
An Inline Measurement Method for Capacity
of End-to-end Network Path

Cao Le Thanh Man, Go Hasegawa and Masayuki Murata
Graduate School of Information Science and Technology, Osaka University
�mlt-cao, hasegawa, murata�@ist.osaka-u.ac.jp

Abstract
We previously proposed a new version of TCP, called Inline measurement TCP
(ImTCP), in [1]. The ImTCP sender adjusts the transmission intervals of data packets
and then utilizes the arrival intervals of ACK packets for available bandwidth estima-
tion. This type of active measurement is preferred because the obtained results are as
accurate as those of other conventional types of active measurement, even though no
extra probe traffic is injected onto the network. In the present research, we combine
a new capacity measurement function with ImTCP in order to enable simultane-
ous measurement of both capacity and available bandwidth in ImTCP. The capacity
measurement algorithm is a new packet-pair-based measurement technique that uti-
lizes the estimated available bandwidth values for capacity calculation. This new
algorithm promises faster measurement than current packet-pair-based measurement
algorithms for various situations and works well for high-load networks, in which
current algorithms do not work properly. Moreover, the new algorithm provides a
confidence interval for the measurement result.

Keywords
end-to-end measurement, available bandwidth, capacity, inline measurement, packet
pair

1. Introduction

The capacity of an end-to-end network path, which is considered to be the small-
est capacity of network links along a path, is the maximum possible throughput that
the network path can provide. Traffic may reach this maximum throughput when
there is no other traffic along the path. The available bandwidth indicates the unused
bandwidth of a network path, which is the maximum throughput that newly injected
traffic may reach without affecting the existing traffic. The two bandwidth-related
values are obviously important with respect to adaptive control of the network. In
addition, these two values are often both required at the same time. For example,
although network transport protocols should optimize link utilization according to
capacity, congestion should be also avoided through the use of available bandwidth
information. For route selection or server selection in service overlay networks, in-
formation concerning both capacity and available bandwidth offers a better selection
than either capacity or available bandwidth information alone. For example, when

the available bandwidth fluctuates frequently and the transmission time is long, the
capacity information may be a better criterion for the selection. However, when the
available bandwidth appears to be steady during the transmission, the available band-
width should be used for the selection. Moreover, the billing policy of the Internet
service provider is based on both the capacity and the available bandwidth of the
access link that they are providing to the customer.

Several passive and active measurement approaches exist for capacity or avail-
able bandwidth. Although active approaches are preferred because of their accuracy
and measurement speed, sending extra traffic onto the network is a disadvantage
that is common to all active measurement tools. For example, Pathload [2] gener-
ates between ��� and �� MB of probe traffic per measurement. The average per-
measurement probe traffic generated by Spruce [3] is ��� KB. For routing in over-
lay networks, or adaptive control in transport protocols, these measurements may be
repeated continuously and simultaneously from numerous end hosts. In such cases,
the probes will create a large amount of traffic that may degrade the transmission of
other data on the network, as well as the measurement accuracy itself.

We therefore propose an active measurement method that does not add probe
traffic to the network. The proposed method uses the concept of “plugging” the new
measurement mechanism into an active TCP connection (inline measurement). We
previously introduced ImTCP (Inline measurement TCP) [1], a Reno-based TCP that
deploys inline measurement. The ImTCP sender not only observes the ACK packet
arrival intervals in the same manner as TCP Westwood [4], but also actively adjusts
the transmission interval of data packets, in the same way that active measurement
tools use probe packets. When the corresponding ACK packets return, the sender
utilizes the arrival intervals to calculate the measurement values.

The available bandwidth measurement algorithm for ImTCP is described in de-
tail in [5]. For each measurement, the ImTCP sender searches for the available band-
width only within a given search range. The search range is a range of bandwidth that
is expected to include the current available bandwidth and is calculated statistically
from the previous measurement results. By introducing the search range, sending
packets at an extremely high rate can be avoided. This also allows the number of
packets for the measurement to be kept small, so that measurement is still possi-
ble when the TCP window size is relatively small. The search range is divided into
multiple sub-ranges of identical width of bandwidth. For each of the sub-ranges of
the bandwidth, the sender transmits a group of TCP data packets (a packet stream),
the transmission rate of which varies to cover the sub-range. The sender then deter-
mines whether an increasing trend exists in the transmission delay of packets in each
stream when the echoed (ACK) packets arrive at the sender host. Delayed ACKs
is supposed to be disabled at the receiver. The increasing trend indicates that the
transmission rate of the stream is larger than the current available bandwidth of the
network path [2]. This fact allows the sender to infer the location of the available
bandwidth in the search range. The simulation results show that the ImTCP sender
can perform periodic measurements at short intervals, on the order of several RTTs

and the measurements results reflect well the changes in the available bandwidth of
the network.

