
A Pushdown Machine for Recursive XML Processing⋆

(full version)

Keisuke Nakano1 and Shin-Cheng Mu2

1 Department of Mathematical Informatics,
University of Tokyo, Japan
ksk@mist.i.u-tokyo.ac.jp

2 Institute of Information Science,
Academia Sinica, Taiwan
scm@iis.sinica.edu.tw

Abstract. XML transformations are most naturally defined as recursive functions on trees.
Their direct implementation, however, causes inefficient memory usage because the input
XML tree is completely built in memory before being processed. In contrast, programs in
stream processing style minimise memory usage since it may effectively release the mem-
ory occupied by a prefix of the input not needed by the computation. Stream processing
programs, however, are harder to write because the programmer is left with the burden
to maintain the state. In this paper, we propose a model for XML stream processing and
show that all programs written in a particular style of recursive functions on XML trees,
the macro forest transducer, can be automatically translated to our stream processors. The
stream processor is declarative in style, but can be implemented efficiently by a pushdown
machine. We thus get the best of both worlds — program clarity, and efficiency in execution.

1 Introduction

Since an XML document has a tree-like structure, it is natural to define XML transformations as
recursive functions over trees. Several XML-oriented languages, such as XSLT [34], fxt [3], XDuce
[11] and CDuce [2], allow the programmer to define mutual recursive functions over forests.

As an example, consider the program in Figure 1. Let σ〈f1〉f2 denote a forest where the head is
a σ-labeled tree whose children constitute the forest f1, and the tail is a sibling forest f2. The empty
forest is denoted by ϵ and is usually omitted when enclosed in other trees. The function Main in
Figure 1 scans through the input tree and reverses the order of all subtrees under nodes labelled r
by calling the function Rev. For example, the input tree a〈r〈b〈c〈〉d〈〉〉e〈〉〉f〈〉〉 is transformed into
a〈r〈e〈〉b〈d〈〉c〈〉〉〉f〈〉〉.

A naive way to execute functions defined in this style is to load the entire forest into memory,
so that we have convenient access to the children and siblings for each node. The input stream
of tokens, also called XML events, is parsed to build the corresponding forest. The forest is then
transformed by the function, before the resulting forest is unparsed to an XML stream. Loading
the entire tree into memory is not preferable when we have to process large input. However, many
XML transformation languages such as XSLT, fxt, XDuce and CDuce are actually implemented
this way.

To optimise space usage, we may ask the programmer to switch to another programming style
facilitated by APIs such as SAX [32]. The stream processor reads XML events one by one, and the
programmer defines respectively what to do when it encounters a start tag <σ>, an end tag </σ>,
or end of stream $. Figure 2 shows what a stream processor would do to accomplish the same
task, given the input <a><r><c></c><d></d><e></e></r><f></f>. The function P
takes an input XML event and an environment3, and returns an updated environment, possibly
⋆ This work is partially supported by the Comprehensive Development of e-Society Foundation Software

program of the Ministry of Education, Culture, Sports, Science and Technology, Japan.
3 An ‘environment’ is a state storing information needed to carry out the computation. We use the term

‘environment’ to avoid confusion with mft states.

Main(ϵ) = ϵ

Main(r〈x1〉x2) = r〈rev(x1, ϵ)〉(Main(x2))

Main(σ〈x1〉x2) = σ〈main x1〉(Main(x2)) if σ ̸= r

Rev(ϵ, y) = y

Rev(σ〈x1〉x2, y) = Rev(x2, σ〈Rev x1 ϵ〉 y)

Fig. 1. A functional program reversing the subtrees under nodes labelled r.

input:

output:

<a>

γ0 P

<a>

<r>

γ1 P

<r>

γ2 P

<c>

γ3 P

</c>

γ4 P

<d>

γ5 P

</d>

γ6 P

γ7 P

<e>

γ8 P

</e>

γ9 P

</r>

γ10 P

<e></e>
<d></d>
<c></c></r>

<f>

γ11 P

<f>

</f>

γ12 P

</f>

γ13 P

$

γ14 P

Fig. 2. A flow of stream processing

outputting some XML events. The initial environment in the running example is γ0. Reading the
first event <a> yields a new environment γ1 and an output event <a>. The next event <r> is also
copied to the output. After that, no output event will be produced for a while, because there is
no way for the processor to know what to output before the closing tag </r> is read. Between <r>
and </r>, the computer reads the input and stores partially computed result in the environment.
While stream processing saves memory usage, it is much harder to program in this style. Each
problem seems to employ a different data structure to represent the environment, and burden is
on the programmer to explicitly maintain it.

Can we write a recursive function on forests and have it automatically transformed to a program
in the stream processing style, thereby achieve both clarity and memory efficiency? In this paper,
we present a model for an XML stream processor, and shows how to automatically derive XML
stream processors from a very expressive class of recursive functions on forests.

Some readers may wonder, can we not use a non-strict programming language, compose a
function on forests with a parser constructing the forest on demand, and simply let lazy evaluation
do the job? In the latter part of this paper, we will talk about the difficulties of relying on lazy
evaluation alone, and the necessities of a more specific model for XML streaming.

We have made two main contributions. Firstly, we propose a model for XML stream process-
ing which is declarative in nature but has an efficient implementation. The environment can be
represented uniformly by a partially evaluated stream, called a temporary expression. Reading a
token triggers a rewriting on the expression. It can be argued that our stream processor is of a
higher level than finite automaton based approaches. Yet, for the class of stream processors we
are concerned with, there is an efficient method, basing on a pushdown machine, to implement
the rewriting.

Secondly, we present a method to derive a stream processor from any function definable in
terms of the macro forest transducer (mft), proposed by Perst and Seidl [26]. The derivation,
which can be seen as a special case of program fusion [30], works by fusing the mft with an XML
parser recast as a top-down tree transducer (tdtt). The fusion is similar Engelfriet and Vogler’s
method of composing a (finitary) tdtt and a macro tree transducer [6], but we give a proof that
the method works for our tdtt, which has a infinite number of states.

The XML stream processor in this paper is implemented in Objective Caml [25] and compared
with a few existing tools for forest-style XML transformation.

Outline In the next section, we introduce a simplified model of XML documents and mft’s. Sec-
tion 3 gives a formal model of XML stream processors and its derivation from an mft. Section 4
proposes an efficient implementation of the stream processor based on a pushdown machine. In
Section 5 we show the benchmark result for a simple example. Section 6 discusses capabilities of

our framework. In Section 7 we review some related work and conclude the paper. Appendix A
gives a proof of the correctness of our derivation.

2 XML and the Macro Forest Transducer

This section formally defines our model of XML and the mft. For simplicity, we deal with a
simplified model of XML with only element nodes, and assume that the input XML is well-formed.
It is easy to extend our approach to capture other aspects of XML, and it is always possible to
perform a well-formedness check before hand.

2.1 Forests and XML Streams

Let Σ be an alphabet. A Σ-forest (also called a Σ-hedge [18]), is defined by

f ::= σ〈f〉f | ϵ,

where σ ∈ Σ and ϵ denotes the empty forest. We denote by FΣ the set of Σ-forests. A Σ-
forest a〈b〈ϵ〉c〈ϵ〉ϵ〉ϵ with Σ = {a, b, c} represents the XML fragment <a><c></c>.
The concatenation of two forests f1, f2 ∈ FΣ is written f1f2. The symbol ϵ, being the unit of
concatenation, is often omitted.

The Σ-events, written Σ<>, is defined by Σ<> = {<σ> | σ ∈ Σ} ∪ {</σ> | σ ∈ Σ}. An XML
stream is a sequence of Σ-events. We denote by Σ◦

<> the set of well-formed sequences of Σ-events
and denote by ε the empty sequence. The symbol $ denotes the end of an (input) XML stream,
which is also regarded as an event. We write Σ<>$ for Σ<> ∪ {$}.

Let Σ be an alphabet. The streaming of a forest is the function ⌊ ⌋ : FΣ → Σ◦
<> defined by

⌊σ〈f1〉f2⌋ = <σ> ⌊f1⌋ </σ> ⌊f2⌋ and ⌊ϵ⌋ = ε. For example, ⌊a〈b〈〉c〈〉〉⌋ = <a><c></c>.

2.2 Macro Forest Transducers

The macro forest transducer (mft) was proposed by Perst and Seidl [26] as an extension to the
macro tree transducer (mtt) [6] by taking forest concatenation as a basic operator. Functional
programmers can think of an mft as a recursive function mapping a forest (and possibly some
accumulating parameters) to a forest, with certain restriction on their shapes — the pattern on
the forest extracts only the label, the children and the sibling of the first tree; the accumulating
parameters cannot be pattern-matched; each function call is passed either the children or the
sibling.

We do not propose using the mft as a programming language, but as an intermediate language.
A natural question is how expressive it is under these restrictions. It was shown that mft is in fact
rather expressive [17], and it has been shown how to convert XPath expressions into a computation
model weaker than mfts [21]. More discussions will be given in Section 6, where we also show how
to convert certain classes of functional programs to mft.

In the convention of mft, a function is called a state and its arity is called its rank . Let us write
N and N+ for the set of non-negative integers including and excluding 0, respectively.

Definition 1. A macro forest transducer (mft) is a tuple M = (Q,Σ,∆, in, R), where

– Q is a finite set of ranked states, the rank of a state given by a function rank : Q → N+,
– Σ and ∆ are alphabets with Q∩(Σ∪∆) = ∅, called the input alphabet and the output alphabet ,

respectively,
– in ∈ Q is the initial ranked state,
– R is a set of rules partitioned by R =

∪
q∈Q Rq. For each q ∈ Q, Rq consists of rules of the

form q(pat , y1, . . . , yn) → rhs, where n = rank(q) − 1 and
• pat is either ϵ or σ〈x1〉x2 for some σ ∈ Σ,

• rhs ranges over expressions defined by

rhs ::= q′(xi, rhs, . . . , rhs) | ϵ | δ〈rhs〉 | yj | rhs rhs

with q′ ∈ Q, δ ∈ ∆, i = 1, 2 and j = 1, . . . , n. Additionally, no variable xi occurs in rhs
when pat = ϵ.

