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Abstract

The notion of arrow by Hughes is an axiomatization of the algebraic structure possessed by structured
computations in general. We claim that an arrow also serves as a basic component calculus for composing
state-based systems as components—in fact, it is a categorified version of arrow that does so. In this paper,
following the second author’s previous work with Heunen, Jacobs and Sokolova, we prove that a certain
coalgebraic modeling of components—which generalizes Barbosa’s—indeed carries such arrow structure.
Our coalgebraic modeling of components is parametrized by an arrow A that specifies computational struc-
ture exhibited by components; it turns out that it is this arrow structure of A that is lifted and realizes
the (categorified) arrow structure on components. The lifting is described using the first author’s recent
characterization of an arrow as an internal strong monad in Prof , the bicategory of small categories and
profunctors.
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1 Introduction

1.1 Arrow for Computation

In functional programming, the word computation often refers to a procedure which

is not necessarily purely functional, typically involving some side-effect such as I/O,

global state, non-termination and non-determinism. The most common way to

organize such computations is by means of a (strong) monad [21], as is standard in

Haskell. However side-effect—that is “structured output”—is not the only cause for

the failure of pure functionality. A comonad can be used to encapsulate “structured

input” [26]; the combination of a monad and a comonad via a distributive law can be

used for input and output that are both structured. There are much more additional

structure that a functional programmer would like to think of as “computations”;

Hughes’ notion of arrow [13] is a general axiomatization of such. 1

Let C be a Cartesian category of types and pure functions, in a functional

programming sense. The notion of arrow over C is an algebraic one: it axiomatizes

1 The word “arrow” is reserved for Hughes’ notion throughout the paper. An “arrow” in a category will
be called a morphism or a 1-cell.
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those operators which the set of computations should be equipped with, and those

equations which those operators should satisfy. More specifically, an arrow A is

• carried by a family of sets A(J,K) for each J,K ∈ C;

• equipped with the following three families of operators arr, >>> and first:

arrf ∈ A(J,K) for each morphism f : J → K in C,

A(J,K) ×A(K,L)
>>>J,K,L
−→ A(J,L) for each J,K,L ∈ C,

A(J,K)
firstJ,K,L
−→ A(J × L,K × L) for each J,K,L ∈ C;

• that are subject to several equational axioms: among them is

(a >>>J,K,L b) >>>J,L,M c = a >>>J,K,M (b >>>K,L,M c)

for each a ∈ A(J,K), b ∈ A(K,L), c ∈ A(L,M).
(>>>-Assoc)

The other axioms are presented later in Def. 3.1.

The intuitions are clear: presenting an A-computation from J to K by a box
J K , the three operators ensure that we can combine computations in the fol-

lowing ways.

• (Embedding of pure functions) J
arr f

K

• (Sequential composition)
(

J a K , K b L
)

>>>J,K,L
7−→ J a K b L

• (Sideline) J a K
firstJ,K,L
7−→

[

J a K

L L

]

The (>>>-Assoc) axiom above, for example, ensures that the following compositions

of three consecutive A-computations are identical.

J a K b L c M = J a K b L c M (1)

A strong monad T on C induces an arrow AT by: AT (J,K) = C(J, TK) =

Kℓ(T )(J,K). Here Kℓ(T ) denotes the Kleisli category (see e.g. [21]). Prior to

arrows, the notion of Freyd category is devised as another axiomatization of algebraic

properties that are expected from “computations” [23, 19]. The latter notion of

Freyd category come with a stronger categorical flavor; in [16] it is shown to be

equivalent to the notion of arrow.

Remark 1.1 The previous arguments are true as long as we think of an arrow as

carried by sets, with A(J,K) being a set. This is our setting. However this is not

an entirely satisfactory view in functional programming where one sees A as a type

constructor—A(J,K) should rather be an object of C. In this case one can think

of several variants of arrow and Freyd category. See [2].

1.2 Arrow as Component Calculus

The goal of the current paper is to settle components as categorification of compu-

tations, via (the algebraic theory of) arrows. Let us elaborate on this slogan.
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A component here is in the sense of component calculi. Components are systems

which, combined with one another by means of some component calculus, yield a

bigger, more complicated system. This “divide-and-conquer” strategy brings order

to design processes of large-scale systems that are otherwise messed up due to the

very scale and complexity of the systems to be designed.

We follow the coalgebraic modeling of components in [5]—which is also used

in [11]—extending it later to an arrow-based modeling. In [5] a component is mod-

eled as a coalgebra of the following type:

c : X −→
(

T (X ×K)
)J

in Set. (2)

J c KHere J is the set of possible input to the component; K is that of possible

output; X is the set of (internal) states of the component which is a state-

based machine; and T is a monad on Set that models the computational effect

exhibited by the system. Overall, a coalgebraic component is a state-based system

with specified input and output ports; it can be drawn as above on the right.

A crucial observation here is as follows. The notion of arrow in §1.1 is to ax-

iomatize algebraic operators on computations as boxes—such as sequential com-

position J a K b L . Then, by regarding such boxes as components rather than as

computations, we can employ the axiomatization of arrow as algebraic structure

on components—a component calculus—with which one can compose components.

The calculus is a basic one that allows embedding of pure functions, sequential com-

position and sideline. In fact in the second author’s previous work [11] with Heunen,

Jacobs and Sokolova, such algebraic operators on coalgebraic components (2) are

defined and shown to satisfy the equational axioms.

1.3 Categorifying Computations into Components

Despite this similarity between computations and components, there is one level

climbed up from the former to the latter: from sets to categories. Let A(J,K) de-

note the collection of coalgebraic components like in (2), with input-type J , output-

typeK and fixed effect T , but with varying state spacesX. Then it is just natural to

include morphisms between coalgebras in the overall picture, as behavior-preserving

maps (see e.g. [24]) between components. Hence A(J,K) is now a category, specif-

ically that of
(

T ( ×K)
)J

-coalgebras. In contrast, with respect to computations

there is no general notion of morphism between them, so the collection A(J,K) of

A-computations is a set.

This step of categorification [3] is not just for fun but in fact indispensable when

we consider equational axioms. Later on we will concretely define the sequential

composition J c K d L of coalgebraic components with matching I/O types; at now

we note that the state space of the composite is the product X × Y of the state

space X of c and Y of d. Now let us turn to the axiom

(c >>> d)>>> e = c >>> (d >>> e) . (>>>-Assoc)

Denoting e’s state space by U , the state space of the LHS is (X×Y )×U while that

of the RHS isX×(Y ×U). These are, as sets, not identical! Therefore the axiom can
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be at best satisfied up-to an isomorphism between components as coalgebras (and

it is the case, see [11]). We note this phenomenon that the notion of satisfaction of

equational axioms gets relaxed—from up-to equality to up-to an isomorphism—is

typical with categorification [3].

