporary expression

Definition 3.1 An XML stream processor (xsp) is a tuple S = (Q, Σ,∆, in, R), where

• Q is a set of ranked states, which may be countably infinite and the rank for each state is obtained by
rank : Q → N,

• Σ and ∆ are (finite) alphabets with Q ∩ (Σ ∪ ∆) = ∅, called the input alphabet and the output alphabet,
respectively,

• in ∈ Q is the initial state,

6

• R is a set of rules such that R = {r(q,χ) | q ∈ Q,χ ∈ Σ</>EOF} with (q, χ)-rules r(q,χ) of the form

q(y1, . . . , yn)
χ−−→ rhs

with variables yj where n = rank(q) and rhs ranges over expressions defined by

rhs ::= q′(rhs, . . . , rhs) | yj | ε | <δ>rhs</δ> | δ | rhs rhs

where q′ ∈ Q, δ ∈ ∆ and j = 1, . . . , n. Additionally, the pattern q′() does not occur in rhs for any
q′ ∈ Q when χ = EOF.

3.2 Semantics of XML Stream Processors

The definition of semantics of states in an xsp is different from that of states in a mft because a rule of an
xsp specifies how to update the temporary expression for each input event. Temporary expressions range over
output XML streams with a number of unknown parts given by using states with arguments.

Definition 3.2 Let S = (Q, Σ,∆, in, R) be an xsp. A temporary expression E for S is defined by the following
syntax:

E ::= q(E, . . . , E) | ε | <δ>E</δ> | δ | E E

where q ∈ Q, δ ∈ ∆. We denote the set of temporary expressions by TmpS.

The semantics of an xsp is defined by translating every rule of the xsp into a transition for temporary
expressions.

Definition 3.3 Let S = (Q,Σ,∆, in, R) be an xsp and s ∈ Σ∗
</>. The transition over TmpS for an input

Σ-event is a function 〈| , |〉 : TmpS × Σ</>EOF → TmpS. The function is defined with another transition
over TmpS which is a function 〈| , |〉 : TmpS ×Σ</>EOF → TmpS. The definition use the evaluation function
[[]]ρ : rhs → TmpS for right-hand side expressions with respect to the binding ρ of the formal parameters in
the left-hand side. We give the definition as follows:

• 〈| |〉 are defined by

– 〈|q(E1, . . . , En), χ|〉 = [[rhs]]ρ where (q(y1, . . . , yn)
χ−−→ rhs) ∈ R with q ∈ Q, χ ∈ Σ</>EOF, ρ(yj) =

〈|Ej , χ|〉 for j = 1, . . . , n,

– 〈|ε, χ|〉 = ε, 〈|<δ>E</δ>, χ|〉 = <δ>〈|E,χ|〉</δ>, and 〈|δ, χ|〉 = δ where δ ∈ ∆,

– 〈|E E′, χ|〉 = 〈|E,χ|〉 〈|E′, χ|〉,

• [[]]ρ is defined by

[[q′(rhs1, . . . , rhsm)]]ρ = q′([[rhs1]]ρ, . . . , [[rhsm]]ρ)
[[yj]]ρ = ρ(yj) [[ε]]ρ = ε

[[<δ>rhs</δ>]]ρ = <δ>[[rhs]]ρ</δ> [[δ]]ρ = δ [[rhs rhs ′]]ρ = [[rhs]]ρ [[rhs ′]]ρ.

XML processing reads the input events one by one. For each reading step, the processor computes something
with stored information and store a new information for the next step. The transition 〈| |〉 defines how the
processor computes the next information for each input event. In our framework, the information is represented
by a temporary expression. Let S = (Q,Σ,∆, in, R) be an xsp and χ1χ2 . . . χk be an XML stream with χj ∈ Σ</>

for j = 1, 2, . . . , k. The initial information is represented by in(ε, . . . , ε). When finding the end of the input XML
stream, the transition for EOF is applied to the current information. The final information is the transformation
result itself. Thus we obtain the transformation result by

〈|〈| . . . 〈|〈|in(ε, . . . , ε), χ1|〉, χ2|〉, . . . , χk|〉, EOF|〉. (1)

This transformation is not what we require as XML processing, however, because the XML stream processor
should output part of the result if possible before reading the whole input.