Perst and Seidl’s mft, designed for type checking, can be non-deterministic. Since our focus is on
program transformation, our mft’s are deterministic and total. That is, for each q and σ there is
exactly one such rule q(σ〈x1〉x2, . . .) → rhs. We will denote its right-hand side by rhsq,σ. Similarly
rhsq,ϵ stands for the right-hand side rhs of the unique rule q(ϵ, . . .) → rhs. If a rule for state q
and pattern p is missing, we assume that there is an implicit rule q(p, . . .) → ϵ. The semantics of
mft’s is defined by translating every state into a function [26].

Definition 2. Let M = (Q,Σ,∆, in, R) be an mft. The semantics of a states q ∈ Q is given by
the function [[q]] : FΣ × (F∆)n → F∆ where n = rank(q) − 1. Each [[q]] is defined by:

– [[q]](σ〈ω1〉ω2, ϕ1, . . . , ϕn) = [[rhsq,σ]]ρ where ρ(xi) = ωi for i = 1, 2 and ρ(yj) = ϕj for j =
1, . . . , n,

– [[q]](ϵ, ϕ1, . . . , ϕn) = [[rhsq,ϵ]]ρ where ρ(yj) = ϕj for j = 1, . . . , n,

where [[]]ρ evaluates the right-hand side with respect to the environment ρ:

[[q′(xi, rhs1, . . . , rhsn′)]]ρ = [[q′]](ρ(xi), [[rhs1]]ρ, . . . , [[rhsn′]]ρ),
[[ϵ]]ρ = ϵ, [[δ〈rhs〉]]ρ = δ〈[[rhs]]ρ〉,
[[yj]]ρ = ρ(yj), [[rhs rhs ′]]ρ = [[rhs]]ρ[[rhs ′]]ρ.

Definition 3. The transformation induced by an mft M = (Q,Σ,∆, in, R) is the function τM :
FΣ → F∆ defined by τM (f) = [[in]](f, ϵ, . . . , ϵ).

Example 1. Let Q = {Main,Rev}, Σ = ∆ be some alphabet containing r and R be the rules in
Figure 1 (with the = sign replaced by →), then Mrev = (Q, Σ,∆,Main, R) is an mft.

Example 2. The mft Mhtm = (Q, Σ,∆,Main, R) defined below reads an XML document consisting
of a title and several paragraphs with some keywords. The output is a (simplified) HTML document
where the para tag is converted to p and key tag to em. Furthermore, before the ps tag we dump
the list of keywords we collect so far. Text data is denoted by a node with no children.

Q = {Main,Title, InArticle,Key2Em,AllKeys,Copy},
Σ= ∆ = (some alphabet containing English alphabets and the XML/HTML tags below),
R = { Main(article〈x1〉x2) → html〈head〈Title(x1)〉body〈InArticle(x1, ϵ)〉ϵ〉,

Title(title〈x1〉x2) → title〈Copy(x1)〉,
InArticle(title〈x1〉x2, y1) → h1〈Copy(x1)〉InArticle(x2, y1),
InArticle(para〈x1〉x2, y1) → p〈Key2Em(x1)〉InArticle(x2, y1AllKeys(x1)),
InArticle(ps〈x1〉x2, y1) → h2〈Index〈〉〉 ul〈y1〉 h2〈Postscript〈〉〉 Copy(x1),
Key2Em(key〈x1〉x2) → em〈Copy(x1)〉 Key2Em(x2),
Key2Em(σ〈x1〉x2) → σ〈Key2Em(x1)〉 Key2Em(x2) (σ ̸= key), Key2Em(ϵ) → ϵ,
AllKeys(key〈x1〉x2) → li〈Copy(x1)〉AllKeys(x2),
AllKeys(σ〈x1〉x2) → AllKeys(x1)AllKeys(x2) (σ ̸= key), AllKeys(ϵ) → ϵ,
Copy(σ〈x1〉x2) → σ〈Copy(x1)〉Copy(x2) (σ ∈ Σ), Copy(ϵ) → ϵ }

3 XML Stream Processors and its Derivation

A temporary expression is a partially computed stream of XML events. An XML stream processor
defines how to rewrite a temporary expression upon reading each input event.

Definition 4. An XML stream processor (xsp) is a tuple S = (Q, Σ,∆, in, R), where

– Q is a (possibly infinite) set of ranked states, the rank for each state given by rank : Q → N,
– Σ and ∆ are (finite) alphabets with Q∩ (Σ ∪∆) = ∅, called the input alphabet and the output

alphabet , respectively,
– in ∈ Q is the initial state,

– R = {q(y1, . . . , yn)
χ−−−→ rhs | q ∈ Q, χ ∈ Σ<>$} is a set of rules, where n = rank(q) and rhs

ranges over expressions defined by

rhs ::= q′(rhs, . . . , rhs) | ε | <δ>rhs</δ> | yj | rhs rhs

where q′ ∈ Q, δ ∈ ∆ and j = 1, . . . , n. Additionally, the pattern q′(. . .) does not occur in rhs
for any q′ ∈ Q when χ = $.

3.1 Semantics of XML Stream Processors

The semantics of an xsp is defined by translating every rule of the xsp into a transition for
temporary expressions.

Definition 5. Let S = (Q,Σ,∆, in,R) be an xsp. A temporary expression for S, denoted by
TmpS , is defined by E ::= ε | <δ>E | </δ>E | q(E, . . . , E)E.

Definition 6. Let S = (Q,Σ,∆, in, R) be an xsp and s ∈ Σ◦
<>. The transition over TmpS for an

input Σ-event is a function 〈| , |〉 : TmpS × Σ<>$ → TmpS defined by

– 〈|ε, χ|〉 = ε,
– 〈|<δ>e, χ|〉 = <δ>〈|e, χ|〉 where δ ∈ ∆,
– 〈|</δ>e, χ|〉 = </δ>〈|e, χ|〉 where δ ∈ ∆,

– 〈|q(e1, . . . , en)e, χ|〉 = (rhs[yj := 〈|ej , χ|〉]j=1,...,n)〈|e, χ|〉 where (q(y1, . . . , yn)
χ−−−→ rhs) ∈ R

with q ∈ Q and χ ∈ Σ<>$.

The initial temporary expression is in(ε, . . . , ε). An xsp reads the input stream of events one by
one, and updates the temporary expression with the transition 〈| , |〉. The end of the stream is
marked by $. Let χ1χ2 . . . χk be the input stream with each χj ∈ Σ<>. The final expression is

〈|〈| . . . 〈|〈|in(ε, . . . , ε), χ1|〉, χ2|〉, . . . , χk|〉, $|〉. (1)

Note that the final temporary expression is always in ∆◦
<> since, by Definition 4, the right-hand

side of a (q, $)-rule does not contain any unevaluated state q′(. . .).

Definition 7. The transformation induced by an xsp S = (Q,Σ,∆, in, R) is the function τS :
Σ◦

<> → ∆◦
<> defined by τS(s) = θS(in(ε, . . . , ε), s$) where, for e ∈ TmpS ,

θS(e, ε) = e, θS(e, χs) = θS(〈|e, χ|〉, s).

We will see some examples in the next section.
The induced transformation defines declaratively what the output stream is, given the input

stream. The very reason we program in the stream processing style, however, is to be able to print
out a prefix of the output stream while reading the input. That is, we would like to ‘squeeze’ some
part of the result from after each event read. This will be described in Section 4.3.

3.2 Deriving Stream Processors From Macro Forest Transducers

Given an mft M = (Q,Σ,∆, in, R), an input stream x, and a function Parse :: Σ◦
<> → FΣ parsing

a stream of events into a forest, the expression ⌊[[in]](Parse(x), ϵ, . . . , ϵ)⌋ yields a ∆◦
<> stream. If

we can fuse the three functions, ⌊ ⌋, [[in]], and Parse into one, we may have a stream processor.
Fusing ⌊ ⌋ and [[in]] is a relatively easy task. The interesting step is fusing them with the parser.
An XML parser can be written as a top-down tree transducer (tdtt) with an (countably-)infinite
number of states

Parse[1] (<σ>s) = σ〈Parse[1] s〉(Parse[2] s)

Parse[i] (<σ>s) = Parse[i + 1] s (i > 1)

Parse[1] (</σ>s) = ϵ

Parse[i] (</σ>s) = Parse[i − 1] s (i > 1)

Parse[i] ($) = ϵ

for every σ ∈ Σ. Note that we do not need a forest transducer for parsing. The forest is constructed
without using forest concatenation. Therefore, although it returns a forest, Parse is still technically
a tree transducer where the forest is represented by a binary tree. Functional programmers may
alert that the first clause seems to imply that s is traversed twice. However, it is a common style of
tdtt specifications, and multiple traversals is in fact avoided in the implementation, to be discussed
in Section 4. We will also talk about a more typical way to specify the parser, and its effects, in
Section 6.1.

Some previous work [23, 21, 24] talked about fusing a tree transducer for parsing with a trans-
formation, but not one as expressive as an mft. More details are given in Section 7. Engelfriet
and Vogler [6] described how to fuse a finitary tdtt and a macro tree transducer (mtt). Their
method, however, does not apply directly to our application because Parse has a infinite number
of states. Our derivation from an mft to an xsp, to be presented in this section, is basically Engel-
friet and Vogler’s transducer fusion extended to mft’s and specialised to one particular infinitary
tdtt, Parse. The readers are not required to have knowledge of their method. We will give a new
proof of the fusion in Appendix A.