This additional structure obtained through categorification, namely morphisms

between components, has been further exploited in [11]. There it is shown that fi-

nal coalgebras—the notion that only makes sense in presence of morphisms between

coalgebras—form an arrow that is internal to the “arrow” of components, realiz-

ing an instance of the microcosm principle [4, 12]. An application of such nested

algebraic structure (namely of arrows) is a compositionality result : the behavior of

composed components can be computed from the behavior of each component.

We shall refer to the categorified notion of arrow—carried by components—as

categorical arrow.

1.4 Lifting of Arrow Structure via Profunctors

To summarize: computations carry algebraic structure of an arrow; components

carry a categorified version of it. The contribution of the current paper is to make

the relationship between computations and components more direct. This is by

developing the following scenario:

• given an arrow A,

• we define the notion of (arrow-based) A-component which generalizes Barbosa’s

modeling (2),

• and we show that these A-components carry categorical arrow structure that is

in fact a lifting of the original arrow structure of A.

Therefore: we categorify A-computations to A-components.

A weaker version of this scenario has been already presented in [11]. However

the last lifting part was obscured in details of direct calculations. What is novel in

this paper is to work in Prof , the bicategory of profunctors. In fact, it is one theme

of this paper to demonstrate use of calculations in Prof .

The starting point for this profunctor approach is [16]. There the arr, >>>-

fragment of arrow (without first) is identified with a monoid in the category [Cop ×

C,Set] of bifunctors, where the latter is equipped with suitable monoidal structure.

This means—in terms of profunctors that will be described in §2—that an arrow A

(without first) is a monad in Prof , in an internal sense like in [25].

What really made our profunctor approach feasible was a further observation by

the first author [1]. There the remaining first operator—whose mathematical nature

was buried away in its dinaturality—is identified with a certain 2-cell in Prof . In

fact, this 2-cell is a strength in an internal sense. Therefore an arrow (with its full

set of operators, arr, >>> and first) is a strong monad in Prof . This observation

pleasantly parallels the informal view of arrows as generalization of strong monads.

1.5 Organization of the Paper

In §2 we will introduce the necessary notions of dinatural transformation, (co)end

and profunctor, in a rather leisurely pace. The two forms of the Yoneda lemma—
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the end- and coend-forms—are basic there. The materials there are essentially

extracted from [17], which is a useful reference also in the current non-enriched

(i.e. Set-enriched) setting. In §3 we follow [1, 16] and identify an arrow with an

internal strong monad in Prof , setting Prof as our universe of discourse. In §4

we generalize Barbosa’s coalgebraic components into arrow-based components. The

main result—arrow-based components form a categorical arrow—is stated there. Its

actual proof is in the subsequent §5 which is devoted to manipulation of 2-cells in

Prof .

2 Categorical Preliminaries

2.1 End and Coend

In the sequel we shall very often encounter a functor of the type F : C
op × C → D,

where a category C occurs twice with different variance. Given two such F,G :

Cop × C → D, a dinatural transformation ϕ : F ⇒ G consists of a family of

morphisms in D

ϕX : F (X,X) −→ G(X,X) for each X ∈ C

which is dinatural : for each morphism f : X → X ′ the following diagram commutes.

F (X,X)
ϕX G (X,X) G(X,f)

F (X ′,X)
F (f,X)

F (X′,f)

G (X,X ′)
F (X ′,X ′) ϕX′

G (X ′,X ′)G(f,X′)

(3)

Note the difference from a natural transformation ψ : F ⇒ G. The latter consists of

a greater number of morphisms in D: ψX,Y : F (X,Y ) → G(X,Y ) for each X,Y ∈ C.

Two successive dinatural transformations ϕ1 : F1 ⇒ F2 and ϕ2 : F2 ⇒ F3 do

not necessarily compose: dinaturality of each do not guarantee dinaturality of the

obvious candidate of the composition (ϕ2 ◦ ϕ1)X = (ϕ2)X ◦ (ϕ1)X . This makes

it a tricky business to organize dinatural transformations in a categorical manner.

Nevertheless, working with arrows, examples of dinaturality abound.

Dinaturality subsumes naturality: a natural transformation ψ : F ⇒ G : C → D

can be thought of as a dinatural transformation, by presenting it as ψ : F ◦ π2 ⇒

G ◦ π2 : Cop × C → D. Here π2 : Cop × C → C is a projection.

(Co)end is the notion that is obtained by replacing naturality (for (co)cones) by

dinaturality, in the definition of (co)limit. Precisely:

Definition 2.1 (End and coend) Let C,D be categories and F : Cop × C → D be

a functor.

• An end of F consists of an object
∫

X∈C F (X,X) in D together with projections

πX :
(∫

X∈C F (X,X)
)

−→ F (X,X) for each X ∈ C

5



Asada, Hasuo

such that, for each morphism f : X → X ′ in C, the following diagram commutes.

F (X ′,X ′)F (f,X′)
∫

X
F (X,X)

πX′

πX

F (X,X ′)
F (X,X) F (X,f)

In other words: the family {πX}X∈C forms a dinatural transformation from the

constant functor ∆(
∫

X
F (X,X)) to the functor F . An end is defined to be a

universal one among such data: given an object Y ∈ D and a dinatural transfor-

mation ϕ : ∆Y ⇒ F , there is a unique morphism f : Y →
∫

X
F (X,X) such that

πX ◦ f = ϕX for each X ∈ C.

• A coend of F is a dual notion of an end. It consists of an object
∫X∈C

F (X,X)

in D together with injections ιX : F (X,X) →
∫ X

F (X,X) for each X ∈ C. Its

universality, together with that of an end, can be written as follows.

f : Y −→
∫

X
F (X,X)

ϕX : Y → F (X,X) , dinatural in X

f :
∫ X

F (X,X) −→ Y

ϕX : F (X,X) → Y, dinatural in X

See [20, Chap. IX] for more on (co)ends. Described there is the way to transform

a functor F : Cop × C → D into F § : C§ → D, in such a way that the (co)end of

F coincides with the (co)limit of F §. Therefore existence of (co)ends depends on

the (co)completeness property of D. In fact (co)end subsumes (co)limit, just as

dinaturality subsumes naturality. Therefore a useful notational convention is to

denote (co)limits also as (co)ends: for example ColimXFX as
∫X

FX.