We give two definitions of transformation induced by an xsp. One is called non-squeezing . The definition
is simply given as represented in (1). Another is called squeezing . The squeezing transformation achieve the

7

best result possible, that is, the output written so far always the largest that can be determined from the input
read so far. Stream processing with squeezing is a desirable behavior of real XML stream processors which can
start to output a part of the result for each input event. Since squeezing will collapse the syntax of temporary
expressions, we define collapsed temporary expressions Tmp×

S with an xsp S by

E ::= q(E, . . . , E) | ε | <δ>E | </δ> E | δ E

where q is a state of S and δ is an output symbol of S. We can easily confirm that TmpS ⊂ Tmp×
S .

Definition 3.4 1. The non-squeezing transformation induced by an xsp S = (Q,Σ,∆, in, R) is the function
τS : Σ∗

</> → ∆∗
</> defined by τS(s) = θS(in(ε, . . . , ε), sEOF) where

θS(e, ε) = e θS(e, χs) = θS(〈|e, χ|〉, s)

for e ∈ TmpS.

2. The squeezing transformation induced by an xsp S = (Q, Σ, ∆, in, R) is the function τS : Σ∗
</> → ∆∗

</>

defined by τS(s) = ηS(in(ε, . . . , ε), sEOF, ε) where for e ∈ TmpS

ηS(e, ε, b) = be ηS(e, χs, b) = ηS(e′, s, bs′).

with (e′, s′) = sqz (〈|e, χ|〉) and a sqeeze function sqz : Tmp×
S → Tmp×

S × ∆∗
</> is defined by

sqz (q(e1, . . . , en)) = (q(e1, . . . , en), ε) sqz (ε) = (ε, ε) sqz (<δ>e1) = (e′1, <δ>s
′
1)

sqz (</δ>e1) = (e′1, </δ>s
′
1) sqz (δe1) = (e′1, δs

′
1) sqz (e1 e2) =

{
(e′2, s

′
1s

′
2) if e′1 = ε

(e′1e2, s
′
1) otherwise

where (e′1, s′1) = sqz (e1) and (e′2, s′2) = sqz (e2).

The non-squeezing transformation uses the auxiliary function θ which takes two arguments, the current in-
formation as a temporary expression and the rest of the stream, and returns the next information. On the
other hand, the squeezing transformation uses the auxiliary function η which takes three arguments adding one
extra argument to those of θ. The extra argument is used for output buffer which does not change during the
computation except for adding some events to the tail of the original buffer. In the output buffer, the second
element of the result of the squeeze function sqz is added as a possibly-known part at the head of the result. It
is easy to show that

s′e′ = e if (e′, s′) = sqz (e) (2)

for e ∈ TmpS by induction on the structure of e.
The following lemma shows that the non-squeezing transformation and the squeezing transformation are

equivalent. In the rest of the paper, we employ the non-squeezing transformation instead of the squeezing one
to compare the behavior of a mft and an xsp since it is simpler than the squeezing transformation, although
the implementation of XML stream processor does employ the squeezing transformation.

Lemma 3.5 Let S = (Q,Σ,∆, in, R) be an xsp and s ∈ Σ∗
</>. Then we have

θS(in(ε, . . . , ε), s) = ηS(in(ε, . . . , ε), s, ε) (3)

where θS and ηS are as given in Definition 3.4.

Proof. We prove the equation
θS(be, s) = ηS(e, s, b) (4)

for b ∈ ∆∗
</> and e ∈ TmpS , which is more general than (3). Equation (3) is the special case of (4) in which

b = ε and e = in(ε, . . . , ε). We show at the same time

ηS(e, s, b) = ηS(be, s, ε) (5)

for s, b ∈ ∆∗
</> and e ∈ TmpS .

Equations (4) and (5) are proved by induction on the length ♯s of s. If ♯s = 0, then both (4) and (5) are
the same, that is be.

8

If ♯s > 0, then suppose that s = χs′ with χ ∈ Σ</> and s′ ∈ Σ∗
</> and that b = ξ1 . . . ξn (n ≥ 0) with

ξj ∈ ∆</> for j = 1, · · · , n. The left-hand side of (4) is

θS(ξ1 . . . ξne, χs′) = θS(〈|ξ1 . . . ξne, χ|〉, s′)
= θS(ξ1 . . . ξn〈|e, χ|〉, s′)
= ηS(〈|e, χ|〉, s′, ξ1 . . . ξn)
= ηS(ξ1 . . . ξn〈|e, χ|〉, s′, ε)

from the definitions of θ and 〈| |〉 and the induction hypotheses of (4) and (5). When (e′′, s′′) = sqz (〈|e, χ|〉),
the right-hand side of (4) is

ηS(e, χs′, ξ1 . . . ξn) = ηS(e′′, s′, ξ1 . . . ξns′′)
= ηS(ξ1 . . . ξns′′e′′, s′, ε)

from the definitions of ηS and the induction hypothesis of (5). Both sides of (4) are the same since we have
s′′e′′ = 〈|e, χ|〉 by (2). Hence (4) holds.