The rationale behind the derivation is as follows. Consider an mft M = (Q,Σ,∆, in, R). For
every state q ∈ Q, we introduce in the derived xsp a set of states {q[i] | i ∈ N+}. Imagine that
we are building forests as we read the input stream of events. With each start tag, the forest
construction descends by one level. The state q[1] performs the task that the state q in the mft is
supposed to do. The number 1 indicates that the current forest will be its input. The states q[i]
for i > 1, on the other hand, represent ‘suspended’ states which will take effect i − 1 levels above
the forest currently being built. The number i denotes the number of end tags expected. When
an end tag is read, the number decrease by one, until the number reaches 1 and the state gets
activated. When a start tag is read, the number shall increase by one because there is one more
start tag to be matched.

Definition 8. Let M = (Q,Σ,∆, in, R) be an mft. We define an xsp SP(M) = (Q′, Σ,∆, in ′, R′)
where

– Q′ = {q[i] | q ∈ Q, i ∈ N+} where rank(q[i]) = rank(q) − 1 for every q ∈ Q and i ∈ N+,
– in ′ = in[1] ∈ Q′,
– R′ contains rules introduced by the following three cases:

xsp-(1). for all q ∈ Q and σ ∈ Σ, we introduce

q[1](y1, . . . , yn) <σ>−−−→ A(rhsq,σ),

xsp-(2). for all q ∈ Q, σ ∈ Σ and i ∈ N+, we introduce:

q[1](y1, . . . , yn) </σ>−−−→ A(rhsq,ϵ),

q[i](y1, . . . , yn) $−−−→ A(rhsq,ϵ),

xsp-(3). for all q ∈ Q, σ ∈ Σ and i > 1, we introduce:

q[i](y1, . . . , yn) <σ>−−−→ q[i + 1](y1, . . . , yn),

q[i](y1, . . . , yn) </σ>−−−→ q[i − 1](y1, . . . , yn).

The translation A is defined by:

A(q(xi, rhs1, . . . , rhsn)) = q[i](A(rhs1), . . . ,A(rhsn′)),
A(ϵ) = ε, A(δ〈rhs〉) = <δ>A(rhs)</δ>,
A(yj) = yj , A(rhs rhs ′) = A(rhs) A(rhs ′),

where q ∈ Q, n = rank(q), δ ∈ ∆, i ∈ {1, 2} and j ∈ {1, . . . , n}.

Note that among the three cases of rule introduction, xsp-(1) covers the situation when the
state and the input symbols are (q[1], <σ>); xsp-(2) covers (q[1], </σ>) and (q[i], $) for i ∈ N+;
and xsp-(3) covers (q[i], <σ>) and (q[i], </σ>) for i > 1. Therefore, the derived xsp SP(M) is total
if M is. For the examples below, we define a predicate testing whether the state and the input
symbols is in the xsp-(2) case:

ϵΣ(i, χ) = (i = 1 ∧ χ = </σ>) ∨ χ = $, with σ ∈ Σ.

The correctness of the derivation is stated by the following theorem whose proof is given in
Appendix A.

Theorem 1. Let M = (Q, Σ,∆, in, R) be an mft. Then τSP(M)(⌊f⌋) = ⌊τM (f)⌋ for every f ∈ FΣ .

Example 3. Apply the derivation to Example 1, we get SP(Mrev) = (Q′, Σ,Σ,Main[1], R′),
where Q′ = {q[i] | q ∈ {Main,Rev}, i ∈ N+} and the set R′ of rules is:

R′ = {Main[1]()
<r>−−−→ <r> Rev [1](ε) </r> Main[2](),

Main[1]()
<σ>−−−→ <σ> Main[1]() </σ> Main[2]()

(σ ̸= r),

Main[i]()
<σ>−−−→ Main[i + 1]() (σ ∈ Σ, i > 1),

Main[i]()
</σ>−−−→ Main[i − 1]() (σ ∈ Σ, i > 1),

Main[i]()
χ−−−→ ε (if ϵΣ(i, χ)),

Rev [1](y1)
<σ>−−−→ Rev [2](<σ> Rev [1](ε) </σ> y1)

(σ ∈ Σ),

Rev [i](y1)
<σ>−−−→ Rev [i + 1](y1) (σ ∈ Σ, i > 1),

Rev [i](y1)
</σ>−−−→ Rev [i − 1](y1) (σ ∈ Σ, i > 1),

Rev [i](y1)
χ−−−→ y1 (if ϵΣ(i, χ)) }.

Figure 3 shows a sample run when the input is <a><r><c></c><d></d><e></e></r><f></f>$.

Example 4. The xsp derived from Example 2 is SP(Mhtm) = (Q′, Σ,∆,Main[1], R′), where
Q′ = {q[i] | q ∈ Q, i ∈ N+} and R′ is

R′ = { Main[1]()
<article>−−−→ <html> <head> Title[1]() </head> <body> InArticle[1](ε) </body> </html>,

Title[1]()
<title>−−−→ <title> Copy [1]() </title>,

InArticle[1](y1)
<title>−−−→ <h1> Copy [1]() </h1> InArticle[2](y1),

InArticle[1](y1)
<para>
−−−→ <p> Key2Em[1]() </p> InArticle[2](y1 AllKeys[1]()),

InArticle[1](y1)
<ps>
−−−→ <h2> Index </h2> y1 <h2> Postscript </h2> Copy [1](),

Key2Em[1]()
<key>
−−−→ Copy [1]() Key2Em[2](),

Key2Em[1]()
<σ>−−−→ <σ> Key2Em[1]() </σ> Key2Em[2]() (σ ̸= key),

AllKeys[1]()
<key>
−−−→ Copy [1]() AllKeys[2](),

AllKeys[1]()
<σ>−−−→ AllKeys[1]()AllKeys[2]() (σ ̸= key),

Copy [1]()
<σ>−−−→ <σ> Copy [1]() </σ> Copy [2]() (σ ∈ Σ),

q[i]()
<σ>−−−→ q[i + 1]() (σ ∈ Σ, i > 1, q ̸= InArticle),

q[i]()
</σ>−−−→ q[i − 1]() (σ ∈ Σ, i > 1, q ̸= InArticle),

q[i]()
χ−−−→ ε (if ϵΣ(i, χ)),

InArticle[i](y1)
<σ>−−−→ InArticle[i + 1](y1) (σ ∈ Σ, i > 1),

InArticle[i](y1)
</σ>−−−→ InArticle[i − 1](y1) (σ ∈ Σ, i > 1),

InArticle[i](y1)
χ−−−→ ε ((χ, i) ∈ Σϵ) }.

Main[1]()
<a>−−−−−→ <a>Main[1]()Main[2]()

<r>−−−−−→ <a><r>Rev [1](ε)</r>Main[2]()Main[3]()

−−−−−→ <a><r>Rev [2](Rev [1](ε))</r>Main[3]()Main[4]()

<c>−−−−−→ <a><r>Rev [3](Rev [2](<c>Rev [1](ε)</c>))</r>Main[4]()Main[5]()

</c>−−−−−→ <a><r>Rev [2](Rev [1](<c></c>))</r>Main[3]()Main[4]()

<d>−−−−−→ <a><r>Rev [3](Rev [2](<d>Rev [1](ε)</d><c></c>))</r>Main[4]()Main[5]()

</d>−−−−−→ <a><r>Rev [2](Rev [1](<d></d><c></c>))</r>Main[3]()Main[4]()

−−−−−→ <a><r>Rev [1](<d></d><c></c>)</r>Main[2]()Main[3]()

<e>−−−−−→ <a><r>Rev [2](<e>Rev [1](ε)</e><d></d><c></c>)</r>Main[3]()Main[4]()

</e>−−−−−→ <a><r>Rev [1](<e></e><d></d><c></c>)</r>Main[2]()Main[3]()

</r>−−−−−→ <a><r><e></e><d></d><c></c></r>Main[1]()Main[2]()

<f>−−−−−→ <a><r><e></e><d></d><c></c></r><f>Main[1]()</f>Main[2]()Main[3]()

</f>−−−−−→ <a><r><e></e><d></d><c></c></r><f></f>Main[1]()Main[2]()

−−−−−→ <a><r><e></e><d></d><c></c></r><f></f>Main[1]()

$−−−−−→ <a><r><e></e><d></d><c></c></r><f></f>

Fig. 3. Stream processing induced by SP(Mrev)

-<c>

temporary
expression :

main
output stream :

pushdown :

ebefore

[]ν1 </r> []ν2 []ν3

eafter

[]ν1 </r> []ν2 []ν3

{ m()/ν3 }
{ m()/ν2 }

{ r([]ν4)/ν1 }
{ r(ε)/ν4 }

{ m()/ν3 }
{ m()/ν2 }

{ r([]ν6)/ν1 }
{ r(<c> []ν5 </c>)/ν6 }

{ r(ε)/ν5 }

Fig. 4. Pushdown representation for temporary expressions and its updating

4 Pushdown XML Stream Processor

The semantics given in Section 3 implies a direct implementation of xsp performing term rewriting
each time an event is read. However, an xsp derived from an mft follows a more regular evaluation
pattern: most rules are introduced by xsp-(3), which merely increment or decrement the indexes
of the states, and term expansion happens only for states indexed 1, triggered by rules in xsp-
(1). Such behaviour resembles a stack. In this section, we present an efficient implementation of
the xsp’s derived from mft’s, using a pushdown machine based representation of the temporary
expressions.

4.1 Summary of Behavior

Let us look at an example first. Consider the sample run of the xsp SP(Mrev) in Figure 3, when
event <c> is read. We abbreviate Rev to r and Main to m. The prefix <a><r> has been ‘squeezed’
to the output. We need only to keep a suffix in of the temporary expression that remains in
memory:

ebefore = r[2](r[1](ε))</r>m[3]()m[4]().