Recalling the construction of any limit by a product and an equalizer [20, §V.2],

an intuition about an end
∫

X
F (X,X) is as follows: it is the product

∏

X F (X,X)

which is “cut down” so as to satisfy dinaturality. Dually, a coend
∫ X

F (X,X) is

the coproduct
∐

X F (X,X) quotiented modulo dinaturality.

2.2 Two Forms of the Yoneda Lemma

A typical example of an end arises as a set of (di)natural transformations. Given a

small category C and functors F,G : Cop × C → Set, we obtain a bifunctor

[F (+,−), G(−,+)] : C
op × C −→ Set , (X,Y ) 7−→ [F (Y,X), G(X,Y )] . (4)

Here [S, T ] denotes the set of functions from S to T , i.e. an exponential in Set.

Note the variance: since [−,+] is contravariant in its first argument, the variance of

arguments of F is opposed in (4). Taking this functor (4) as F in Def. 2.1, we define

an end
∫

X
[F (X,X), G(X,X)]. Such an end does exist when C is a small category,

because Set has small limits (hence small ends).

Proposition 2.2 Let us denote the set of dinatural transformations from F to G

by Dinat(F,G). We have a canonical isomorphism

Dinat(F,G)
∼=

−→

∫

X

[F (X,X), G(X,X)] .
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Proof It is due to the following correspondences.

1 →
∫

X
[F (X,X) , G (X,X)]

1 → [F (X,X) , G (X,X)] dinatural in X
(†)

F (X,X) → G (X,X) dinatural in X
(‡)

Here (†) is by Def. 2.1; dinaturality is preserved along (‡) because of the naturality

of Currying. 2

The composite Dinat(F,G)
∼=

−→
∫

X
[F (X,X), G(X,X)]

πX−→ [F (X,X), G(X,X)]

carries a dinatural transformation ϕ to its X-component ϕX .

Since dinaturality subsumes naturality (§2.1), we have an immediate corollary:

Corollary 2.3 Let C be a small category and F,G : C → Set. By Nat(F,G) we

denote the set of natural transformations F ⇒ G. We have

Nat(F,G)
∼=
−→

∫

X

[FX,GX] . 2

The celebrated Yoneda lemma reduces the set Nat(C(X, ), F ) of natural trans-

formations into FX (see e.g. [20,6]). Interpreted via Cor. 2.3, it yields:

Lemma 2.4 (The Yoneda lemma, end-form) Given a small category C and a func-

tor F : C → Set, we have a canonical isomorphism

∫

X′∈C

[

C
(

X,X ′
)

, FX ′
] ∼=
−→ FX . 2

The lemma becomes extremely useful in the calculations in the sequel: it means

an end on the LHS “cancels” with a hom-functor occurring in it.

From the end-form, we obtain the following coend-form. Its proof is easy but

illuminating.

Lemma 2.5 (The Yoneda lemma, coend-form) Given a small category C and a

functor F : C → Set, we have a canonical isomorphism

∫ X′∈C

FX ′ × C(X ′,X)
∼=

−→ FX .

Proof We have the following canonical isomorphisms, for each S ∈ Set.

[ ∫ X′

FX ′ × C(X ′,X) , S
] ∼=→

∫

X′

[

FX ′ × C(X ′,X) , S
]

(†)
∼=→
∫

X′

[

C(X ′,X) , [FX ′, S]
]

Currying
∼=→ [FX,S] the Yoneda lemma, end-form.

Here (†) is because the hom-functor [ , S] turns a colimit into a limit [20, §V.4],

hence a coend into an end. Obviously the composite isomorphism is natural in S;

therefore we have shown that

y
( ∫ X′

C(X ′,X) × FX ′
) ∼=
−→ y(FX) : C −→ Set , (5)

7



Asada, Hasuo

where y : Cop → [C,Set] is the (contravariant) Yoneda embedding. By the Yoneda

lemma the functor y is full and faithful; therefore it reflects isomorphisms. Hence (5)

proves the claim. 2

This coend-form allows us to “cancel” a coend with a hom-functor inside it.

2.3 Profunctor

Definition 2.6 Let C and D be small categories. A profunctor

P from C to D is a functor P : Dop × C → Set. It is denoted

by P : C −p→ D (see on the right).

C − p−→ D

D
op × C −→ Set

The notion of profunctor is also called distributor, bimodule or module. For more

detailed treatment of profunctors see e.g. [7, 9].

There are principally two ways to understand profunctors. One is as “general-

ized relations”: profunctors are to functors what relations are to functions. The

differences between a profunctor P : C−p→ D and a relation R : S−p→ T are as follows.

• A relation is two-valued: for each element s ∈ S and t ∈ T , R(s, t) is either empty

(i.e. (s, t) 6∈ R) or filled (i.e. (s, t) ∈ R). In contrast, a profunctor is valued with

arbitrary sets, that is, P (Y,X) ∈ Set.

• The functoriality of a profunctor P induces action of morphisms in C and D. For

illustration let us depict an element p ∈ P (Y,X) by a box Y p X . Given two

morphisms g : Y ′ → Y in D and f : X → X ′ in C, functoriality of P yields

an element P (g, f)(p) ∈ P (Y ′,X ′) (note the variance); the latter element is best

depicted as follows.
Y ′
g Y p X f X′

(6)

The latter point motivates a different way of looking at profunctors: as general-

ized modules as in the theory of rings. These generalized modules are carried by a

family of sets {P (Y,X)}X∈C,Y ∈D, with left-action of C-arrows and right-action of

D-arrows. Also notice the similarity between (6) and the diagrams in §1 for compu-

tations/components. It is indeed this similarity that allows us to formalize arrows

as certain profunctors (§3).

Definition 2.7 (Composition of profunctors) Given two successive profunctors P :

C −p→ D and Q : D −p→ E, their composition Q ◦ P : C −p→ E is defined by the following

coend. For U ∈ E and X ∈ C,

(Q ◦ P )(U,X) =

∫ Y ∈D

Q(U, Y ) × P (Y,X) .

For profunctors as generalized relations, this composition operation corresponds

to a relational composition: (S ◦ R) (x, z) if and only if ∃y.
(

R (x, y)∧ S (y, z)
)

. For

profunctors as modules, it corresponds to tensor product of modules. In any case,

recall from §2.1 that the coend in Def. 2.7 is a coproduct
∐

Y Q(U, Y )×P (Y,X)—a

bunch of pairs ( U q Y , Y p X ), with varying Y—quotiented modulo a certain

equivalence ≃. This equivalence ≃ (dictated by dinaturality) intuitively says: the

choice of intermediate Y ∈ D does not matter. Specifically, the equivalence ≃ is
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generated by the following relation; here f : Y → Y ′ is a morphism in D.