From the definition of ηS , the induction hypothesis of (5) and (e′′, s′′) = sqz (〈|e, χ|〉), the left-hand side of
(5) is

ηS(e, χs′, ξ1 . . . ξn) = ηS(e′′, s′, ξ1 . . . ξns′′)
= ηS(ξ1 . . . ξns′′e′′, s′, ε).

Since we have sqz (〈|ξ1 . . . ξne, χ|〉) = sqz (ξ1 . . . ξn〈|e, χ|〉) = (e′′, ξ1 . . . ξns′′) from the definitions of 〈| |〉 and sqz ,
the right-hand side of (5) is

ηS(ξ1 . . . ξne, χs′, ε) = ηS(e′′, s′, ξ1 . . . ξns′′)
= ηS(ξ1 . . . ξns′′e′′, s′ε)

from the definition of ηS and the induction hypothesis of (5). Hence (5) holds.

3.3 Derivation of XML Stream Processors

The derivation of an xsp from a given mft is achieved in a similar way to the existing method by Engelfriet
and Vogler [5] to synthesize two tree transducers, a top-down tree transducer (for short, tdtt) and a macro tree
transducer (for short, mtt). That is because an XML parser which transforms XML streams to forests (binary
labeled trees) can be represented by an infinitary tdtt and a mft is a simple extension of a mtt. Therefore we
can give a derivation method of an xsp just as a straightforward extension of the existing method. Correctness
of our method will be shown in the next subsection.

Definition 3.6 Let M = (Q, Σ,∆, in, R) be a mft. We define an xsp SP(M) = (Q′,Σ,∆, in ′, R′) where

• Q′ = {q[i] | q ∈ Q, i ∈ N} where rank(q[i]) = rank(q) − 1 for every q ∈ Q and i ∈ N,

• in ′ = in[0] ∈ Q,

• R′ contains the following rules:

– For every q ∈ Q, σ ∈ Σ and (q(σ[x1]x2, y1, . . . , yn) → rhs) ∈ R, the (q[0], <σ>)-rule in R′ is

q[0](y1, . . . , yn) <σ>−−−→ A(rhs),

– For every q ∈ Q, σ ∈ Σ and (q(%[σ]x, y1, . . . , yn) → rhs) ∈ R, the (q[0], σ)-rule in R′ is

q[0](y1, . . . , yn) σ−−→ A(rhs[x1/x])

where rhs[x1/x] is obtained by replacing x by x1 in rhs,

9

– For every q ∈ Q, σ ∈ Σ, i ∈ N and q((), y1, . . . , yn) → rhs ∈ R, the (q[0], </σ>)-rule and (q[i], EOF)-
rule in R′ are

q[0](y1, . . . , yn) </σ>−−−−→ A(rhs), q[i](y1, . . . , yn) EOF−−−→ A(rhs),

respectively,

– For every q ∈ Q, σ ∈ Σ and i ≥ 1, the (q[i], <σ>)-rule and (q[i], </σ>)-rule in R′ are

q[i](y1, . . . , yn) <σ>−−−→ q[i + 1](y1, . . . , yn), q[i](y1, . . . , yn) </σ>−−−−→ q[i − 1](y1, . . . , yn),

respectively,

where A is defined over right-hand side expressions of rules in mft’s as follows:

A(q′(x1, rhs1, . . . , rhsm)) = q′[0](A(rhs1), . . . ,A(rhsm))
A(q′(x2, rhs1, . . . , rhsm)) = q′[1](A(rhs1), . . . ,A(rhsm))
A(yj) = yj A(()) = ε

A(δ[rhs]) = <δ>A(rhs)</δ> A(%[δ]) = δ A(rhs rhs ′) = A(rhs) A(rhs ′)

Now we show two examples of derivation of xsp’s from a mft Mhtm of Example 2.4 and a mft Mmir of
Example 2.5. Additionally we illustrate how the obtained xsp SP(Mhtm) works for a certain input XML
stream. In these examples, we omit some of rules whose right hand side is ε they are derived from omitted rules
whose right-hand side is a leaf in the original mft.