After <c> is read, the expression gets updated to

eafter = r[3](r[2](<c>r[1](ε)</c>))</r>m[4]()m[5]().

We shall present a data structure such that the update can be performed efficiently.
We represent a temporary expression by a pair of a main output stream and a pushdown, as

shown in Figure 4. The left and right parts in the figure correspond to temporary expressions ebefore

and eafter , respectively. Consider ebefore . Separating the evaluated and unevaluated segments, it
can be partitioned into five parts: r[2](. . .), </r>, m[3](), and m[4](). If we abstract away
the unevaluated parts and replace them with holes []νi using a physical address νi, we obtain the
main output stream []ν1</r>[]ν2[]ν3 .

The pushdown is a stack of sets, each set consisting of state frames. A state frame is a pair
of a state q(. . .) and a hole address ν, denoted by q(. . .)/ν. The state may have a number of
arguments, represented by a sequence in a way similar to the main output stream.

In the pushdown representation, every state q[i] appears in the i-th set from the top. Therefore
the index i need not be stored in the representation. Since all states in ebefore have distinct indexes,
the pushdown contains only singleton sets, which need not be true in general.

Only the states with index 1 gets expanded. In our representation, that means we only need
to update the top of the pushdown. Upon reading <c>, the rule of r[1] that gets triggered is

r[1](ε) <c>−−−→ r[2](<σ> r[1](ε) </σ> ε).

That corresponds to popping the set {r(ε)/ν4} (representing r[1](ε) in ebefore), and pushing
the two sets {r(ε)/ν5} (representing r[1](ε) in eafter) and {r(<c> []ν5 </c>)/ν6} (representing
r[2](<σ> . . . </σ>) in eafter). Now that ν4 is expanded, all occurrences of []ν4 in the pushdown

should be filled with []ν6 . Since two items are pushed, all other sets in the pushdown descend for
one level. This corresponds to updating all states q[i] (i > 1) to q[i + 1] at the same time.

In this example, the main output stream remains the same after the updating. In general, the
main output stream will be altered when it contains an address referred by the top set of the
pushdown, or when its prefix is ready to be squeezed.

4.2 Pushdown Representation and its Updating

Let M = (Q,Σ,∆, in, R) be an mft. An output stream s for M is defined by

m ::= ε | <δ> m | </δ> m | []ν m,

where δ ∈ ∆, and []ν is a hole whose physical address is ν. We denote the set of output streams by
SM . A state frame has the form q(m1, . . . ,mn)/ν where ν is a hole address, q ∈ Q, n = rank(q),
and mi ∈ SM (i = 1, . . . , n).

A pushdown is a mapping from a positive number, representing the depth, to a set of state
frames. Furthermore, each hole address ν occurs on the right-hand side of / in a pushdown at
most once. The empty pushdown is denoted by ø. Given a set of state frames Ψ , we denote by
{1 7→ Ψ, . . . } a pushdown p such that p(1) = Ψ . Two pushdowns p1 and p2 can be merged by
p1 ⊕ p2 = {d 7→ p1(d) ⊎ p2(d)}d∈N+

4.
Now we define formally how a temporary expression is represented.

Definition 9. Let M = (Q,Σ,∆, in, R) be an mft. A pushdown representation pd(e) for e ∈
TmpSP(M) is a pair 〈m, p〉 of a main output stream m and a pushdown p defined by

pd(ε) = 〈ε, ø〉,
pd(q[i](e1, . . . , en) e) =
〈[]ν m, {i 7→ {q(m1, . . . ,mn)/ν}} ⊕ p1 ⊕ · · · ⊕ pn ⊕ p〉,

pd(<δ> e) = 〈<δ> m, p〉,
pd(</δ> e) = 〈</δ> m, p〉,

where 〈m, p〉 = pd(e), 〈mi, pi〉 = pd(ei) and ν is a fresh address. We denote the set of pushdown
representations for temporary expressions in TmpSP(M) by PdrM .

From a pushdown representation, we can recover the temporary expression by filling every hole
according to the corresponding state frame in the pushdown. The function pd−1 is defined by

pd−1(〈ε, p〉) = ε

pd−1(〈<δ> m, p〉) = <δ> pd−1(〈m, p〉)
pd−1(〈</δ> m, p〉) = </δ> pd−1(〈m, p〉)
pd−1(〈[]ν m, p〉) = (p%ν) pd−1(〈m, p〉)

where p%ν accesses the corresponding state frame in the pushdown and expands the arguments
of the state. When a state frame q(m1, . . . ,mn)/ν is an element of the set p(i), we have p%ν =
q[i](pd−1(〈m1, p〉), . . . , pd−1(〈mn, p〉)). For any temporary expression e, we have

e = pd−1(pd(e)) (2)

whose proof is omitted.
We define several operations to manipulate the pushdown representation. An application for

a hole []ν in an output stream m with another output stream u is denoted by m@νu, i.e., when
m = m1[]νm2, we have m@νu = m1um2. The hole application can be extended to a set of state
4 For any d ∈ N+, two sets p1(d) and p2(d) are always disjoint because hole addresses are unique.

frames and a pushdown in the same way, denoted by Ψ@νu and p@νu. Let p be a pushdown and
Ψ a set of state frames. The pushdown obtained by pushing Ψ on the top of p is denoted by
p ≪ Ψ = {1 7→ Ψ} ∪ {d 7→ p(d − 1)}d>1. The dual operation popping the top of p is denoted by
◃p = {d 7→ p(d + 1)}d∈N+ .

The hole application operation can be efficiently implemented in the sense that the execution
time is independent of the size of main output streams and pushdowns. because we know the
physical address of the hole. Experimental implementation introduced in Section 5 uses doubly-
linked cyclic lists to represent output streams, so we can implement hole application, concatenation
and squeeze efficiently.

4.3 Pushdown Machines for Macro Forest Transducers

For a given mft M , we introduce a pushdown machine in stream processing style which simulates
the behavior of the xsp SP(M).

Since the semantics of an xsp is specified by a transition 〈| , |〉 on temporary expressions,
we construct the pushdown machine as a transition on pushdown representations. In the following
definition, the function pd◦ extends pd by one extra case, pd◦(yi) = yi for i ∈ N+. Therefore pd◦

can be applied to the right-hand side of rules in an xsp.

Definition 10. Let M = (Q,Σ,∆, in, R) be an mft. The pushdown machine for M , denoted by
PD(M), is a function 〈| , |〉 : PdrM × Σ<>$ → PdrM . For a pushdown representation 〈m, p〉 ∈
PdrM and input event χ ∈ Σ<>$, a new pushdown representation 〈|〈m, p〉, χ|〉 is given as follows:

– 〈|〈m, p〉, <σ>|〉 = Φσ(m, (◃p) ≪ ∅ ≪ ∅, p(1)), where the function Φσ is defined by

Φσ(m, p, ∅) = 〈m, p〉
Φσ(m, p, {q(m1, . . . ,mn)/ν} ⊎ Ψ) =

Φσ(m@νm′, p@νm′ ⊕ p′, Ψ@νm′)

with 〈m′, p′〉 = pd◦(A(rhsq,σ))[yj := mj]j=1,...,n.
– 〈|〈m, p〉, </σ>|〉 = Φϵ(m,◃p, p(1)), where the function Φϵ is defined by

Φϵ(m, p, ∅) = 〈m, p〉
Φϵ(m, p, {q(m1, . . . ,mn)/ν} ⊎ Ψ) =

Φϵ(m@νm′, p@νm′ ⊕ p′, Ψ@νm′)

with 〈m′, p′〉 = pd◦(A(rhsq,ϵ))[yj := mj]j=1,...,n.
– 〈|〈m, p〉, $|〉 = Φϵ(m, ø,

∪
d∈N+ p(d)), where Φϵ is as given in the previous case of χ = </σ>.

For an mft M = (Q,Σ,∆, in, R), the initial pushdown representation of PD(M) is

〈[]ν0 , {1 7→ {in(ε, . . . , ε)/ν0}}〉

with address ν0. It corresponds to the initial state of an xsp SP(M), that is, in[1](ε, . . . , ε). For a
pushdown machine P = PD(M) , the transformation τP : Σ◦

<> → ∆◦
<> induced by P a defined in

a way similar to τSP(M):

τP (s) = ζP (〈[]ν0 , {1 7→ {in(ε, . . . , ε)/ν0}}〉, s$)

where

ζP (〈m, p〉, ε) = m ζP (〈m, p〉, χs) = ζP (〈|〈m, p〉, χ|〉, s)

for a pushdown representation 〈m, p〉.
For an mft M , the behaviour of PD(M) on pushdown representations mirrors that of SP(M)

on temporary expressions. Consider the case when a start tag <σ> is read. In the xsp SP(M), every

state q[i] (i > 1) is rewritten into q[i + 1]. In the pushdown machine PD(M), the corresponding
state frame q(. . .)/ν in the i-th set of the pushdown descends by one level because we perform
one pop and two pushes on the pushdown. In SP(M), every state q[1] is rewritten by A(rhsq,σ).
In the pushdown machine PD(M), for each corresponding state frame q(. . .)/ν in the top set of
the pushdown, the hole []ν is filled according to A(rhsq,σ). Since a computation of pd◦(A(rhsq,σ))
is invoked, the state q[1] in A(rhsq,σ) is put as an element of the top set of the pushdown and q[2]
in A(rhsq,σ) is put as an element of the second set from the top.

Consider the case when an end tag </σ> is read. In the xsp SP(M), every state q[i] (i > 1) is
rewritten to q[i−1]. In the pushdown machine PD(M), the corresponding state frame q(. . .)/ν in
the i-th set of the pushdown ascends by one level after popping the pushdown. In the xsp SP(M),
every state q[1] is replaced according to A(rhsq,ϵ). In the pushdown machine PD(M), for the
corresponding state frame q(. . .)/ν in the top set of the pushdown, the hole []ν is filled according
to A(rhsq,ϵ).