In the present paper, we introduce an inline measurement algorithm for capacity
for ImTCP. The proposed algorithm utilizes the arrival intervals of the ACK packets
of packet pairs (PPs) that are sent back-to-back. In the existing PP-based capacity
measurement algorithm [6-8], the PPs that are cut into by other packets from cross
traffic at the bottleneck link causes incorrect capacity estimation and are therefore
eliminated from the data used in the calculation. Unlike previous algorithms, the
proposed algorithm in ImTCP can use these PPs for capacity measurement, which
enables ImTCP to collect more information from PPs so that faster and more accurate
measurement can be expected.

The main concept of the proposed capacity measurement algorithm of ImTCP is
that the available bandwidth information, which can be yielded periodically due to
the deployed available bandwidth measurement mechanism, is exploited. The avail-
able bandwidth information is used for estimation of the quantity of the cross traffic
that cuts in PPs at the bottleneck link so that the interval of the PPs becomes usable
for the capacity measurements. The proposed algorithm also uses statistic analysis to
calculate the confidence interval of the delivered results.

Through simulation validations, we show that ImTCP can deliver measurement
results quickly, independent of the characteristics of the network. In addition, we
find that the capacity measurement algorithm works well in extremely high-load net-
works, in which current measurement algorithms do not work well.

The remainder of this paper is organized as follows. In Section 2 we discuss PP-
based measurement techniques used for inline meaurement. In Section 3, we intro-
duce the proposed measurement algorithm for network capacity. In Section 4, we
evaluate its performance through simulation experiments. Finally, in Section 5, we
present concluding remarks and discuss future projects.

2. Packet-pair-based capacity measrement algorithm

Currently there are various approaches for measuring the capacity of an end-to-end
network path [9-13]. Some of these approaches use packets of various size to probe
the network and infer the network capacity from the difference in the transmission
delays of packets of various sizes [9]. Other approaches use the probe packets in
different TTLs (Time To Live) to measure all link bandwidth, rather than just the
capacity of the bottleneck link [10-13]. These approaches can not be used for inline
measurement because changes in TCP data packet size or TLLs for the purpose of
measurement may cause severe deterioration in the data transmission throughput of
TCP. We found that only packet-pair-based measurement can be used for inline mea-
surement because no changes in packet size or TTL are required, whereas packets
that are sent back-to-back can be created with the current ImTCP structure without
requiring any changes.

Case A)

Case B)

Case C)

Gap

Sender Bottleneck link Receiver

Cross traffic

Figure 1: Three cases showing how the spacing between a pair of packets may
change as the pair travels along a path.

2.1 Packet pair technique

The intuitive rationale of capacity measurement using packet pairs is that if two pack-
ets are sent close enough together in time to cause the packets to queue back-to-back
at the bottleneck link, then the packets will arrive at the destination with the same
spacing as when they left the bottleneck link [9]. The spacing is supposed to remain
unchanged until the packet pairs reach the receiver, as shown in Case A of Figure
1, which is a variation of a figure taken from [7]. In this case, the capacity of the
bottleneck link (C) can be calculated by the equation:

� �
�

���
(1)

where � is the size of the packet pairs, and��� is the time spacing of the two packets
when arriving at the receiver.

However, when a packet pair travels along the path, two more situations can oc-
cur. As shown by Case B in Figure 1, the two packets may be cut into by other pack-
ets from cross traffic at the bottleneck link. The result is that, the spacing between
the two packets becomes larger than expected. In this case, Equation (1) leads to an
under-estimation of the capacity. In another case, indicated by Case C in Figure 1, the
packet pairs may pass back-to-back through the bottleneck link, but in a link down-
stream of the bottleneck link, the pairs again get in queue, and the spacing between
the two packets is shortened. In this case, Equation (1) leads to over-estimation.