Example 3.7 The derivation method gives an xsp SP(Mhtm) = (Q′,Σ,∆,Main[0], R′) from the mft Mhtm =
(Q, Σ,∆,Main, R) in Example 2.4 where

Q′ = {q[i] | q ∈ Q, i ∈ N},

R′ = { Main[0]() <article>−−−−−−−→ <html> <head> Title[0]() </head> <body> InArticle[0](ε) </body> </html>,

Title[0]() <title>−−−−−−→ <title> Copy [0]() </title>,

InArticle[0](y1)
<title>−−−−−−→ <h1> Copy [0]() </h1> InArticle[1](y1),

InArticle[0](y1)
<para>−−−−−→ <p> Key2Em[0]() </p> InArticle[1](y1 AllKeys[0]()),

InArticle[0](y1)
<postscript>−−−−−−−−−→ <h2> Index </h2> y1 <h2> Postscript </h2> Copy [0](),

Key2Em[0]()
<key>−−−−→ Copy [0]() Key2Em[1](), Key2Em[0]() σ−−→ σ Key2Em[1]() (σ ∈ Σ),

AllKeys[0]()
<key>−−−−→ Copy [0]() AllKeys[1](), AllKeys[0]() σ−−→ AllKeys[0]() (σ ∈ Σ),

Copy [0]() <σ>−−−→ <σ> Copy [0]() </σ> Copy [1]() (σ ∈ Σ), Copy [0]() σ−−→ σ Copy [0]() (σ ∈ Σ),

q[i]() <σ>−−−→ q[i + 1]() (σ ∈ Σ, i ≥ 1, q ̸= InArticle),

q[i]() σ−−→ q[i]() (σ ∈ Σ, i ≥ 1, q ̸= InArticle)

q[i]() </σ>−−−−→ q[i − 1]() (σ ∈ Σ, i ≥ 1, q ̸= InArticle)

q[i]()
χ−−→ ε ((χ, i) ∈ Σ(), q ̸= InArticle),

InArticle[i](y1)
<σ>−−−→ InArticle[i + 1](y1) (σ ∈ Σ, i ≥ 1),

InArticle[i](y1)
σ−−→ InArticle[i](y1) (σ ∈ Σ, i ≥ 1),

InArticle[i](y1)
</σ>−−−−→ InArticle[i − 1](y1) (σ ∈ Σ, i ≥ 1),

InArticle[i](y1)
χ−−→ ε ((χ, i) ∈ Σ()) },

where Σ() = {(</σ>, 0) | σ ∈ Σ} ∪ {(EOF, i) | i ∈ N}.

Let an input XML stream for SP(Mhtm) be

<article> <title> MFT </title> <para> XML is ...

10

Main[0]()

<article>
=⇒ <html> <head> Title[0]() </head> <body> InArticle[0](ε) </body> </html>

<title>
=⇒ <html> <head> <title> Copy [0]() </title> </head>

<body> <h1> Copy [0]() </h1> InArticle[1](ε) </body> </html>

MFT
=⇒ <html> <head> <title> MFT Copy [0]() </title> </head>

<body> <h1> MFT Copy [0]() </h1> InArticle[1](ε) </body> </html>

</title>
=⇒ <html> <head> <title> MFT </title> </head> <body> <h1> MFT </h1> InArticle[0](ε) </body> </html>

<para>
=⇒ <html> <head> <title> MFT </title> </head>

<body> <h1> MFT </h1> <p> Key2Em[0]() </p> InArticle[1](AllKeys[0]()) </body> </html>

XML is
=⇒ <html> <head> <title> MFT </title> </head>

<body> <h1> MFT </h1> <p> XML is Key2Em[0]() </p> InArticle[1](AllKeys[0]()) </body> </html>

=⇒ · · ·

Figure 3: Stream processing induced by SP(Mhtm)

Then an xsp proceeds as shown in Figure 3 where
χ

=⇒ stands for buffer updating when an input event χ is read.
The processing is as expected in Figure 2. For each step, the stream processor outputs the head-determined
part by the squeeze function. The remainder is stored in a buffer.