After reading the end of stream, the pushdown must be empty since A(rhsq,ϵ) contains no
pattern q[i](. . .) and all state frames in the previous pushdown is consumed by Φϵ(s, ø,

∪
d∈N+ p(d)).

Thereby the final main output stream does not contain any hole.
Since every transition on pushdown representations corresponds to a transition on temporary

expressions, we can see that τPD(M)(s) = τSP(M)(s) for every mft M and every input stream s.
From Theorem 1, we have

τPD(M)(⌊f⌋) = ⌊τM (f)⌋

for every input forest f for M , which shows the equivalence of the original mft and the derived
pushdown machine.

The above definition of τP for a pushdown machine P can be made more efficient by squeezing ,
that is, printing out the prefix, up to the first hole, of the main output stream, since they are
not going to change by subsequent transitions. We define the following function sqz for output
streams:

sqz (ε) = (ε, ε) sqz ([]ν m) = (ε, []ν m)
sqz (<δ> m) = (<δ> m′,m′′) sqz (</δ> m) = (</δ> m′,m′′)

where (m′,m′′) = sqz (m). The function sqz splits the leading output events and the rest of the
output stream, i.e., if (m′,m′′) = sqz (m), then m′m′′ = m.

We can then redefine ζP with sqz as follows:

ζP (〈m, p〉, ε) = m ζP (〈m, p〉, χs) = m′ ζP (〈|〈m′′, p〉, χ|〉, s)

where (m′,m′′) = sqz (〈|〈m, p〉, χ|〉).

Remark. In the actual implementation, we have to take care of dealing with mft rules whose
right-hand side does not contain exactly one occurrence of parameter variable yj for each j.

Consider the case that there are some variables which does not occur in the right-hand side. For
example, let an mft have a rule q(pat , y1) → ϵ. Then the corresponding xsp has a rule q[1](y1)

χ−−−→
ε. When the top set of the pushdown contains q(m1)/ν, the occurrence of []ν will be filled with
ε. In order to avoid ineffectual updating after that, all hole addresses contained in m1 should be
discarded as long as the hole does not occur in the other position.

Consider the case that there are some variables which occurs more than once in the right-hand
side. If we use doubly-linked cyclic lists to represent main output streams for efficient updating,
we should be carefully deal with them. For example, let an mft have a rule q(pat , y1) → y1 y1.

Then the corresponding xsp has a rule q[1](y1)
χ−−−→ y1 y1. In this case, a hole []ν may occur

twice. When the hole []ν is required to be filled, we cannot replace both occurrence of ν with
the same doubly-linked list. To solve this problem, we mark the state frame so as to remember it
appears twice.

input size 1MB 4MB 16MB 64MB 256MB

pushdown xsp 0.49sec / 1.10MB 1.19sec / 1.10MB 3.85sec / 1.10MB 15.2sec / 1.10MB 84.6sec / 1.10MB
direct impl. mft 0.52sec / 4.87MB 1.39sec / 16.7MB 4.92sec / 62.1MB 20.2sec / 250MB 588sec / 415MB
xsltproc 0.79sec / 8.73MB 3.51sec / 33.2MB 19.4sec / 129MB 162sec / 462MB n/a
saxon 3.12sec / 24.5MB 5.40sec / 36.5MB 13.1sec / 94.4MB 43.7sec / 289MB n/a

(execution time / max. memory usage)

Table 1. Performance comparison for varying input size

input size 4MB 64MB

pushdown xsp 1.26sec / 3.93MB 17.1sec / 49.8MB
direct impl. mft 1.25sec / 15.9MB 17.7sec / 233MB

(execution time / max. memory usage)

(a) For a practical transformation Mhtm

input size 4MB 64MB

pushdown xsp 1.60sec / 11.6MB 24.8sec / 170MB
direct impl. mft 1.40sec / 16.6MB 20.4sec / 249MB

(execution time / max. memory usage)

(b) For a full reverse transformation Mfrev

Table 2. Benchmark result of other transformations

5 Benchmarking Results

For benchmarking, we use the random sample generator XMark [33] to produce sample XML
documents of various sizes: 1MB, 4MB, 16MB, 64MB and 256MB. Every sample document contains
a sequence of item nodes, each having a list of children about a dozen lines long. The benchmarking
task would be to reverse the order of the subtrees under item.

The pushdown machine automatically derived from the mft specification of Mrev , shown as the
entry pushdown xsp in Table 1, is implemented in Objective Caml, with extensions to handle
text nodes. The entry direct impl. mft is the program in Figure 1 implemented as mutual
recursive functions in Objective Caml5. The entry xsltproc is one of the fastest XSLT processors
bundled with libxslt [31] 1.1.11, written in C, while saxon [13] 8.7.3 is one of the fastest XSLT
processors in Java. All entries apart from pushdown xsp build the entire forest in memory before
the transformation. The experiments were conducted on a 1.33 GHz PowerBook G4 with 768 MB
of memory. Table 1 compares the total execution time and maximum memory size in seconds and
megabytes.

As we expected, pushdown xsp uses a much smaller heap comparing too all other entries.
That it also outperforms the two XSLT processors may be due to the overhead of the latter
maintaining full-fledged XML data, including e.g., namespace URI, number of children, etc. For
a fairer comparison, we added the entry direct impl. mft. The entry pushdown xsp is slightly
faster than direct impl. mft because it incurs less garbage collection and xsp saves the overhead
of building the trees. Therefore we expect that the xsp approach will also deliver competitive speed
even after being scaled to handle full XML.

We also conducted performance comparisons for other transformations. The result is shown
in Table 2. For simplicity, we compared only pushdown xsp and direct impl. mft for random
inputs of 4MB and 64MB. Table (a) shows comparison results for a practical transformation Mhtm

shown in Example 2. This result also indicates a small heap consumption of pushdown xsp with
elapsed time similar to direct impl. mft. Table (b) shows results for a full reverse transformation
Mfrev which will be discussed later in Section 6.3.

6 Discussion

This section discusses capabilities of our framework. Firstly we show the difference between lazy
evaluation mechanism and ours. Next possibilities of our framework for existing XML transforma-
tion languages are discussed. Finally we describe some limitation of stream processing.

5 Since a straightforward implementation of an mft may contain lots of append operation of lists which
is inefficient, we use a ‘join list’ of trees rather than a ‘cons list’ of trees for an output forest.

6.1 Comparison with Lazy Evaluation

Many of our readers wondered: “Is this all necessary? Can we not just use lazy evaluation?”
Consider the program unparse (trans (parse input)) in a non-strict functional language, where
the function parse builds the tree lazily upon the demand of the forest-to-forest transformation
trans. When the program is run by a lazy evaluator, do we get the desired space behaviour?

To answer the question, we run a number of experiments in the functional language Haskell.
We start with choosing a parser to be fused with. The tdtt-based parser in Section 3.2 is not a
good choice because sharing the input stream s among functional causes a space leak. Another
possibility is to thread the input stream through recursive calls to the parser, and have the parser
return the tree as well as an unprocessed tail of the stream, such as:

parse(<a>s) = let (ts, s′) = parse s

(us, s′′) = parse s′

in (a〈ts〉us, s′′)

The intention is that the input stream can be freed right after being used.
Unfortunately, the space behaviour of the parser is compiler-dependent. It runs fine when com-

piled with NHC98 [22]. With GHC [7], however, the entire input stream resides in memory through-
out the execution of the program. The reason is that s′′ may be viewed as snd (parse (snd (parse s))),
so while the recursive calls are being executed, the system still keeps a pointer to s until s′′ is
finally demanded by the environment. This problem was addressed by Wadler [29], who proposed
a fix in the garbage collector to plug the space leak. The fix is actually implemented in both NHC
and GHC, but is fragile in presence of otherwise-valuable optimisations that GHC performs [12].

One may argue that the problem is specific to this particular parser. Example 2, however,
shows a problem more intrinsic to the nature of lazy evaluation. The thunk that evaluates to the
list of keywords appears very late and remain unevaluated until it is finally output. This is in fact
what we expect of lazy evaluation – if the programmer applies the function take to the generated
stream, the thunk need not be evaluated at all. However, the thunk contains a reference to the
beginning of the input stream, which means that the entire input stream will reside in memory.

For every xsp example we have, we were able to eventually come up with a Haskell equivalent
that uses a minimal amount of memory, by inserting strictness annotations after careful tuning
and heap profiling, which was no easy task.

Put it in a wider context, we recall Wadler’s claim [29] that we need a parallel evaluator to
avoid certain classes of space leaks. This clarifies the relationship between lazy evaluation and xsp.
Our xsp implementation, which evaluates all the states q[1] indexed 1, can actually be seen as a
parallel evaluator specialised for XML processing.

6.2 Streaming for Existing XML Transformation Languages

Is it possibilities to apply our framework to existing transformation languages? It has been shown
how to convert XPath expressions into attributed tree transducers [21], which is weaker than mfts.
We would like to know whether we can convert functions defined in languages such as XSLT [34],
fxt [3], XDuce [11], or CDuce [2], probably with some restrictions imposed, into mft’s.

The XML transformation language TL [17] by Maneth, Berlea, Perst and Seidl may give us
some hints about what the restrictions could be. In TL programmers also define a collection of
mutual recursive functions. TL is like mft, but supports pattern matching by monadic second-
order logic (MSO) formulae. Each rule of TL has the form of q(φ, y1, . . . , yn) → rhs, where φ is
an MSO formula. When q is called, the nodes satisfying φ is passed as it argument. Maneth et al.
showed that most practical TL programs use only MSO formulae that does not select ancestor
nodes, and such programs can be represented in a single deterministic mft. It implies that a simple
XSLT program which contains only forward XPath expressions can be expressed as an mft and
implemented by our pushdown machine.