(

U q Y f Y ′
, Y ′

p X
)

≃
(

U q Y , Y f Y ′
p X

)

.

C

P

Q

ψ D

An appropriate notion of morphism between parallel profunctors

P,Q : C −p→ D is provided by a natural transformation ψ : P ⇒ Q,

where P and Q are thought of as functors P,Q : D
op×C → Set. All

these data can be organized in a “2-categorical” manner as on the

right. A problem now is that (horizontal) composition of 1-cells (i.e. profunctors)

is not strictly associative: due to Def. 2.7 of composition by coends and products,

associativity can be only ensured up-to coherent isomorphisms. The same goes for

unitality; therefore profunctors form a bicategory (see [9]) instead of a 2-category.

Definition 2.8 (The bicategory Prof ) The bicategory Prof has small categories

as 0-cells, profunctors as 1-cells and natural transformations between them as 2-cells.

The identity 1-cell C −p→ C is given by the hom-functor C(−,+) : Cop × C → Set; it

is the unit for composition because of the Yoneda lemma, coend-form (Lem. 2.5).

2.4 Some Properties of Prof

Here we describe some structural properties of Prof that will be exploited later,

namely direct/inverse image of functors and a tensor product. For the former [7] is

a principal reference; the notes [10] are not specifically on profunctors but provide

useful insights into relevant mathematical concepts.

A function f : S → T induces two relations: the direct image f∗ : S −p→ T and

the inverse image f∗ : T −p→ S, defined by: f∗(s, t) iff t = f(s) iff f∗(t, s). There are

analogous constructions from functors to profunctors.

Definition 2.9 Let F : C → D be a functor between small categories. It gives rise

to

the direct image profunctor F∗ : C − p−→ D by F∗(Y,X) = D(Y, FX) ;

the inverse image profunctor F ∗ : D − p−→ C by F ∗(X,Y ) = D(FX,Y ) .

The mapping ( )∗ also applies to natural transformations in an obvious way;

this determines a pseudo functor (see e.g. [9]) ( )∗ : Cat → Prof that embeds Cat

in Prof .

The following relationship between direct and inverse images is fundamental.

Lemma 2.10 Given a functor F : C → D, its direct and inverse images form an

adjunction F∗ ⊣ F
∗ internally in Prof . That is, there are canonical 2-cells

C
id

⇓ η
F∗

C C
F∗

D
F ∗

D id

⇓ ε
F ∗

D

9
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that satisfy the “triangular identities” (see e.g. [20]):

C
id

⇓ η
F∗

C
F∗

D id

⇓ ε
D

= id ;
C

id
⇓ η

F∗

C

D id

⇓ ε
F ∗

D
F ∗ = id .

Note that “internal” adjunction, when it is in the 2-category Cat of categories

and functors, coincides with the usual notion of adjunction.

Proof The 2-cells η and ε are natural transformations of the following types.

η : C (−,+) =⇒
∫ Y

D (F (−), Y ) × D (Y, F (+)) by Def. 2.7
∼=

−→D(F (−), F (+)) by Lem. 2.5

ε :
∫X

D(−, FX) × D(FX,+) =⇒D(−,+) by Def. 2.7

The former is given by the functor F ’s action on morphisms; the latter is by com-

position of morphisms in D. Checking the equalities is easy using Lem. 2.5. 2

Notations 2.11 Throughout the rest of the paper, the direct image F∗ of a functor

F shall be simply denoted by F . We shall not omit ( )∗ for inverse images. The

identity profunctor id : C −p→ C—that is the hom-functor—will be often denoted by

C : C −p→ C.

The Cartesian product operator × in Cat lifts Prof ; given profunctors F : C−p→

C′ and G : D −p→ D′, we define

F ×G : C×D−p→ C
′×D

′ by (F ×G)(X ′, Y ′,X, Y ) = F (X ′,X)×G(Y ′, Y ) . (7)

The symbol × occurring in the last denotes the Cartesian product in Set. The

lifted operator × in Prof makes it a “monoidal bicategory,” a notion whose precise

definition involves delicate handling of coherence. We shall not do that in this

paper. Nevertheless, we will need the following property.

Lemma 2.12 The operation × on Prof is bifunctorial: that is, given four profunc-

tors C
P
−p→ D

Q
−p→ E and C′

P ′

−p→ D′
Q′

−p→ E′ we have (Q ◦ P )×(Q′ ◦ P ′)
∼=→ (Q×Q′) ◦ (P×P ′).

Proof This is due to the Fubini theorem for coends. See [20, §IX.8] 2

It is obvious that the operator × acts also on 2-cells (that are natural transfor-

mations).

3 Arrows as Profunctors

We review the results in [16, 1] that identify Hughes’ notion of arrow with a pro-

functor with additional algebraic structure.

First we present the precise definition of arrow. Usually it is defined over a

Cartesian category C. However, since it is rather the monoidal structure of C that

is essential, we shall work with a monoidal category.

10
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Definition 3.1 (Arrow [13]) Given a monoidal category C = (C,⊗, I), an arrow

over C consists of carrier sets {A(J,K)}J,K∈C and operators arr, >>> and first as

described in §1.1. The operators must satisfy the following equational axioms.

(a >>> b)>>> c = a >>> (b >>> c) (>>>-Assoc)

arr (g ◦ f) = arr f >>> arr g (arr-Func1)

arr idJ >>>J,J,K a = a = a >>>J,K,K arr idK (arr-Func2)

firstJ,K,I a >>> arr ρK = arr ρK >>> a (ρ-Nat)

firstJ,K,L a >>> arr(idK ⊗ f) = arr(idJ ⊗ f) >>> firstJ,K,M a (arr-Centr)

(firstJ,K,L⊗M a)>>> (arrαK,L,M) = (arrαJ,L,M )>>> first(first a) (α-Nat)

firstJ,K,L(arr f) = arr(f ⊗ idL) (arr-Premon)

firstJ,L,M(a >>> b) = (firstJ,K,M a)>>> (firstK,L,M b) (first-Func)

Here some subscripts are suppressed. The morphism ρK : K ⊗ I
∼=→ K is the right

unitor isomorphism; α denotes an associator isomorphism. The names of the axioms

hint their correspondence to the (premonoidal) structure of Freyd categories [23,19].

Next we introduce the corresponding construct in Prof , which we shall tenta-

tively call a Prof -arrow.

