Erratum

In Section 4 we defined two kinds of categorical models called \(\lambda_c2_\eta \)-models and monadic \(\lambda_c2_\eta \)-models, where the latter is stronger notion than the former; and in Theorem 4 we stated that the \(\lambda_c2_\eta \)-calculus is sound and complete for the \(\lambda_c2_\eta \)-models. It turns out that this does not hold, and instead we have to assume monadic \(\lambda_c2_\eta \)-models rather than \(\lambda_c2_\eta \)-models; this is necessary in the sense that the calculus is also complete for the monadic \(\lambda_c2_\eta \)-models, as the term model becomes a monadic \(\lambda_c2_\eta \)-model. Thus a correct theorem instead of Theorem 4 is:

Theorem The \(\lambda_c2_\eta \)-calculus is sound and complete with respect to the monadic \(\lambda_c2_\eta \)-models.

What is overlooked in a proof of the soundness is the lemma that, for any value \(V \), its interpretation \([V] \) is a value (i.e., in the image of the Kleisli embedding); its proof itself is straightforward by induction on \(V \) (once we assume monadic \(\lambda_c2_\eta \)-models).

All the parts except for Theorem 4 in the paper are correct—where first of all we do not use the notion of \(\lambda_c2_\eta \)-models (but use the stronger notion of monadic \(\lambda_c2_\eta \)-models)—, especially including Sections 5 and 6 on construction of concrete monadic \(\lambda_c2_\eta \)-models.

Remark Once we apply the above erratum, we use only the notion of monadic \(\lambda_c2_\eta \)-models and do not use that of \(\lambda_c2_\eta \)-models at all; then it seems better to use the terminology \(\lambda_c2_\eta \)-models for the notion of monadic \(\lambda_c2_\eta \)-models, (though in this erratum we always use the terminology in the original paper to avoid confusion).