XDuce and CDuce support regular expression pattern [10]. They do not bind variables to the
parent of the current node. It is easier to see how tail-capturing programs can be translated to
mft’s. For example, the following XDuce program converting an address book to a telephone list:

fun mkTelList (val e as (Name,Addr,Tel?)*) =

match e with

name[val n], addr[val a], tel[val t], val rest

-> name[n], tel[t], mkTelList (rest)

| name[val n], addr[val a], val rest -> mkTelList (rest)

| () -> ()

can be defined by an mft with rules:

MkTelList(name〈x1〉x2) → Name(x2, name〈Val(x1)〉)
MkTelList(ϵ) → ϵ

Name(addr〈x1〉x2, y1) → NameAddr(x2, y1)

NameAddr(tel〈x1〉x2, y1) → y1 tel〈Val(x1)〉 MkTelList(x2)

NameAddr(name〈x1〉x2, y1) → Name(x2, name〈Val(x1)〉)
NameAddr(ϵ, y1) → y1

Here we extend mft’s to handle text data, and Val is the identity function for text. This mft is total
if inputs are restricted to the type (Name,Addr,Tel?)* specified by the original XDuce program.
Hosoya and Pierce [10] talked about how to convert non-tail-capturing patterns into tail-capturing
equivalents. It will be among our future work to see how this approach works in general.

The mft can be extended to handle primitive datatype other than forests. For example, we can
extend the right-hand side with booleans, boolean operators, and conditional branches as follows:

rhs ::= . . . | true | false | if (rhs, rhs, rhs)

The corresponding extension we need in the xsp is some extra rules [21]:

if (true, e1, e2) → e1 if (false, e1, e2) → e2

By applying these rules in each squeezing phase, we achieve an XML stream processing for the
extended mft. Additionally we need to keep the position of if as a state frame which always locates
in the top set of a pushdown. Once we have booleans and conditionals in mft, we can express many
transformations, including the invite/visit iteration with XPath expressions in XTiSP [19], the
first author’s previous work.

6.3 Limitation

The purpose of stream processing is to save space. However, it is important to distinguish between
two kinds of space usage. The design goal of xsp is to be sure that each token of the input stream
is consumed and processed immediately, so that the input stream does not reside in memory. On
the other hand, the space occupied by temporary result of the computation, represented by the
temporary expression, is a separate issue related to the nature of the computation performed.

There is a class of inherently memory inefficient transformations [24] that inevitably requires
lots of space for the temporary result. For example, if we replace the two rules of Mrev for r〈x1〉x2

and σ〈x1〉x2 with a single rule: Main(σ〈x1〉x2) → Rev(x2, σ〈Rev(x1, ϵ)〉). The mft (call it Mfrev)
reverses the subtrees at every nesting level for all nodes. We can still derive an xsp from it, and the
xsp still efficiently consumes the input stream. However, the temporary expression grows in size
linear to the length of read input. The resulting xsp is actually a bit slower than the naive load-all
implementation, because it cannot output any result until reading the end of the input stream.
Every SAX-like stream processing program has the same problem: this kind of transformation is
just not suitable for stream processing.

As a trial experiment, Table 2 (b) compares Mfrev and a program direct impl. mft which
simply loads the tree and performs the full reverse. The result shows that our implementation
does not carry too much overhead even for an inherently inefficient transformation Mfrev .

In all examples in this paper, the memory used by the derived xsp’s are made minimum for
the desired computation. This may not be true in general, and it will be a future work to analyse
the space usage of an xsp.

7 Conclusion and Related Work

We have presented a method to automatically derive an XML stream processor from a program
expressed as the macro forest transducer — mutual recursive functions on XML forests with certain
constraints. The XML stream processor has an efficient implementation based on a pushdown
machine. The framework presented in this paper will be the core of the next release of XTiSP
[19]. We believe that the mft is expressive enough that we can transform most practical programs
written in existing XML processing languages [11, 2, 34] to mft, in order to streamlise them. That
will be one of our future work too.

While plenty of work has been devoted to the automatic derivation of XML stream processors
from declarative programs, most them deals with query languages, such as XPath [1, 5, 8, 9] and a
subset of XQuery [16]. They are not expressive enough to describe some transformation we would
like to have, such as the structure-preserving transformation renaming all the labels a to b, which
can be expressed naturally in recursive functional style.

The key idea of our framework was presented in the first author’s previous work [21, 24], based
on the composition of (stack-)attributed tree transducers (att) [20]. All programs definable in
XTiSP, an XML transformation language designed by the first author [21, 19], can be translated
into att’s, which can then be composed with an XML parser in a way similar our derivation of
xsp’s. However, it is well known that att’s are less expressive than mft’s [6, 26]. Our result in this
paper is therefore much more powerful than before. Moreover, without a formal model of stream
processors, some part of the implementation of XTiSP is rather ad-hoc and could have been made
more efficient. The formalisation in the present helps to produce an implementation that is both
correct and efficient.

Kodama, Suenaga, Kobayashi and Yonezawa [15] studied ordered-linear type, which guarantees
that the input is processed in top-down, left-to-right order. Given a program satisfying such restric-
tions, they discussed how to buffer the input and how to process the buffered tree. In a subsequent
paper [28], they tried to derive stream processors by automatically detecting which input should
be buffered. However, the restrictions imposed by ordered linear type may not always be preferred
for stream processing. Consider the right-hand side p〈Key2Em(x1)〉InArticle(x2, y1AllKeys(x1))
in Example 2, where x1 is shared by two functional calls. Our stream processor consume both
x1’s as its tokens are read. An ordered linear typeable alternative would have to keep a copy of
x1 in memory until it is pattern-matched by AllKeys.

Kiselyov [14] gave an XML parser with a general folding function foldts over rose trees.
An XML transformation is defined by three actions fup, fdown and fhere that specify how
to accumulate the seed value. This programming style is not user-friendly and many function
closures are stored during the processing. Furthermore, his framework does not mention whether
the processor can output a part of the result when reading a single XML event, e.g., a start tag
<a>.

STX [4] is a template-based XML transformation language that operates on stream of SAX
[32] events. While the programmers can define the XML transformation program as well as XSLT
[34], they have to explicitly write when and how to store the temporary information like stream
processing style.

TransformX presented by Scherzinger and Kemper [27] provides a framework for syntax-
directed transformations of XML streams. We can obtain XML stream processors by defining
a kind of attribute grammar on the regular tree of the type schema for inputs. Even in their
framework, however, we must still keep in mind which information should be buffered before and
after reading each subtree in the input.

Acknowledgment. The authors wish to express their gratitude to Zhenjiang Hu for his fruitful
comments. Furthermore, they are also grateful to Giuseppe Castagna for his kind help and advice
on the earlier manuscript.

References

1. M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective dissemination of
information. International Journal on Very Large Data Bases, pages 53–64, 2000.

2. V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-purpose language. In
Proceedings of the 8th International Conference of Functional Programming, pages 51–63, 2003.

3. A. Berlea and H. Seidl. fxt – a transformation language for XML documents. Journal of Computing
and Information Technology, 10(1):19–35, 2002.

4. P. Cimprich, O. Becker, C. Nentwich, M. K. H. Jiroušek, P. Brown, M. Batsis, T. Kaiser, P. Hlavnička,
N. Matsakis, C. Dolph, and N. Wiechmann. Streaming transformations for XML (STX) version 1.0.
http://stx.sourceforge.net/documents/.

5. Y. Diao and M. J. Franklin. High-performance XML filtering: An overview of YFilter. In IEEE Data
Engineering Bulletin, volume 26(1), pages 41–48, 2003.

6. J. Engelfriet and H. Vogler. Macro tree transducers. Journal of Computer and System Sciences,
31(1):71–146, 1985.

7. The Glasgow Haskell Compiler. http://www.haskell.org/ghc/.

8. T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with de-
terministic automata and stream indexes. ACM Transactions on Database Systems, 29(4):752–788,
2004.

9. A. K. Gupta and D. Suciu. Stream processing of XPath queries with predicates. In Proceedings of
the 2003 ACM SIGMOD International Conference on Management of Data, pages 419–430, 2003.

10. H. Hosoya and B. C. Pierce. Regular expression pattern matching for XML. Journal of Functional
Programming, 13(6):961–1004, Novermber 2003.

11. H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language. ACM Transactions
on Internet Technology, 3(2):117–148, 2003.

12. S. P. Jones. Space usage. Glasgow Haskell Users Mailing List, http://www.haskell.org/pipermail/
glasgow-haskell-users/2004-August/007023.html, 17th August 2004.

13. M. Kay. SAXON: The XSLT and XQuery processor. http://saxon.sourceforge.net/.

14. O. Kiselyov. A better XML parser through functional programming. In 4th International Symposium
on Practical Aspects of Declarative Languages, volume 2257 of Lecture Notes in Computer Science,
pages 209–224, 2002.

15. K. Kodama, K. Suenaga, N. Kobayashi, and A. Yonezawa. Translation of tree-processing programs
into stream-processing programs based on ordered linear type. In The 2nd ASIAN Symposium on
Programming Languages and Systems, volume 3302 of Lecture Notes in Computer Science, pages
41–56, 2004.

16. B. Ludäscher, P. Mukhopadhyay, and Y. Papakonstantinou. A transducer-based XML query processor.
In Proceedings of 28th International Conference on Very Large Data Bases, pages 227–238, 2002.

17. S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type checking with macro tree transducers. In
Proceedings of 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
pages 283–294, 2005.

18. M. Murata. Extended path expressions of XML. In Proceedings of the 20th ACM Symp. on Principles
of Database Systems, pages 153–166, 2001.