Definition 3.2 Let C = (C,⊗, I) be a small monoidal category. A Prof -arrow

over C is:

• a profunctor A : C −p→ C,

• equipped with natural transformations arr, >>>, first of the following types:

C

C

A

⇓ arr C ,
C

A

A

⇓>>>
C

A
C

,
C

2 A×C

⊗ ⇓ first

C2

⊗

C A C

,

where all the diagrams are in Prof ,

• subject to the equalities in Table 1. Recall Notations 2.11; for example the

profunctor 〈C, I〉 in (first-ρ) is the functor 〈C, I〉 : X 7→ (X, I), embedded in

Prof by taking its direct image.

The notion of Prof -arrow is in fact a familiar one: it is an internal strong monad

in Prof . Indeed, when one draws the same 2-cells in Cat instead of in Prof—

replacing A by T , arr by ηT , >>> by µT and first by str
′—the definition coincides

with that of strong monad [18, 21]. 2 More specifically, the first two axioms in

Table 1 are for the monad laws; and the remaining axioms asserts compatibility of

strength with monoidal and monad structure. For example, the axiom (first->>>)

2 The corresponding strength operator str
′ is of the type str

′ : TX ⊗ Y → T (X ⊗ Y ), which is slightly
different from the usual strength operator that is str : X ⊗ TY → T (X ⊗ Y ).

11
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interpreted in Cat is read as the commutativity of the following diagram.

T 2X ⊗ Y
str

′

µT ⊗Y

T (TX ⊗ Y ) T str
′

T 2(X ⊗ Y )
µT

TX ⊗ Y
str′

T (X ⊗ Y )

C

C

arr

A

A

>>>

C
A

C = C

A

A

id C = C
A

A

>>>

C

C

arr

A
C (Unit)

C
A

A

⇓ >>>

C
A

A

>>>

C
A

C

=

C
A

A

⇓ >>>

A

>>>

C
A

C
A

C

(Assoc)

C3
A×C×C

⊗×C

C×⊗
⇓ first×C

C3

⊗×C

C2

⊗

∼=
⇐ C2

⊗
A×C
⇓ first

C2

⊗

C
A

C

=

C3
A×C×C

C×⊗

C3

C×⊗
⊗×C

C2

⊗
A×C
⇓ first

C2

⊗

∼=
⇐ C2

⊗
C

A
C

(first-α)

C
〈C,I〉

C

⇓∼=
C2

A×C

⊗ ⇓ first

C2

⊗

C
A

C

=
C

〈C,I〉

A

C2
A×C

C2

⊗

C
C

⇓∼=

〈C,I〉

C

(first-ρ)

C2

C×C

arr×C

A×C
⊗ ⇓ first

C2

⊗

C
A

C

= C2
⊗

C

C

A

arr C (first-arr)

C2
A×C

⇓ first⊗

C2
A×C

⇓ first⊗

C2

⊗

C
A

A

>>>

C
A

C =

C2
A×C

A×C

>>>×C

⊗

C2
A×C

C2

⊗

C
A

⇓ first

C

(first->>>)

Table 1
Equational axioms for Prof -arrow

Proposition 3.3 [1] For a monoidal category C that is small, the notion of arrow

(Def. 3.1) and that of Prof -arrow (Def. 3.2) are equivalent.

Proof While the reader is referred to [1] for a detailed proof, we shall illustrate a

few highlights in the correspondence between the two notions. We shall write arr
′,

>>>′ and first
′ (with primes) for the three operators of a Prof -arrow (Def. 3.2), to

distinguish them from the corresponding operators of an arrow (Def. 3.1).

Let us first observe that a 2-cell first
′ in Prof gives rise to the first operator in

Def. 3.1. The former is an element of the LHS below, where>>> denotes composition

12
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of profunctors (Def. 2.7).

Nat
(

(⊗ ◦ (A× C))(−,+1,+2) , (A ◦ ⊗)(−,+1,+2)
)

∼=
∫

X,K,Y ∈C

[

(⊗ ◦ (A× C))(X,K, Y ) , (A ◦ ⊗)(X,K, Y )
]

by Cor. 2.3

∼=
∫

X,K,Y

[ ∫ J,L
C(X,J ⊗ L) ×A(J,K) × C(L, Y ) ,

∫ U
A(X,U) × C(U,K ⊗ Y )

]

by Def. 2.7, Def. 2.9 and (7)

∼=
∫

X,K,Y,J,L

[

C(X,J ⊗ L) ×A(J,K) × C(L, Y ) ,
∫ U

A(X,U) × C(U,K ⊗ Y )
]

since a hom-functor [−, S] turns a coend into an end

∼=
∫

X,K,Y,J,L

[

C(X,J ⊗ L),
[

A(J,K),
[

C(L, Y ) ,
∫ U

A(X,U) × C(U,K ⊗ Y )
]]]

by Currying

∼=
∫

J,K,L

[

A(J,K), A(J ⊗ L,K ⊗ L)
]

by canceling X,Y by Lem. 2.4 and U by Lem. 2.5

∼= NatJ,KDinatL
(

A(J,K), A(J ⊗ L,K ⊗ L)
)

by Prop. 2.2 and Cor. 2.3.

Therefore a 2-cell first
′ in Prof gives rise to a family of functions A(J,K) → A(J ⊗

L,K ⊗ L) that is natural in J,K and dinatural in L. This is precisely the type of

the first operator in Def. 3.1. The equational axioms of an arrow are indeed satisfied

due to those of a Prof -arrow. We note that the axiom (arr-Centr) is satisfied not

because of any specific axiom of a Prof -arrow, but because of the dinaturality of

first
′ as a 2-cell in Prof .

For the reverse direction where an arrow induces a Prof -arrow, we have to equip

the carrier {A(J,K)}J,K of an arrow with action of morphisms in C, rendering A

into a functor Cop × C → Set. This is done with the help of arrow operators.

Specifically,

A(g, f)(a) := arrf>>>a>>>arrg , that is Y ′

f
Y a X gX′

:= Y ′

arrf
Y a X

arrg X′

.

Each of the arrow operators yield its corresponding Prof -arrow operator; the lat-

ter’s (di)naturality is derived from the arrow axioms. So are the equational axioms

for a Prof -arrow. 2

Prop. 3.3 offers a novel mathematical understanding of the notion of arrow. Its

axiomatization seems to have stronger justifications than the original one (Def. 3.1)

does. It also seems simpler than the treatment of first in Freyd categories which

involves technicalities like premonoidal categories and central morphisms. It is this

simplicity that is exploited in the rest of the paper.

When the base monoidal category C is symmetric—which is our setting in the

sequel—we can obtain another sideline operator second.