Current PP-based measurement techniques use only the PPs described in Case
A to calculate capacity. These techniques have various mechanisms for determining
the Case-A PPs from all of the received PPs. Some tools assume a high frequency of
appearance of Case-A PPs and so search for these PPs from a frequency histogram
(Pathrate [6]) or a weighting function (Nettimer [7]). CapProbe [8] repeatedly sends
packet pairs until it discovers a Case-A PP, based on the transmission delay of the
packets.

When the network path is almost empty, Case-A PPs may appear with the highest
frequency. However, when other traffic appears on the network, the bottleneck link
is often congested, and so the probability of a Case-B PP appearing is much higher
than that of a Case-A or Case-C PP. In this case, CapProbe will spend an extremely
long time for capacity searching, and Pathrate and Nettimer will deliver incorrect
estimations.

t2
t1

P1P2

Time

Bottleneck
link

Direction of packet
transmissionCross

traffic

Cross
traffic

Arriving
timing

Average amount = L

Figure 2: Arrival time at the bottleneck link of packet pairs and cross traffic

Unlike those existing techniques, we propose a new technique by which to calcu-
late capacity that can use both Case-A PPs and Case-B PPs. This is possible because
of the available bandwidth information that is available in ImTCP.

2.2 Capacity calculation

Let us consider the timing of the arrival at the bottleneck link of a PP (Figure 2). We
assume that the first packet arrives at �� and the second packet arrives at ��. During
the interval from �� to ��, packets from other traffic may arrive at the bottleneck link.
The second packet (P2) must wait in the queue for the processing of the cross packets.
Therefore, the time spacing (Gap) of the packet pair after leaving the bottleneck link
is the total of the queuing time and the processing time of the second packet. That is:

��� �
� � �

�
(2)

where � is the amount of the cross traffic that arrives at the bottleneck link during
the interval ���� ���. Supposing that the bottleneck link of a network path is the link
having the smallest available bandwidth, we can then calculate the total transmission
rate of the cross traffic at the bottleneck link as: � � 	, where 	 is the current
available bandwidth. Let Æ be the time spacing of the packet pair upon arrival at the
bottleneck link (Æ � �� � ��). Then, the average value of � is:

� � Æ�� �	� (3)

from Equation (2) and (3), we can write:

� �
� � Æ�� � 	�

���
�

or

� �
� � Æ �	

���� Æ
� (4)

Equation (4) enables the calculation of capacity from the PPs for both Case A and
Case B. In the next section, we propose the new capacity calculation algorithm based
on the equation.

TCP layer

Application programs

IP layer

Network interface

Data packets

ACK

packets

Measurement

program buffer
Record the arrival time

Calculate results

TCP protocol processing

FIFO

Figure 3: Placement of measurement program at ImTCP sender

ImTCP sender receiver

Measurement

stream

Packet pair

Normal data packets

Normal data packets

Time

Figure 4: Creation of packet pairs in ImTCP

3. Inline measurement algorithm for capacity

3.1 Implementation of packet pairs in ImTCP

As introduced in our previous study [1], a measurement program is inserted into the
sender program of TCP Reno to create an ImTCP sender. The measurement program
is located at the bottom of the TCP layer, as shown in Figure 3. When a new data
packet is generated at the TCP layer and is ready to be transmitted, the packet is
stored in an intermediate FIFO buffer. The measurement program waits until the
number of packets in the intermediate buffer becomes sufficient and then decides
the time at which to send the packets in the buffer in order to create measurement
streams. When no measurement stream is needed, the program immediately passes

calculation

Final
result

1:1 N:1

All:1

grouping

observation

observation

statistical

analysis

statistical

analysis

PP

PP

PP

PP

PP

PP

PP

PP

Sample

Sample

Sample

Sample

Group

Group

Group

PPs in the same available

bandwith : 1

Figure 5: Proposed algorithm

all of the data packets to the IP layer. In the previous version of ImTCP [1], we
decided that the program forms and sends one measurement stream for the available
bandwidth in each RTT in order to maintain fairness with respect to traditional TCP
Reno.

To the current system, we add the creation and transmission of a PP just after
the transmission of each measurement stream, as depicted in Figure 4. Note that
during the transmission of a measurement stream, some packets may arrive at an
intermediate FIFO buffer, so that there are usually a number of packets available
in the buffer just after the transmission of a stream [1]. Therefore, there is almost
no waiting time required in the creation of a packet pair. Therefore, there is almost
no effect on the performance of ImTCP by introducing the capacity measurement
algorithm.