Example 3.8 The derivation method gives an xsp SP(Mmir) = (Q′,Σ,∆,Main[0], R′) from the mft Mmir =
(Q,Σ,∆,Main, R) in Example 2.5 where

Q′ = {q[i] | q ∈ Q, i ∈ N},

R′ = { Main[0]() <rev>−−−−→ <rev> Rev [0](ε) </rev> Main[1](),

Main[0]() <σ>−−−→ <σ> Main[0] </σ> Main[1] (σ ̸= rev), Main[0]() σ−−→ σ Main[0] (σ ∈ Σ),

Main[i]() <σ>−−−→ Main[i + 1]() (σ ∈ Σ, i ≥ 1), Main[i]() σ−−→ Main[i]() (σ ∈ Σ, i ≥ 1),

Main[i]() </σ>−−−−→ Main[i − 1] (σ ∈ Σ, i ≥ 1) Main[i]()
χ−−→ ε ((χ, i) ∈ Σ()),

Rev [0](y1)
<σ>−−−→ Rev [1](<σ> Rev [0](ε) </σ> y1) (σ ∈ Σ), Rev [0](y1)

σ−−→ Rev [0](σ y1) (σ ∈ Σ),

Rev [i](y1)
<σ>−−−→ Rev [i + 1](y1) (σ ∈ Σ, i ≥ 1), Rev [i](y1)

σ−−→ Rev [i](y1) (σ ∈ Σ, i ≥ 1),

Rev [i](y1)
</σ>−−−−→ Rev [i − 1](y1) (σ ∈ Σ, i ≥ 1), Rev [i](y1)

χ−−→ y1 ((χ, i) ∈ Σ()) },

where Σ() = {(</σ>, 0) | σ ∈ Σ} ∪ {(EOF, i) | i ∈ N}.

3.4 Correctness of derivation

The correctness of our derivation of XML stream processors is that, for every mft and every input forest, the
XML stream corresponding to the transformation result of the mft for the forest is equal to the transformation
result of the xsp obtained by our derivation from the mft. In the rest of section we do not deal with text nodes
in forests. The proof can be easily extended for text nodes. Additionally we ignore the names of end tags since
we deal with only well-formed XML. We write </¤> to denote a proper end tag. The name of the end tag can
be recovered from the context.

Correctness is stated by the following theorem.

Theorem 3.9 Let M = (Q, Σ,∆, in, R) be a mft. Then

τSP(M)(⌊f⌋) = ⌊τM (f)⌋

for every f ∈ FΣ.

11

To prove this theorem, we show several lemmas with respect to properties of an extension of θS . Before the
definition of the extension, we introduce the following forests representation (for short, FFR) for a forest f that
is a list of sub-forests of f whose syntax is

L ::= [] | f ′ :: L

where f ′ is a sub-forest of f . We use FF f to denote a set of FFR’s for a forest f . The i-th element of L ∈ FF f

is accessed by L.i where (f ′ :: L).0 = f ′ and (f ′ :: L).i = L.(i − 1). The FFR can output one by one the next
XML event from the XML stream corresponding to f by updating the representation. The initial FFR for a
forest f is a singleton list of f , i.e., f :: []. The updating function ud takes the current FFR and returns the
next XML event and the next FFR as follows:

ud(σ[f1]f2 :: L) = (<σ>, f1 :: f2 :: L) ud(() :: f :: L) = (</¤>, f :: L) ud(() :: []) = (EOF, []).

It outputs one by one the next XML event by updating the FFR by ud , which is confirmed by the following
lemma. We do not define ud([]) because the computation is not required in the rest of the paper.

Lemma 3.10 Let g be the function defined over FFR’s by

g(l) =
{

ε if l = []
χ g(l′) otherwise

where (χ, l′) = ud(l). Then we have
g(f :: []) = ⌊f⌋ EOF. (6)

Proof. First we show the following equation

g(f :: f ′ :: L) = ⌊f⌋ </¤>g(f ′ :: L) (7)

for forests f ′, f and a FFR l with some σ′ by induction on the structure of f . If f = (), then (7) holds by the
definitions of g, ud and ⌊ ⌋. If f = σ[f1]f2, then we have

g(σ[f1]f2 :: f ′ :: L) = <σ> g(f1 :: f2 :: f ′ :: L)
= <σ> ⌊f1⌋ </¤>g(f2 :: f ′ :: L)
= <σ> ⌊f1⌋ </¤> ⌊f2⌋ </¤>g(f ′ :: L)
= ⌊σ[f1]f2⌋ </¤>g(f ′ :: L)

from the definition of g, ud and ⌊ ⌋ and the induction hypothesis. Hence (7) holds for every forest f .
Now we prove the equation (6) by induction on the structure of f . If f = (), then (6) holds by the definitions

of g, ud and ⌊ ⌋. If f = σ[f1]f2, then we have

g(σ[f1]f2 :: []) = <σ> g(f1 :: f2 :: [])
= <σ> ⌊f1⌋ </¤>g(f2 :: [])
= <σ> ⌊f1⌋ </¤> ⌊f2⌋ EOF
= ⌊σ[f1]f2⌋ EOF

from the definition g, ud and ⌊ ⌋, the equation (7) and the induction hypothesis. Therefore (6) holds for every
forest f .