Definition 3.4 Let A be an arrow over a small symmetric monoidal category

(SMC) C. We define an extra operator second as the following 2-cell in Prof .

C2 C×A

⊗ ⇓ second

C2

⊗

C
A

C

:=

C2 C×A

〈π2,π1〉

⊗ ∼=
⇐

C2

〈π2,π1〉

⊗∼=
⇐C2 A×C

⊗ ⇓ first

C2

⊗

C
A

C

(8)

13



Asada, Hasuo

Here the profunctor 〈π2, π1〉 is the direct image of the functor 〈π2, π1〉 : C2 → C2,

mapping (X,Y ) to (Y,X) (cf. Notations 2.11).

Notations 3.5 In the above diagrams as well as elsewhere, there appear two differ-

ent classes of iso 2-cells in Prof . One class is due to the unitality/associativity/symmetry

of ⊗ on a monoidal base category C; they are iso 2-cells in Cat embedded in Prof

via direct image (§2.4). Such iso 2-cells shall be filled explicitly with the ∼= sign,

like the two on the RHS in (8).

The other class is due to the properties of the operation × on Prof , typically

Lem. 2.12. Such iso 2-cells will be denoted by empty polygons, like the one on the

RHS in (8).

Some calculations like in the proof of Prop. 3.3 reveal that this new operator

realizes a class of functions A(J,K)
secondJ,K,L

−→ A(L× J,L×K), that is graphically

J a K
secondJ,K,L

7−→

[

L L

J
a
K

]

:=

[

J a K

L L

]

.

Lemma 3.6 Between the first and second operators, the following equality holds.

C3 C×A×C

⊗×C
C×⊗

⇓ second×C
C3

⊗×C
C×⊗

C
2

⊗

∼=
⇐ C

2 A×C

⊗ ⇓ first

C
2

⊗

∼=
⇐ C

2
⊗

C
A

C

=

C3 C×A×C

C×⊗ ⇓C×first

C3

C×⊗

C
2 C×A

⊗ ⇓ second

C
2

⊗

C
A

C

Proof Use the equality (first-α) and the coherence for an SMC C. 2

4 Arrow-Based Components

In this section we develop the scenario in §1.4 in technical terms. First we introduce

an arrow-based coalgebraic modeling of components.

Definition 4.1 (A-component) Let A be an arrow on Set, and J,K ∈ Set. An

(arrow-based) A-component with input-type J , output-type K and computational

structure A is a coalgebra for the functor A(J, ×K) : Set → Set. That is,

J c K as
A(J,X ×K)

X
c .

Here an arrow A is in the sense of Def. 3.1. There the base C of an arrow

need not be small; thus we choose (Set,×, 1) as C. Our modeling specializes to

Barbosa’s (2) when we take as A a monad-based arrow AT (§1.1). Our modeling not

only generalizes Barbosa’s one but also brings conceptual clarity to the subsequent

arguments.

Our goal is to lift the arrow structure of A to the categorical arrow structure of

A-components. Let us make this goal precise.

Definition 4.2 (Categorical arrow) A categorical arrow consists of

14
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• a family {A(J,K)}J,K of carrier categories indexed by J,K ∈ Set;

• (interpretation of) arrow operators arr, >>> and first (cf. Def. 3.1), namely functors

1
arrf
−→ A(J,K) for each function f : J → K in Set,

A(J,K) ×A(K,L)
>>>J,K,L
−→ A(J,L) for each J,K,L ∈ Set,

A(J,K)
firstJ,K,L
−→ A(J × L,K × L) for each J,K,L ∈ Set.

Here the category 1 is the one-object and one-arrow (i.e. terminal) category; and

• the operators are subject to the arrow axioms in Def. 3.1, up-to isomorphisms.

For example, as to the axiom (>>>-Assoc), the following diagram must commute

up-to an isomorphism.

A(J,K) ×A(K,L) ×A(L,M)
>>>J,K,L×id

id×>>>K,L,M ⇓∼=

A(J,L) ×A(L,M)
>>>J,L,M

A(J,K) ×A(K,M)
>>>J,K,M

A(J,M)
(9)

The graphical understanding of a categorical arrow is the same as that of an

arrow; see §1.1. In §1.3 we described why it is natural and necessary to require the

axioms be satisfied only up-to isomorphisms.

Remark 4.3 Satisfaction up-to isomorphisms raises a coherence issue. The precise

coherence condition for categorical arrows is described in [11], in a more general form

of coherence for categorical models of FP-theories. Although we shall not further

discuss the coherence issue, the calculations later in §5 provide us a much better

grip on it than the direct calculations in [11] do.

The notion of categorical arrow in Def. 4.2 could be formalized on any monoidal

category C other than Set, although we do not need such additional generality.

The main contribution of this paper is the following result as well as its proof

presented using the rest of the paper.

Theorem 4.4 (Main contribution) Let A be an arrow on Set. The categories

{Coalg(A(J, ×K) )}J,K of A-components carry a categorical arrow.

On top of it, we can appeal to the formalization [12,11] of the microcosm prin-

ciple [4] to obtain the following compositionality result.

Corollary 4.5 In the setting of Thm. 4.4, assume further that for each J,K ∈ Set

the functor A(J, ×K) has a final coalgebra ζJ,K : ZJ,K
∼=→ A(J,ZJ,K ×K).

(i) The family {ZJ,K}J,K is canonically an arrow.

(ii) Behaviors by coinduction are compositional with respect to arrow operators.

For example, with respect to the operator >>>, this means the following. Given

two A-components c : X → A(J,X × K) and d : Y → A(K,Y × L) with
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matching I/O types, the triangle (∗) below commutes.

A(J, (X × Y ) × L) A(J,ZJ,L × L)

X × Y

c>>>d
behc>>>d

(∗)
behc×behd

ZJ,L

∼= final

ZJ,K × ZK,L

>>>Z

Here c>>>d is “composition of components” using the categorical arrow struc-

ture in Thm. 4.4; >>>Z is “composition of behaviors” derived in (i); and

behc>>>d is the behavior map for the composed components induced by coin-

duction (the square on the top). 2

In [12, 11] it is shown that algebraic structure carried by the categories of

coalgebras—like the one in Thm 4.4—can be obtained by:

• the same structure on the base categories, and

• the lax compatibility of the signature functors with the relevant algebraic struc-

ture.

In this case the algebraic structure on the base categories lifts to the categories of

coalgebras. We shall follow this path. Restricting the general definitions and results

in [12,11] to the current setting, we obtain the following.