19. K. Nakano. XTiSP: XML transformation language intended for stream processing. http://xtisp.

org/.

20. K. Nakano. Composing stack-attributed transducers. Technical Report METR-2004-01, Department
of Mathematical Informatics, University of Tokyo, 2004.

21. K. Nakano. An implementation scheme for XML transformation lauguages through derivation of
stream processors. In The 2nd ASIAN Symposium on Programming Languages and Systems, volume
3302 of Lecture Notes in Computer Science, pages 74–90, 2004.

22. The nhc98 compiler. http://www.haskell.org/nhc98/.

23. S. Nishimura. Fusion with stacks and accumulating prameters. In the 2004 ACM SIGPLAN Workshop
on Partial Evaluation and Semantics-based Program Manipulation, pages 101–112, 2004.

24. S. Nishimura and K. Nakano. XML stream transformer generation through program composition and
dependency analysis. Science of Computer Programming, 54:257–290, 2005.

25. Objective Caml. http://caml.inria.fr/ocaml/.

26. T. Perst and H. Seidl. Macro forest transducers. Information Processing Letters, 89:141–149, 2004.

27. S. Scherzinger and A. Kemper. Syntax-directed transformations of XML streams. In The workshop
on Programming Language Technologies for XML, pages 75–86, 2005.

28. K. Suenaga, N. Kobayashi, and A. Yonezawa. Extension of type-based approach to generation of
stream processing programs by automatic insertion of buffering primitives. In International workshop
on Logic-based Program Synthesis and Transformation, 2005. To appear.

29. P. Wadler. Fixing a space leak with a garbage collector. Software Practice and Experience, 17(9):595–
608, September 1987.

30. P. Wadler. Deforestation: Transforming programs to eliminate trees. In Proceedings of the European
Symposium on Programming, volume 300 of Lecture Notes in Computer Science, pages 344–358, 1988.

31. libxslt: the XSLT C library for Gnome. http://xmlsoft.org/XSLT/.
32. SAX: the simple API for XML. http://www.saxproject.org/.
33. XMark: an XML benchmark project. http://www.xml-benchmark.org/.
34. XSL transformations (XSLT). http://www.w3c.org/TR/xslt/.

A Proof of Theorem 1

We introduce another definition for each of ⌊ ⌋ and θS to prove Theorem 1.
An event generator gen is another function of streaming ⌊ ⌋. Let f be a Σ-forest with an

alphabet Σ. The function gen can output one by one the next XML event from the XML stream
corresponding to f by updating a following forest list (for short, FFL). An FFL ranges over a set
given by a syntax:

L ::= (F,#) | (F, σ) :: L

where F ranges over a set of sub-forest of f , σ ∈ Σ and # represents an additional root symbol
for f . The i-th forest in an FFL l is accessed by l[i] where ((f ′, σ) :: l)[1] = f ′, (f ′,#)[1] = f ′

((f ′, σ) :: l)[i] = l[i − 1] and (f ′,#)[i] = ϵ for i > 1.
A event generator gen takes an FFL and returns a new FFL following an XML event, which

is defined by

gen((σ〈f1〉f2, σ
′) :: l) = <σ>gen((f1, σ) :: (f2, σ

′) :: l)
gen((σ〈f1〉f2,#)) = <σ>gen((f1, σ) :: (f2,#))
gen((ϵ, σ) :: l) = </σ>gen(l)
gen((ϵ,#)) = $.

The function gen always terminates because every step reduces a total number of nodes of forests
in the FFL. We write G(l) for a set of FFL’s occurring as an argument of gen in the computation
of gen(l), i.e., if l = (ϵ,#) then G(l) = {(ϵ,#)} and otherwise G(l) = {l} ∪ G(l′) with gen(l) =
χgen(l′) with χ ∈ Σ<>. The set G((f,#)) for a f ∈ FΣ is finite because of the termination of gen.
The following lemma shows that gen simulates a streaming ⌊f⌋ for a forest f when the initial FFL
is (f, #).

Lemma 1. Let f be a Σ-forest with an alphabet Σ. Then we have

gen((f, #)) = ⌊f⌋ $. (3)

Proof. We use an equation
gen((f ′, σ) :: l) = ⌊f ′⌋ </σ>gen(l) (4)

for a sub-forest f ′ of f , σ ∈ Σ and an FFL l to show (3). The equation (4) can be proved by
induction on the structure of f ′. We prove the equation (3) by induction on the structure f . If
f = ϵ, then (3) holds by the definitions of gen and ⌊ ⌋. If f = σ〈f1〉f2, then we have

gen((σ〈f1〉f2,#)) = <σ>gen((f1, σ) :: (f2,#))
= <σ> ⌊f1⌋ </σ>gen((f2,#))
= <σ> ⌊f1⌋ </σ> ⌊f2⌋ $
= ⌊σ〈f1〉f2⌋ $

from the definitions of gen and ⌊ ⌋, the equation (4) and the induction hypothesis. Therefore (3)
holds for every forest f . ⊓⊔

Now we introduce another definition for θS in Definition 7. Let S = (Q,Σ,∆, in, R) be an
xsp and f be a Σ-forest. We define a function ΘS as well as θS by

ΘS(e, (ϵ, #)) = 〈|e, $|〉 ΘS(e, l) = ΘS(〈|e, χ|〉, l′)

for e ∈ TmpS and an FFL l where gen(l) = χgen(l′) with χ ∈ Σ<>. The function ΘS takes an FFL
as the second argument while θS takes an event χ. The following lemma shows that the function
ΘS can simulate a transformation τS for an input stream ⌊f⌋.
Lemma 2. Let S = (Q,Σ,∆, in, R) be an xsp. Then

τS(⌊f⌋) = ΘS(in(ε, . . . , ε), (f, #)) (5)

for every f ∈ FΣ.

Proof. From the definition of τS , what we have to show is

θS(in(ε, . . . , ε), ⌊f⌋ $) = ΘS(in(ε, . . . , ε), (f, #)). (6)

We show an equation
θS(e, gen(l)) = ΘS(e, l) (7)

for e ∈ TmpS and l ∈ G((f, #)), which is more general than (6) owing to Lemma 1. The equation
(7) is proved by induction on the cardinality ♯G(l) of G(l). If ♯G(l) = 1, i.e., l = (ϵ,#), then both
sides are the same, that is 〈|e, $|〉. If ♯G(l) > 1, then gen(l) = χgen(l′) with χ ∈ Σ<>. We have
♯G(l′) = ♯G(l) − 1 since l ̸∈ G(l′) from the definition of G. Therefore we obtain

θS(e, gen(l)) = θS(e, χgen(l′))
= θS(〈|e, χ|〉, gen(l′))
= ΘS(〈|e, χ|〉, l′)
= ΘS(e, l)

from the induction hypothesis, the definitions of θS and ΘS . Hence the equation (7) holds for
e ∈ TmpS and l ∈ G((f, #)). ⊓⊔

Next we define the function I : TmpSP(M) → F∆ for an mft M = (Q,Σ,∆, in, R). The
function I translates a temporary expression into a corresponding output forest and has an in-
variant property that I(e, l) = I(e′, l′) if ΘS(e, l) is computed by ΘS(e′, l′), which will be shown
as Lemma 4. Since all temporary expressions for SP(M) are well-defined from the definition of
SP(M) in the sense that they range over

E ::= q(E, . . . , E) | ε | <δ>E</δ> | E E,

we define the function I by

I(q[i](e1, . . . , en), l) = [[q]](l[i], I(e1, l), . . . , I(en, l)),
I(ε, l) = ϵ, I(<δ>e</δ>, l) = δ〈I(e, l)〉,
I(e e′, l) = I(e, l) I(e′, l).

To prove the invariant property of I, we show the following lemma which correlates the right-hand
sides of rules of M and SP(M).

Lemma 3. Let M = (Q,Σ,∆, in, R) be an mft, rhs be a right-hand side of a rule in Rq with
q ∈ Q and rank(q) = n + 1, l be an FFL for f ∈ FΣ and ej with j = 1, . . . , n be a (well-
formed) temporary expression for SP(M). For a binding ρ given by ρ(xi) = l[i] (i = 1, 2) and
ρ(yj) = I(ej , l) (j = 1, . . . , n), we have

[[rhs]]ρ = I(A(rhs)[yj := ej]j=1,...,n, l) (8)

where A is as given in Definition 8. In particular, when rhs does not contain any pattern
q(xi, . . .), we have

⌊[[rhs]]ρ⌋ = A(rhs)[yj := ⌊I(ej , l)⌋]j=1,...,n. (9)

Proof. The statement is proved by induction on the structure of rhs. In the rest of this proof, we
write just ρ′(ξ) for ξ[yj := ej]j=1,...,n. Thus we should prove the equation [[rhs]]ρ = I(ρ′(A(rhs)), l).
If rhs = ϵ, then both sides of (8) are the same, that is ϵ. If rhs = δ〈rhs ′〉, then the right-hand side
of (8) is [[δ〈rhs ′〉]]ρ = δ〈[[rhs ′]]ρ〉. From the definitions of A and I, the left-hand side of (8) is

I(ρ′(A(δ〈rhs ′〉)), l)
= I(<δ>ρ′(A(rhs ′))</δ>, l)
= δ〈I(ρ′(A(rhs ′))), l)〉

which is equal to δ〈[[rhs ′]]ρ〉 from the induction hypothesis. If rhs = yj , then both sides of (8) are
the same, that is I(ej , l). If rhs = rhs1rhs2, then both sides of (8) are the same from the definitions
of A and I and the induction hypothesis. If rhs = q(xi, rhs1, . . . , rhsn′), then the right-hand side
of (8) is