Now we define an extension of θS with FFR. Let S be an xsp and f be a forest such that ⌊f⌋ is an input
stream for S. We define the function ΘS as well as θS by

ΘS(E, []) = E ΘS(E,L) = Θ(〈|E,χ|〉, L′)

for E ∈ TmpS and L ∈ FF f where (χ, L′) = ud(L). The following lemma shows that the function ΘS can
simulate τS for an input stream ⌊f⌋.

Lemma 3.11 Let S = (Q,Σ,∆, in, R) be an xsp. Then

τS(⌊f⌋) = ΘS(in(ε, . . . , ε), f :: []) (8)

for every f ∈ FΣ.

12

Proof. From the definition of τS , what we have to show is

θS(in(ε, . . . , ε), ⌊f⌋ EOF) = ΘS(in(ε, . . . , ε), f :: []). (9)

Let g be the function as given in Lemma 3.10. and G(L) be a set of FFR’s occurring as an argument of g in the
computation of g(L), i.e., if L = [] then G(L) = {L} and otherwise G(L) = {L} ∪ G(L′) with (χ,L′) = ud(L).
The set G(f :: []) is finite because g(f :: []) always terminates as shown in the proof of Lemma 3.10. We show
the more general equation

θS(E, g(L)) = ΘS(E,L) (10)

for E ∈ TmpS and L ∈ G(f :: []). From Lemma 3.10 we can claim that the equation (9) is the special case
of (10) in which E = in(ε, . . . , ε) and L = f :: []. We prove the equation (10) by induction on the cardinality
♯G(L) of G(L). If ♯G(L) = 1, i.e., L = [], then the both sides are the same, that is e. If ♯G(L) > 1, then
g(L) = χg(L′) with (χ,L′) = ud(L). We have ♯G(L′) = ♯G(L) − 1 since L ̸∈ G(L′) from the definition of G.
Therefore we obtain

θS(E, g(L)) = θS(E,χ g(L′))
= θS(〈|E,χ|〉, g(L′))
= ΘS(〈|E,χ|〉, L′)
= ΘS(E,L)

from the induction hypothesis, the definition of ΘS and (χ, L′) = ud(L). Hence the equation (10) holds for
e ∈ TmpS and L ∈ G(f :: []).

Next we define the function I that translates temporary expressions into output forests. The function I
has a good property that I(E,L) = I(E′, L′) if ΘS(E,L) is computed by ΘS(E′, L′), which will be shown as
Lemma 3.12.

I(q[i](E1, . . . , En), L) = [[q]](L.i, I(E1, L), . . . , I(En, L)) I(ε, L) = ()

I(<δ>E</¤>, L) = δ[I(E,L)] I(E E′, L) = I(E,L) I(E′, L)

Lemma 3.12 Let M = (Q, Σ,∆, in, R) be a mft, SP(M) = (Q,Σ,∆, in, R′) be an xsp, f ∈ FΣ be a forest and
L ∈ G(f :: []) be a FFR where G is a function as given in the proof of Lemma 3.11. Then

I(E,L) = I(〈|E,χ|〉, L′) (11)

where (χ, L′) = ud(L).

Proof. We prove the statements by induction on the structure of E. Here we show only the case of E =
q[0](E1, . . . , En) with q ∈ Q that is the most complicated one in the induction. The other cases can be shown
in a similar way, which are omitted.