Definition 4.6 Let {FJ,K : Set → Set}J,K be a family of endofunctors, indexed

by J,K ∈ Set. It is said to be a lax arrow functor if:

• it is equipped with the following natural transformations

Farrf : 1 −→ FJ,K(1) for each f : J → K in Set;

F>>>J,K,L
: FJ,K(X) × FK,L(Y ) −→ FJ,L(X × Y ) natural in X,Y , for each J,K,L ∈ Set;

FfirstJ,K,L
: FJ,K(X) −→ FJ×L,K×L(X) natural in X, for each J,K,L ∈ Set;

• that are subject to the equations in Table 2, that are parallel to those in Def. 3.1.

The diagrams there are all in Set; obvious subscripts are suppressed.

A lax arrow functor therefore looks like an arrow (think of FJ,K(X) in place of

A(J,K)), but it carries an extra parameter (like X,Y or X × Y ) around.

Proposition 4.7 If {FJ,K}J,K is a lax arrow functor, then {Coalg(FJ,K)}J,K is

canonically a categorical arrow.

Proof This follows from a general result like [11, Thm. 4.6]. Here we shall briefly

illustrate what the categorical arrow {Coalg(FJ,K)}J,K looks like, by describing the

sequential composition operator >>> : Coalg(FJ,K)×Coalg(FK,L) → Coalg(FJ,L).

Using the natural transformation F>>> in Def. 4.6 it is defined as follows.

(

FJ,KX

X

c ,
FK,LY

Y

d

)

>>>
7−→

FJ,L(X × Y )

FJ,KX × FK,LY
F>>>

X × Y
c×d
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FJ,KX × FK,LY × FL,MU

(>>>-Assoc)
id×F>>>

F>>>×id

FJ,KX × FK,M (Y × U)

F>>>FJ,L(X × Y ) × FL,MU

F>>>

FJ,M ((X × Y ) × U)
∼=

FJ,M (X × (Y × U))

1

(arr-Func1)

Farr(g◦f)
〈Farrf ,Farrg〉

FJ,K1 × FK,L1

F>>>

FJ,L(1 × 1)
∼= FJ,L1

FJ,KX

(arr-Func2)
〈id,Farr idK

〉

〈Farr idJ
,id〉

id

FJ,KX × FK,K1

F>>>

FJ,J1 × FJ,KX

F>>>

FJ,K(X × 1)
∼=

FJ,L(1 ×X)
∼= FJ,KX

FJ,KX

(ρ-Nat)

〈Farr π1 ,id〉

Ffirst

FJ×1,J1 × FJ,KX

F>>>

FJ×1,K×1X

〈id,Farr π1 〉

FJ×1,K(1 ×X)

∼=FJ×1,K×1X × FK×1,K1

F>>>

FJ×1,K(X × 1)
∼= FJ×1,KX

FJ,KX

(arr-Centr)

Ffirst

Ffirst

FJ×L′,K×L′X

〈Farr(J×f),id〉

FJ×L,K×LX

〈id,Farr(K×f)〉

FJ×L,J×L′1 × FJ×L′,K×L′X

F>>>

FJ×L,K×LX × FK×L,K×L′1

F>>>

FJ×L,K×L′(1 ×X)
∼=

FJ×L,K×L′(X × 1)
∼= FJ×L,K×L′X

FJ,KX

(α-Nat)

Ffirst

Ffirst

FJ×L,K×LX

Ffirst

FJ×(L×M),K×(L×M)X

〈id,Farr α〉

F(J×L)×M,(K×L)×MX

〈Farr α,id〉
(

FJ×(L×M),K×(L×M)X
×FK×(L×M),(K×L)×M 1

)

F>>>

(

FJ×(L×M),(J×L)×M1
×F(J×L)×M,(K×L)×MX

)

∼=

FJ×(L×M),(K×L)×M (X × 1)
∼=
FJ×(L×M),(K×L)×M (1 ×X)

∼=

FJ×(L×M),(K×L)×MX

1

(arr-Premon)

Farrf

Farr(f×L)

FJ,K1

Ffirst

FJ×L,K×L1

FJ,KX × FK,LY

(first-Func)

Ffirst×Ffirst

F>>>

FJ×M,K×MX × FK×M,L×MY

F>>>

FJ,L(X × Y )
Ffirst

FJ×M,L×M (X × Y )

Table 2
Equational axioms for lax arrow functors

The definitions are similar for the other arrow operators. The arrow axioms are

satisfied due to the corresponding equational condition on the lax arrow functor. 2

This proposition reduces our goal (Thm. 4.4) to showing that the family {A(J, ×

K)}J,K is a lax arrow functor. This is what will be shown in the next section,

through manipulation of 2-cells in Prof .

5 Calculations in Prof

There is one technical issue in front of us: the size issue. The 0-cells of Prof are

small categories; the smallness restriction is necessary for composition of profunctors

to be well-defined (Def. 2.7). However, with Set being not small, the arrow A in

Def. 4.1 cannot be a 1-cell in Prof . The arrow A needs to be based on Set so that

A(J, ×K) is an endofunctor Set → Set.

In this paper we shall get round of the problem by pretending that Set is small.

There are two possible justifications.

• We can resort to the category Ens of classes when it is needed—such as when

we take composition of profunctors via a coend. This means upgrading all the
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sizes that appear in the definition of Prof : its 0-cells are locally small categories;

its 1-cells P : C −p→ D are bifunctors Dop × C → Ens. In this case, in Def. 4.1,

we would restrict the arrow A to be small, in the sense that its image A(J,K)

restricts to Set.

Setop × Set
A

Ens

Set

• We replace Set by some small cocomplete category defined internally in a suitable

topos [14]. In other words, we develop our theory on top of a certain type theory

which is modeled by such a topos.

In any case, we would like to isolate the size issue as much as possible. Therefore

in the sequel we first establish those technical results which hold for any small

symmetric monoidal category (C,⊗, I). These results are proved by manipulating

2-cells in Prof . After that we instantiate (C,⊗, I) by (Set,×, 1)—pretending that

Set is small.

Definition 5.1 Let (C,⊗, I) be a small SMC, and A be an arrow on it. There arise

three 2-cells in Prof—which we denote by FAarr, F
A
>>> and FA

first
—of the following

types.

C
C(I⊗ )

C
A

⇓FA
arr

C

C3 C×⊗

⊗×C
C

2 C×A

⇓FA
>>>

C
2

⊗

C2
⊗ C

A

C
A

C

C3 ⊗×C

C×⊗
C2 A×C

⇓FA
first

C2

⊗

C2
⊗ C A C

Explicitly, these 2-cells are given by the following composites.