[[q(xi, rhs1, . . . , rhsn′)]]ρ
= [[q]](l[i], [[rhs1]]ρ, . . . , [[rhsn′]]ρ)
= [[q]](l[i], I(ρ′(A(rhs1)), l), . . . , I(ρ′(A(rhsn′)), l))

from the definition of [[]]ρ and the induction hypothesis. The left-hand side of (8) is

I(ρ′(A(q(xi, rhs1, . . . , rhsn′))), l)
= I(ρ′(q[i](A(rhs1), . . . ,A(rhsn′))), l)
= I(q[i](ρ′(A(rhs1)), . . . , ρ′(A(rhsn′))), l)
= [[q]](l[i], I(ρ′(A(rhs1)), l), . . . , I(ρ′(A(rhsn′)), l))

from the definitions of A and I. Hence we have the equation (8).
In the particular case that rhs does not contain any pattern q(xi, . . .), the equation (9) is

shown by the induction of the structure of rhs. When rhs = ϵ, the both sides are the same,
that is ε. When rhs = δ〈rhs ′〉, the left-hand side of (9) is <δ>

⌊
[[rhs ′]]ρ

⌋
</δ> and the right-hand

side is <δ>ρ′(A(rhs ′))</δ>. These are equal from the induction hypothesis. When rhs = yj , the
both sides are the same, that is ⌊I(ej , l)⌋. When rhs = rhs1rhs2, the left-hand side of (9) is
⌊[[rhs1]]ρ⌋ ⌊[[rhs2]]ρ⌋ and the right-hand side is ρ′(A(rhs1))ρ′(A(rhs2)). These are equal from the
induction hypothesis. Therefore (9) holds. ⊓⊔

Then we show the following lemma with respect to the invariant property of I.
Lemma 4. Let M = (Q,Σ,∆, in, R) be an mft, e be a (well-defined) temporary expression for an
xsp SP(M) and l be an FFL for a forest f ∈ FΣ. For gen(l) = χgen(l′), we have

I(e, l) = I(〈|e, χ|〉, l′). (10)

Proof. We prove the statement by induction on the cardinality ♯G(l) of G(l). We start with the
case of ♯G(l) = 2 since the equation gen(l) = χgen(l′) is assumed.

In the case of ♯G(l) = 2, we have l = (ϵ, σ) :: (ϵ,#) with gen(l) = </σ>gen((ϵ,#)). We have to
show an equation

I(e, (ϵ, σ) :: (ϵ,#)) = I(〈|e, </σ>|〉, (ϵ,#)). (11)
It is proved by induction on the structure of the (well-defined) temporary expression e. We only
show the case of e = q[i](e1, . . . , en) with q ∈ Q and i ∈ N+ that is the most complicated one in
the induction. The other cases can be shown from the definitions of I and 〈| , |〉.

If e = q[1](e1, . . . , en) with q ∈ Q, then we have

I(q[1](e1, . . . , en), l)
= [[q]](l[1], I(e1, l), . . . , I(en, l))
= [[q]](ϵ, I(〈|e1, </σ>|〉, l′), . . . , I(〈|en, </σ>|〉, l′))
= [[rhsq,ϵ]]ρ
= I(A(rhsq,ϵ)[yj := 〈|ej , </σ>|〉]j=1,...,n, l′)
= I(〈|q[1](e1, . . . , en), </σ>|〉, l′)

from the definitions of I, [[q]] and 〈| , |〉, l = (ϵ, σ) :: (ϵ, #), the induction hypothesis and
Lemma 3 where ρ is a binding defined by ρ(yj) = I(〈|ej , </σ>|〉, l′) for j = 1, . . . , n. Hence the
equation (11) holds.

If e = q[i](e1, . . . , en) with q ∈ Q and i > 1, then we have

I(q[i](e1, . . . , en), l)
= [[q]](ϵ, I(〈|e1, </σ>|〉, l′), . . . , I(〈|en, </σ>|〉, l′))

in a way similar to the case of e = q[1](e1, . . . , en). The right-hand side of (11) is

I(〈|q[i](e1, . . . , en), </σ>|〉, l′)
= I(q[i − 1](〈|e1, </σ>|〉, . . . , 〈|en, </σ>|〉), l′)
= [[q]](l′[i − 1], I(〈|e1, </σ>|〉, l′), . . . , I(〈|en, </σ>|〉, l′))

from the definitions 〈| , |〉 and I, a (q, </σ>)-rule of SP(M) The equation (11) holds from
l′[i − 1] = ϵ.

Next we show the case of ♯G(l) > 2 in (10). Assume that gen(l) = χgen(l′). The equation (10)
is proved by induction on the structure of the (well-defined) temporary expression e. Again we
only show the case of e = q[i](e1, . . . , en) with q ∈ Q and i ∈ N+ since the other cases are easily
shown from the definitions of I and 〈| , |〉.

If e = q[1](e1, . . . , en) with q ∈ Q, then the left-hand side of (10) is equal to [[q]](l[1], I(e1, l), . . . , I(en, l))
by the definition of I. There are three possibilities for the form of l, (σ〈f1〉f2, σ

′) :: l′′, (σ〈f1〉f2,#)
and (ϵ, σ) :: l′′. In the first two cases, we have l[1] = σ〈f1〉f2 and gen(l) = <σ>gen(l′) with
l′[i] = fi (i = 1, 2). The left-hand side of (10) is

[[q]](l[1], I(e1, l), . . . , I(en, l))
= [[q]](σ〈f1〉f2, I(〈|e1, <σ>|〉, l′), . . . , I(〈|en, <σ>|〉, l′))
= [[rhsq,σ]]ρ
= I(A(rhsq,σ)[yj := 〈|ej , <σ>|〉]j=1,...,n, l′)
= I(〈|q[1](e1, . . . , en), <σ>|〉, l′)

from the definitions of [[]] and 〈| , |〉, the induction hypothesis and Lemma 3 where ρ is a
binding defined by ρ(xi) = fi for i = 1, 2 and ρ(yj) = I(〈|ej , <σ>|〉, l′) for j = 1, . . . , n. Hence we
have the equation (10) in this case of l. In the case of l = (ϵ, σ) :: l′′, the equation (10) can be
shown in a way similar to the case of G(l) = 2 and e = q[1](e1, . . . , en) because l[1] = ϵ.

If e = q[i](e1, . . . , en) with q ∈ Q and i > 1, then the left-hand side of (10) is equal to
[[q]](l[i], I(e1, l), . . . , I(en, l)) by the definition of I. There are three possibilities for the form of l,
(σ〈f1〉f2, σ

′) :: l′′, (σ〈f1〉f2,#) and (ϵ, σ) :: l′′. In the first two cases, we have gen(l) = <σ>gen(l′)
with l[i] = l′[i + 1] and G(l) = G(l′) + 1. Then we obtain

[[q]](l[i], I(e1, l), . . . , I(en, l))
= [[q]](l′[i + 1], I(〈|e1, <σ>|〉, l′), . . . , I(〈|en, <σ>|〉, l′))
= I(q[i + 1](〈|e1, <σ>|〉, . . . , 〈|en, <σ>|〉), l′)
= I(〈|q[i](e1, . . . , en), <σ>|〉, l′)

from the induction hypotheses, the definition of 〈| , |〉 and a rule in an xsp SP(M). Hence the
equation (10) holds in this case of l. In the case of (ϵ, σ) :: l′′, we have gen(l) = </σ>gen(l′) with
l[i] = l′[i − 1] and G(l) = G(l′) − 1. Then the equation (10) is shown in a way similar to the
previous case. ⊓⊔

The following lemma shows the relation of ΘS and I.

Lemma 5. Let M = (Q, Σ,∆, in, R) be an mft and l ∈ G((f, #)) be an FFL for f ∈ FΣ. For
any temporary expression e ∈ SPM , we have

⌊I(e, l)⌋ = ΘSP(M)(e, l). (12)

Proof. For the computation chain of ΘS(e0, (f, #)) = · · · = ΘS(e, (ϵ, #)), we have I(e0, (f, #)) =
· · · = I(e, (ϵ,#)) due to Lemma 4. Hence it is enough to show

⌊I(e, (ϵ,#))⌋ = ΘS(e, (ϵ,#))(= 〈|e, $|〉) (13)

It is proved by induction on e. We only show the case of e = q[i](e1, . . . , en) with q ∈ Q and
i ∈ N+ because the other cases can be shown from the definitions of ΘSP(M), ⌊ ⌋ and I. Since
((ϵ,#))[i] = ϵ for any i ∈ N+, the left-hand side of (13) is

⌊I(q[i](e1, . . . , en), (ϵ, #))⌋
= ⌊[[q]](ϵ, I(e1, (ϵ,#)), . . . , I(en, (ϵ,#)))⌋
= ⌊[[rhsq,ϵ]]ρ⌋

with ρ(yj) = I(ej , (ϵ,#)) (j = 1, . . . , n) from the definitions of I and [[]]. The right-hand side of
(13) is

〈|q[i](e1, . . . , en), $|〉
= A(rhsq,ϵ)[yj := 〈|ej , $|〉]j=1,...,n

= A(rhsq,ϵ)[yj := ⌊I(ej , (ϵ,#)⌋]j=1,...,n

from the definitions of 〈| |〉 and the induction hypothesis. Then these are equal from (9) in
Lemma 3 since no pattern q′(xi, . . .) occurs in rhsq,ϵ. ⊓⊔

Now we prove Theorem 1. Let M = (Q,Σ,∆, in, R) be an mft and S = SP(M) be an xsp.
For a forest f ∈ FΣ , we have

τS(⌊f⌋) = ΘS(in[1](ε, . . . , ε), (f, #))
= ⌊I(in[1](ε, . . . , ε), (f, #))⌋
= ⌊[[in]](f, ϵ, . . . , ϵ)⌋
= ⌊τM (f)⌋

from Lemma 2, Lemma 5 and the definitions of I and τM . Therefore Theorem 1 has been
proved.

