Research Institute of Electrical Communication Tohoku University


Shigeo Sato,Professor

Masao Sakuraba,Associate Professor

Hisanao Akima,Assistant Professor

H.Akima S.Sato M.Sakuraba


Research Activities

In addition to the conventional demands such as faster operation and larger throughput, low power operation for low-carbon emission and robust operation not damaged even in a disaster are required for the development of the next generation information technology. To meet these demands, studies on high functional and high performance Si-based semiconductor devices realized by 3-D nano-processing and large scale integration of such devices are important research subjects. We study the subjects such as new transistors and memories using new materials, new devices based on new principles like quantum effects, and required 3-D processing. Moreover, we develop advanced technologies related to 3-D nano-integration, dependable mixed signal LSI, and non von Neumann architecture.

Laboratory Web Page

Nano-Integration Devices (Prof. Sato)

Our short-term research subjects are the development of a product-sum operation device having non-volatile storage, multiplication, and addition functionalities, the development of a high-functional thresholding device having self-excitation functionality, the high-density implementation of these devices, and the development of an intelligent device utilizing quantum mechanical property. Also, we make efforts to apply these device technologies to non-von Neumann computers including a brain computer in future.

Research topics

  • New structure non-volatile memory device
  • New structure product-sum operation device
  • High-density implementation of devices for brain computing
  • Intelligent quantum device

Group IV Quantum Heterointegration(Assoc. Prof. Sakuraba)

The following researches are being advanced: (1) Atomic-order control of highly strained group IV semiconductor heterostructure formation in a nanometer-order ultrathin region which utilizing plasma CVD reaction at low temperatures without substrate heating, (2) Systematic investigation and control of charge transport phenomena including quantum phenomena in the highly strained group IV semiconductor heterostructures to find out novel electronic properties, (3) Heterointegration of the group IV semiconductor quantum heterostructures and high-performance nanodevices into the Si large-scale integrated circuits.

Research topics

  • Low-damage plasma CVD process without substrate heating for epitaxial growth of highly strained group IV semiconductors
  • Large-scale integration process of group IV semiconductor quantum heterostructures
  • Fabrication of high-performance nanodevices utilizing group IV semiconductor quantum heterostructures

Towards the Realization of a Prototype Brain Computer
Towards Establishment of Process for Group IV Quantum Heterointegration