If E = q[0](E1, . . . , En) with q ∈ Q, then the left-hand side of (11) is equal to [[q]](L.0, I(E1), . . . , I(En)) by
the definition of I. When L = σ[f1]f2 :: L′′, ud(L) = (<σ>, L′) with L′ = f1 :: f2 :: L. Then the left-hand side
of (11) is

[[q]](L.0, I(E1, L), . . . , I(En, L)) = [[q]](σ[f1]f2, I(E1, L), . . . , I(En, L))
= [[q]](σ[f1]f2, I(〈|E1, χ|〉, L′), . . . , I(〈|En, χ|〉, L′))
= [[rhsq,σ]]ρ

from the definition of [[]] and ud and the induction hypothesis for (11), where ρ(xi) = fi for i = 1, 2 and
ρ(yj) = I(〈|Ej , χ|〉, L′) for j = 1, . . . , n. The right-hand side of (11) is

I(〈|q[0](E1, . . . , En), <σ>|〉, L′) = I([[A(rhsq,σ)]]ρ′ , L′)

where ρ′(yj) = 〈|Ej , <σ>|〉 for j = 1, . . . , n. It is shown by induction on the structure of rhsq,σ that

[[rhsq,σ]]ρ = I([[A(rhsq,σ)]]ρ′ , L′)

13

using L′.0 = f1, L′.1 = f2 and the definition of I and A. When L = () :: f :: L′′ and L = () :: [], we can show
the equation (11) in a way similar to the case of L = σ[f1]f2 :: L′′.

Now we prove Theorem 3.9. Let M be a mft and S = SP(M) be an xsp. The statement of Lemma 3.12
shows that, for the computation of

ΘS(E0, L0) = ΘS(E1, L1) = · · · = ΘS(En, Ln) = En (12)

with Ln = [], all I(Ek, Lk) with k = 0, . . . , n are the same. Since En = 〈|En−1, EOF|〉 and the right-hand side of
every rule in S with respect to EOF contains no occurrence of q(. . .) with a state q, En is just an XML stream.
Therefore ⌊I(En, Ln)⌋ = En holds by the definition of I and ⌊ ⌋. From the relation of I and Θ shown in
Lemma 3.12 and the equation (12), we obtain

⌊I(E0, L0)⌋ = En = ΘS(E0, L0)

When E0 = in[0](ε, . . . , ε) and L0 = f :: [] with an input forest f ,

⌊τM (f)⌋ = ⌊[[in]](f, (), . . . , ())⌋ = ⌊I(E0, L0)⌋
τS(⌊f⌋) = ΘS(E0, L0).

Therefore Theorem 3.9 has been proved.

4 Discussion

We hove shown how to derive an xsp from an arbitrary mft. Thus whether existing languages can be implemented
as a program in stream processing style is whether the language can be translated into an mft. In order to make
the translation easy, we discuss the extension of mft. In the formalization of mft, we cannot use even primitive
functions over booleans, integers, strings, etc. In this section, we discuss how to extend our framework for such
additional features and a few idea of translation for existing languages. Additionally, we add limitations of
XML stream processors and show a benchmark result comparing with the existing processor.

4.1 Booleans and Conditional Branches

We consider a simple extension of mft with booleans and their operator, conditional branches. Let us extend
the right-hand expression of mft with them as follows.

rhs ::= . . . | true | false | if (rhs, rhs, rhs)

where true and false are boolean values and if (e1, e2, e3) stands for a conditional branch with a test e1, a
true-branch e2 and a false-branch e3.

If we regard true, false and if as output symbols of the mft, our algorithm derives an xsp from the mft
though these symbols are left in right-hand side of rules in the obtained xsp. Hence we add the following special
rules for them in a similar way to [15]:

if (true, e1, e2) → e1 if (false, e1, e2) → e2

By applying these rules in each squeezing phase, we achieve an XML stream processing for the extended mft.

4.2 Pattern-based Languages

Most of existing XML transformation languages support pattern-based recursion (iteration). For instance, XSLT
[22] and XQuery [20] are based on pattern matching by XPath expressions. It is easy to encode simple forward
XPath expressions in mft style. Predicates in an XPath expression can be encoded into mft-style programs
using boolean values in the extended mft.

On the other hand, XDuce [8] and CDuce [2] are base on pattern matching by regular expressions. Though
a regular pattern may contain the symbol * for Kleene-closure, both languages use the definition

type T = () | E T

for a regular expression type E*. Hence a program in these languages are written in recursive style which is
quite similar to a mft-style program.

14

4.3 Limitation

There is a class of inherently memory inefficient transformations [16] such as Mmir in Example 2.5, which
reverses the order of markups at every nesting level for all descendants of rev nodes. Suppose the root node of
an input XML is labeled with rev. Though our framework can deal with such a transformation, the obtained
XML stream processor is not efficient because it cannot output any result until reading the end of the input
stream. This problem is not specific to our framework. Every SAX-like stream processing program has the
same problem: this kind of transformation is not suitable for stream processing.