In ImTCP, �–	 measurement streams are required in order to determine the avail-
able bandwidth. As mentioned above, each PP is formed and transmitted after each
measurement stream. Therefore, �–	 results for PPs can be obtained during the in-
terval of two consecutive measurement results for available bandwidth.

3.2 Proposed measurement algorithm

We next explain the procedure for determining the capacity from the measurement
results of PPs using Figure 5. The procedure involves the following steps:
� Grouping of PPs: PPs that sent when the measured available bandwidth remains

unchanged are placed in the same �����. The average value of arrival interval
of PPs in a group, denoted by ���, is then calculated. To obtain a good average
value, the number of PPs in each group should be enough large i.e. larger than or
equal to �, as determined herein. Therefore, after grouping, a group having only
one or two PPs will be merged with a nearby group.

ImTCP

cross
traffic 1

cross
traffic 2

cross
traffic 3

100 Mbps
bottleneck
link

Sender Receiver

100 Mbps 100 Mpbs 100 Mbps

Figure 6: Simulation topology

� Calculation: Based on the ��� value of a group, a �����	 of capacity is calcu-
lated using the following function.

If
	

�
Æ
� �

� �
�

���
(5)

otherwise,

� �
� � Æ �	

���� Æ
(6)

where � is the threshold showing the relation between the available bandwidh and
the rate of the PPs upon arriving at the bottleneck link, that is defined as �
Æ . We
assume that the links before the bottleneck link do not have a noticeable effect on
the time space, so that Æ is approximated by the time interval in which the sender
sends the packets. When the available bandwidth is approximately equivalent to
the rate of the PPs upon arriving at the bottleneck link, which is considered as
�
��Æ � �, the packets may pass through the link without being cut into by other
packets (Case A). In this case, Equation (5) (based on Equation (1)) is used. On
the other hand, since when the arrival rate of the PPs is much higher than the
available bandwidth, , which is considered as �

��Æ � �, the probability is high
that the PP is a Case-B PP, Equation (6) (based on Equation (4)) is used.

� Statistical analysis:

– We form �
�	������, each of which is the average value of samples.
should be large enough so that each observation has high accuracy. But when
 is too large, the time required to finish an observation is long. This means
that the proposed algorithm can not deliver the measurement results quickly.
In the present paper, based on empirical experiments, we recommend � ��.

– The average value of the observations are calculated as the “final result”. The
90% confidence interval is also calculated to show the degree of fluctuation of
the capacity.

0

20

40

60

80

100

120

140

160

180

1 500 1000 1500

M
b

p
s

Number of PPs

ImTCP’s results
Capacity (80 Mbps)

(a) � � ���

0

20

40

60

80

100

120

140

160

180

1 500 1000 1500

M
b

p
s

Number of PPs

ImTCP’s results
Capacity (80 Mbps)

(b) � � ���

Figure 7: Measurement results for the proposed algorithm when Cross traffic 2 is 5
Mbps. The errors bars show the 90% confidence interval of the correspondent results.
� � ��
 gives more accurate results than � � ���.

4. Simulation experiments

In this Section, we examine the measurement results of the proposed capacity mea-
surement algorithm through ns-2 [14] simulations. We also compare the proposed
algorithm with two existing algorithms, CapProbe [8] and Pathrate[6] in the scope of
inline measurement.

We use the simulation topology shown in Figure 6. The transmission rate of Cross
traffic 1 is fixed to 5 Mbps and that of Cross traffic 3 is fixed to 15 Mbps. The packet
size distribution of cross traffic is set to the statistical results for the Internet traffic
reported in [15]. This mixture has an average packet size of 404.5 bytes and has a
correlation value of 0.999 when compared to realistic Internet traffic. The simulation
time is 80 (s).