C
CI⊗

C
C

⇓ arr

A

⇓∼=

C

C3 C×⊗

⊗×C ⇓∼=
C2 C×A

⊗ ⇓ second

C2

⊗

C
2

⊗ C A

A

⇓>>>

C A C

C
3 ⊗×C

C×⊗ ⇓∼=
C2 A×C

⊗⇓ first

C2

⊗

C2
⊗ C

A
C

Here the 1-cell I ⊗ on the left is the direct image of the functor X 7→ I ⊗ X

(Notations 2.11); recall that I denotes the monoidal unit. Also recall Notations 3.5.

The 2-cells arr, >>>, first, second are due to the arrow structure of A (Def. 3.2, 3.4).

The motivation for this definition is clear from the names of the 2-cells. In-

deed, through some calculations in Prof and application of the Yoneda lemma, one

easily sees that the three 2-cells FAarr, F
A
>>>, F

A
first

are the same thing as (di)natural

transformations

FAarr : C(J,K) −→ A(J, I ⊗K) , natural in J,K;

FA>>>J,K,L
: A(J,X ⊗K) ×A(K,Y ⊗ L) −→ A(J, (X ⊗ Y ) ⊗ L) ,

natural in J,L,X, Y , dinatural in K,

FA
firstJ,K,L

: A(J,X ⊗K) −→ A(J ⊗ L,X ⊗ (K ⊗ L)) ,

natural in J,K,X, dinatural in L,
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C2

(Unit)

〈π1,I,π2〉
C×(I⊗ )

C×CC×C

∼=
⇐ C3

C×⊗

⊗×C

C2
C×A

⇓C×F A
arr

⇓ F A
>>>

C2

⊗

C2
⊗

C

A

C
A

C

= C

A◦⊗

A◦⊗

id C =

C2

〈I,π1,π2〉

⊗C×C

∼=
⇐

C

〈I,C〉

A
C

〈I,C〉

I⊗
C

C3
C×⊗

⊗×C

C2
C×A

⇓ F A
>>>

C2

⊗

C2
⊗

C

A

C
A

⇓ F A
arr

C

C4

(Assoc)

C
2×⊗

⊗×C2

C3
C
2×A

⊗×C

C3
C×⊗

⊗×C

C2
C×A

C2

⊗

C3

⊗×C
C×⊗ C

2
C×A

C2
⊗

⇓ F A
>>>

C

A

⇓ F A
>>>

C
A
C

C2
⊗

C
A

=

C4
C
2×⊗

C×⊗×C⊗×C2
C3
C
2×A

C3

C×⊗

C3

⊗×C

∼=
⇐ C3

C×⊗
⊗×C

C2

C×A

⇓ F A
>>>

⇓C×F A
>>>

C2
C×A

C2

⊗

C2
⊗

C

A

C
A
C

(first-α)

C4
⊗×C2

C×⊗×C

C
2×⊗

⇓ F A
first

×C

C3
A×C2

C3

⊗×C

C3

C×⊗

∼=
⇐ C3

C×⊗
⊗×C

⇓ F A
first

C2
A×C C

2

⊗

C2
⊗

C
A

C

=

C4
⊗×C2

C
2×⊗

C3
A×C2

C×⊗

C3

C×⊗
⊗×C

C3
⊗×C

C×⊗ ⇓ F A
first

C2
A×C C

2

⊗

∼=
⇐ C2

⊗
C2

⊗
C

A
C

C2

(first-ρ)

〈C2,I〉

C
2

⇓∼=
C3

⊗×C

C×⊗ ⇓ F A
first

C2
A×C

C2

⊗

C2
⊗

C
A

C

=
C2

〈C2,I〉

⊗

C3
⊗×C

C2
A×C

C2

⊗

C
A

C

〈C,I〉

C

⇓∼=
C

(first-arr)

C2
〈I,C2〉

(I⊗ )×C

C
2

C3
⊗×C

C×⊗ ⇓ F A
first

C2
A×C

⇓ F A
arr

×C
C2

⊗

C2
⊗

C
A

C

=

C2
〈I,C2〉 ⊗

C3

C×⊗

C
〈I,C〉

I⊗
C

C2
⊗

C
A

⇓ F A
arr

C

C4

(first->>>)

C×⊗×C

⇓C×F A
firstC

2×⊗

C3
C×A×C

C3
⊗×C

⇓ F A
first

C×⊗

C2
A×C

C2

⊗

C3
C×⊗

⊗×C

C2
C×A

C2
⊗

⇓ F A
>>>

C
A

C

C2
⊗

C

A

=

C4
C×⊗×C

⇓ F A
>>>×C⊗×C2

C
2×⊗

C3
C×A×C

C3
⊗×C

C2
A×C

C2

⊗C3

⊗×C

C3
⊗×C

C×⊗

C2
A×C

⇓ F A
first

C2
⊗

C
A

C

Table 3
Equalities that hold for FA

arr, F
A
>>>, F

A
first

respectively. These (di)natural transformations bear clear similarity to the ones in

Def. 4.6 when FJ,K is instantiated with A(J, ⊗K).

Let us now turn to equations.

Lemma 5.2 Let A be an arrow over a small SMC C. The three 2-cells FAarr, F
A
>>>

and FA
first

in Def. 5.1 satisfy the equalities in Table 3; they are parallel to the equalities

in Def. 3.2.

Proof First expand the definitions of FAarr, F
A
>>> and FA

first
, and then use the equa-

tional axioms in Def. 3.2. One also needs Lem. 3.6. 2

The equalities in Table 3 might look complicated. However, coming up with

them is rather routine work looking at Def. 5.1 and Def. 3.2.
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We now instantiate (C,⊗, I) with (Set,×, 1), pretending Set to be small.

Lemma 5.3 Let A be an arrow Setop ×Set → Set. The family {A(J, ×K)}J,K
of endofunctors is a lax arrow functor.

Proof The three 2-cells in Def. 5.1 provide the three natural transformations re-

quired in Def. 4.6. The equations asserted in Def. 4.6 follow from those in Lem. 5.2.

Checking all this is (laborious) routine work. 2

Combining Prop. 4.7 and Lem. 5.3, our main result Thm. 4.4 is proved.

Remark 5.4 A characterization of categorical arrows in the spirit of Prop. 3.3 can

possibly yield a even more direct proof of Thm. 4.4. Unfortunately at now we lack

necessary infrastructure such as a lifting result like Prop. 4.7. We are currently

investigating possible formalization using fibered spans (see e.g. [15]).

In Prof the trace operator for an arrow (loop in [22], see also [8]) can be

formalized in a similar way to other operators like >>>. Its description as well as

possible application to components will presented in another venue.
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