5 Conclusion

We have presented a method to automatically derive an XML stream processor from a program in functional
XML processing style, where we write XML transformations as recursive functions over the input XML tree.
We adopt macro forest transducers (mft) as a model of functional XML processing and have shown that we can
obtain an XML stream processor for every mft by our method. The framework presented in this paper will be
applied to the next release of XTiSP [13]. The extension of our method will be applied to existing languages
[8, 2, 22] in which programs are given a set of recursive functions over XML trees (forests).

Acknowledgment

The author is grateful to Giuseppe Castagna and Shin-Cheng Mu for their kind help and advice on the
manuscript.

References

[1] M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective dissemination of infor-
mation. International Journal on Very Large Data Bases, pages 53–64, 2000.

[2] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-purpose language. In Proceedings
of the 8th International Conference of Functional Programming, pages 51–63, 2003.

[3] P. Cimprich, O. Becker, C. Nentwich, M. K. H. Jiroušek, P. Brown, M. Batsis, T. Kaiser, P. Hlavnička,
N. Matsakis, C. Dolph, and N. Wiechmann. Streaming transformations for XML (STX) version 1.0.
http://stx.sourceforge.net/documents/.

[4] Y. Diao and M. J. Franklin. High-performance XML filtering: An overview of YFilter. In IEEE Data
Engineering Bulletin, volume 26(1), pages 41–48, 2003.

[5] J. Engelfriet and H. Vogler. Macro tree transducers. Journal of Computer and System Sciences, 31(1):71–
146, 1985.

[6] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with deterministic
automata and stream indexes. ACM Transactions on Database Systems, 29(4):752–788, 2004.

[7] A. K. Gupta and D. Suciu. Stream processing of XPath queries with predicates. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, pages 419–430, 2003.

[8] H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language. ACM Transactions on
Internet Technology, 3(2):117–148, 2003.

[9] O. Kiselyov. A better XML parser through functional programming. In 4th International Symposium
on Practical Aspects of Declarative Languages, volume 2257 of Lecture Notes in Computer Science, pages
209–224, 2002.

[10] K. Kodama, K. Suenaga, N. Kobayashi, and A. Yonezawa. Translation of tree-processing programs into
stream-processing programs based on ordered linear type. In The 2nd ASIAN Symposium on Programming
Languages and Systems, volume 3302 of Lecture Notes in Computer Science, pages 41–56, 2004.

15

[11] B. Ludäscher, P. Mukhopadhyay, and Y. Papakonstantinou. A transducer-based XML query processor. In
Proceedings of 28th International Conference on Very Large Data Bases, pages 227–238, 2002.

[12] M. Murata. Extended path expressions of XML. In Proceedings of the 20th ACM Symp. on Principles of
Database Systems, pages 153–166, 2001.

[13] K. Nakano. XTiSP: XML transformation language intended for stream processing. http://xtisp.psdlab.
org/.

[14] K. Nakano. Composing stack-attributed transducers. Technical Report METR-2004-01, Department of
Mathematical Informatics, University of Tokyo, 2004.

[15] K. Nakano. An implementation scheme for XML transformation lauguages through derivation of stream
processors. In The 2nd ASIAN Symposium on Programming Languages and Systems, volume 3302 of
Lecture Notes in Computer Science, pages 74–90, 2004.

[16] S. Nishimura and K. Nakano. XML stream transformer generation through program composition and
dependency analysis. Science of Computer Programming, 54:257–290, 2005.

[17] T. Perst and H. Seidl. Macro forest transducers. Information Processing Letters, 89:141–149, 2004.

[18] S. Scherzinger and A. Kemper. Syntax-directed transformations of XML streams. In The workshop on
Programming Language Technologies for XML, pages 75–86, 2005.

[19] K. Suenaga, N. Kobayashi, and A. Yonezawa. Extension of type-based approach to generation of stream
processing programs by automatic insertion of buffering primitives. In International workshop on Logic-
based Program Synthesis and Transformation, 2005. To appear.

[20] XQuery 1.0: An XML query language. http://www.w3.org/TR/xquery/.

[21] SAX: the simple api for XML. http://www.saxproject.org/.

[22] XSL transformations (XSLT). http://www.w3c.org/TR/xslt/.

16