4.1 Effect of parameters

� Value of �
We set the bottleneck link capacity to 90 Mbps and the transmission rate of Cross
traffic 2 to 5 Mbps and examine the measurement results when � � ��� (Figure
7(a)) and � = 0.8 (Figure 7(b)). These figures show the changes of the capacity
measurement results as the number of PPs sent for the measurement increases.
The errors bars show the 90% confidence interval of the correspondent results. For
the first some PPs, there is at most 1 “observation” is delivered therefore ImTCP
can not calculate the confidence interval. In this case, the load on the bottleneck
link is low, so the Equation (5) should normally be used. The setting � � ���
does not allow the Equation (5) to be used so frequently and therefore leads to a
bad result, that can be seen in large confidence intervals. We see that in this case
� � ��
 or (lower than ��
) is a better setting.
We next show the case when the capacity is 80 Mbps and the rate of Cross traffic 2

0

20

40

60

80

100

120

140

160

180

1 500 1000 1500

M
b

p
s

Number of PPs

ImTCP’s results
Capacity (80 Mbps)

(a) � � ���

0

20

40

60

80

100

120

140

160

180

1 500 1000 1500

M
b

p
s

Number of PPs

ImTCP’s results
Capacity (80 Mbps)

(b) � � ���

Figure 8: Measurement results for the proposed algorithm when Cross traffic 2 is
20 Mbps. � � ��
 gives more accurate results than � � ���.

is set to 20 Mbps in Figure 8(a) (� � ���) and 8(b) (� � ��
). In this case, the rate
of the cross traffic is high, so Equation (6) should normally be used. Therefore, a
small value of �, such as ���, gives incorrect results for the capacity, and, again,
� � ��
 is a good setting in this case. Thus, � � ��
 is a suitable setting for
the two cases above, and we found that it is a good setting in many other cases.
Therefore, in the following simulations, we used � � ��
.
We can see that the measurement results of ImTCP are sometimes not exactly the
right value (for example results in Figure 7(b)). The reason for this is that, we
suppose that the amount of the traffic that cut in every PPs is the average value of
that (� � Æ���	�), but the amount of traffic that cut in a certain PP is sometimes
too large or too small in comparison with �. In these cases, the Sample calculated
from these outstanding values (using Equation (6)) is far from the right value of
Capacity, this leads to a slight inaccuracy in the final result of ImTCP. However,
for longer connections, because the larger number of PPs is sent, ImTCP’s results
approach nearer to the right value.

� Value of
 is the number of samples to form an observation. We set the bottleneck link
capacity to 80 Mbps and the rate of Cross traffic 2 to 40 Mbps. Figures 9(a), 9(b)
and 9(c) show the measurement results when is set to 1, 10 and 50, respectively.
The large confidence interval in Figure 9(a) indicates that a small value of
(� �) is not suitable. On the other hand, Figure 9(c) indicates that a value of
 (� ��), that is too large, is unsuitable as well, because in this case the time
required for the results to become stable is long. Figure 9(b) shows the results
with the proposed setting (� ��), which can provide fast and good results.

0

20

40

60

80

100

120

140

160

180

1 500 1000 1500 2000

M
b

p
s

Number of PPs

ImTCP’s results
Capacity (80 Mbps)

(a) � � �

0

20

40

60

80

100

120

140

160

180

1 500 1000 1500 2000

M
b

p
s

Number of PPs

ImTCP’s results
Capacity (80 Mbps)

(b) � � ��

0

20

40

60

80

100

120

140

160

180

1 500 1000 1500 2000

M
b

p
s

Number of PPs

ImTCP’s results
Capacity (80 Mbps)

(c) � � ��

Figure 9: Measurement results for the proposed algorithm when changes. =10
is the best setting.

4.2 Comparision with CapProbe

We implement the CapProbe algorithm in TCP in order to compare the performance
with the greatest possible impartiality. The difference from the original CapProbe
algorithm proposed in [8] is that the packet size remains unchanged over the “runs”
in the algorithm, because in TCP connections, changing the data packet size may
have a bad effect on the TCP performance. The restriction on the packet size may be
the reason for the poor performance of CapProbe in the following simulations. This
means that CapProbe is not suitable for inline measurement.
Small capacity, low network load scenario
The capacity is set to 10 Mbps, and the rate of Cross traffic 2 is set to 4 Mbps. Figures
10(a) and 10(b) show the measurement results for the proposed algorithm and Cap-
Probe, respectively. Both of the measurement results are good. Moreover, we can see
that the results obtained by CapProbe have high accuracy, because when CapProbe
successfully finds the PP in Case A, the capacity can be calculated exactly. Another

0

5

10

15

20

0 200 400 600 800 1000 1200

M
b

p
s

Number of PPs

ImTCP's results
capacity (10 Mbps)

(a) ImTCP

0

5

10

15

20

0 200 400 600 800 1000 1200

M
b

p
s

Number of PPs

CapProbe’s results
Capacity (10 Mbps)

(b) Capprobe

Figure 10: Measurement results for the proposed algorithm (ImTCP) and CapProbe
in small capacity, low network load scenario. Both deliver accurate results.

Table 1 Number of PPs required for the first measurement result of the proposed
algorithm and CapProbe. CapProbe requires more PPs to deliver the first result.

Capacity Cross traffic 2 Proposed Algorithm CapProbe

10 (Mbps) 1 (Mbps) 60 (PPs) 87 (PPs)
10 2 60 85
10 4 60 92
10 5 60 159

advantage of CapProbe is that, compared with the proposed algorithm, CapProbe is
simple because it requires no complicated calculations. Howerver, CapProbe only
delivers a measurement result after sending a large number of PPs. Table 1 shows
the number of PPs sent until the proposed algorithm and CapProbe deliver the first
measurement result. Here, the capacity of the bottleneck is kept unchanged while the
Cross traffic 2 is varied from 1 Mbps to 5 Mbps. The table shows that, CapProbe
only delivers a measurement result after 85 PPs or more are sent. The required num-
ber of PP is larger as the network load increases. In contrast, the proposed algorithm
delivers good measurement results faster, after sending 60 PPs.

Large capacity, high network load scenario
The capacity is set to 80 Mbps, and the rate of Cross traffic 2 is set to 60 Mbps. In
a network with such a heavy load, the proposed algorithm can perform well (Figure
11(a)), whereas CapProbe can not deliver accurate results (Figure 11(b)), because, in
this case, most of the PPs are cut into by other traffic so there are very few Case-A
PPs. In Figure 11(b) we also show the measurement results of CapProbe when the
Cross traffic 2 is decreased to 50 Mbps. These measurement results are still far from
the correct value. We believe that CapPobe will perform better if the size of PPs is

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000

M
b

p
s

Number of PPs

ImTCP's results
Capacity (80 Mbps)

(a) ImTCP

0

20

40

60

80

100

120

140

160

180

1000 2000 3000

M
b

p
s

Number of PPs

CapProbe’s results (Cross traffic 2 = 50 Mbps)

CapProbe’s results (Cross traffic 2 = 60 Mbps)

Capacity (80 Mbps)

(b) CapProbe

Figure 11: Measurement results for the proposed algorithm (ImTCP) and CapProbe
in high network load scenario. CapProbe can not deliver accurate results.

adapted appropriately, instead of being unchanged in the simulations, but changing
packet size is not suitable with inline measurement.

4.3 Comparision with Pathrate

In order to accommodate the Pathrate algorithm into TCP, we use the interval of
PPs delivered in ImTCP to form the histogram to be used in Pathrate. Pathrate also
requires the measurement results of packet trains, referred to as the Average Disper-
sion Rate (ADR) in the Pathrate algorithm [6]. However, integrating the packet train
into TCP is difficult because this has an adverse effect on the performance of TCP.
Therefore, we perform the packet train measurement separately from TCP connec-
tion, in the same environment as that in the simulation with the ImTCP connection.
The result of ADR is then used to find the measurement result for Pathrate.

We use the same network topology as that for the above-described simulations.
The capacity is set to 80 Mbps and the transmission rate of Cross traffic 2 is vari-
able. We show the case when the cross traffic contains mainly packets of small size,
by randomly varying the packet sizes of the cross traffic within the range of 400 to
600 KB, because in this environment the difference between the proposed algorithm
and Pathrate appears clearly. In this case, since most PPs are cut into by cross traffic
packets, Pathrate should not work very well. The performance of the proposed pro-
gram in this environment is also examined, and the measurement results are listed in
Table 2.

We explain in detail the respective behaviors of these two algorithms in Figures
12(a) and 12(b). In Figure 12(a), the “Raw data” histogram indicates the measure-
ment results calculated using Equation (1) that are used in Pathrate, and in Figure
12(b), the “Proposed method” histogram shows the “observation” results obtained
using proposed algorithm, when the Cross traffic 2’s rate is 75 Mbps. In this case,
Pathrate fails to deliver good measurement results because in this case number of

1

10

100

0 20 40 60 80 100 120 140

#r
es

ul
ts

Bandwidth (Mbps)

Raw data

(a) Data collected for Pathrate algorithm.

1

10

100

0 20 40 60 80 100 120 140

#o
bs

er
va

tio
ns

Bandwidth (Mbps)

Proposed method

(b) Observation value calculated by the
proposed algorithm

Figure 12: Comparison of the histograms collected by Pathrate and the proposed
algorithm in heavy load network (Cross traffic 2’s rate is 75 Mbps).

Table 2 Measurement results of ImTCP and Pathrate when Cross traffic 2 changes.
The proposed algorithm can deliver accurate results in high-load network, in which
Pathrate does not work well.

Cross traffic 2 ImTCP’s results (90%confidence interval) Pathrate

75 (Mbps) 79.35 (18.26) 49.00
60 80.24 (23.03) 48.00
40 78.32 (26.04) 80.00
10 81.57 (46.98) 80.00

Case-A PPs are fewer than Case-B PPs. This can be seen in some high peaks near 50
Mbps (while the correct value of capacity is 80 Mbps) in Figure 12(a). In contrast,
the proposed algorithm can deliver good results, because the “observation” values
always concentrate at the correct value of capacity, regardless of the network load.

5. Conclusion and future works

In this paper, we have proposed a new capacity measurement technique that is suit-
able for use in TCP connections. In contrast to existing techniques, the proposed
mechanism uses available bandwidth information that is available in ImTCP, which
enables the utilization of packet pairs that can not be used in existing techniques to
calculate the capacity. The simulation results show that, the proposed technique can
deliver measurement results quickly, even for a heavily loaded network, in which
other techniques do not work well. We are currently implementing ImTCP using
the proposed technique on a FreeBSD system. We will also consider a bandwidth
measurement algorithm that can be deployed at the TCP receiver.

References

[1] Cao Le Thanh Man, Go Hasegawa and Masayuki Murata, “Available bandwidth
measurement via TCP connection,” in Proceedings of the 2nd Workshop on
End-to-End Monitoring Techniques and Services E2EMON, Oct. 2004.

[2] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement
methodology, dynamics, and relation with TCP throughput,” in Proceedings
of ACM SIGCOMM 2002, Aug. 2002.

[3] J.Strauss, D.Katabi and F.Kaashoek, “A measurement study of available band-
width estimation tools,” in Proceedings of Internet Measurement Conference
2003.

[4] M.Gerla, B.Ng, M.Sanadidi, M.Valla, R.Wang, “TCP Westwood with adaptive
bandwidth estimation to improve efficiency/friendliness tradeoffs,” To appear
in Computer Communication Journal.

[5] Cao Man, Go Hasegawa and Masayuki Murata, “A new available bandwidth
measurement technique for service overlay networks,” in Proceeding of 6th
IFIP/IEEE International Conference on Management of Multimedia Networks
and Services Conference, MMNS2003, pp. 436–448, Sept. 2003.

[6] C. Dovrolis, P. Ramanathan and D. Moore, “Packet dispersion techniques and
capacity estimation,” IEEE/ACM Transactions on Networking, Dec. 2004.

[7] K. Lai and M. Baker, “Nettimer: A tool for measuring bottleneck link band-
width,” in Proceedings of the USENIX Symposium on Internet Technologies
and Systems, Mar. 2001.

[8] R. Kapoor, L. Chen, L. Lao, M. Gerla and M. Sanadidi, “CapProbe: a simple
and accurate capacity estimation technique,” in Proceedings of the 2004 Con-
ference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, 2004.

[9] K. Lai and M. Baker, “Measurering link bandwidths using a deterministic
model of packet delay,” in Proceedings of ACM Sigcomm, Aug. 2000.

[10] Bruce A. Mah. Pchar, “������������������������
�����������	�
�����,”

[11] V. Jacobson, “Pathchar-A tool to infer characteristics of Internet paths,” �����
�� ������	
����� ��������	�	�	������������������� , 1997.

[12] A. B. Downey, “Using pathchar to estimate internet link characteristics,” in
Proceedings of ACM SIGCOMM, 999.

[13] M. Goutelle and P. Vicat-Blanc, “Study of a non-intrusive method for measur-
ing the end-to-end capacity and useful bandwidth of a path,” in Proceedings of
the 2004 IEEE International Conference on Communications, 2004.

[14] NS Home Page, “�������������	������������,”
[15] “NLANR web site,” available at �������������������	��������
	�.

