Parallel Algorithms for Real-time Colliding Face Detection

Yoshifumi KITAMURAJf, Andrew SMITHT, Haruo TAKEMURAi and Fumio KISHINOT

T ATR Communication Systems Research Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-02, Japan
<kitamura, kishino>@atr-sw.atr.co.jp

I Nara Institute of Science and Technology
8916-5 Takayama-cho, lkoma-shi, Nara 630-01, Japan
takemura@is.aist-nara.ac.jp

Abstract

We propose parallel algorithms for detecting collisions a-
mong 3-D objects in real-time. First, a basic algorithm of
serial version is described. It can detect potential collisions
among multiple objects with arbitrary motion (translation
and rotation) in three-dimensional (3-D) space. The algo-
rithm can be used without modification for both conver and
concave objects represented as polyhedra. This algorithm
is efficient, simple to implement, and does not require any
memory intensive auziliary data structure to be precomput-
ed and updated. Then, two parallel algorithms are proposed
for MIMD multi-processors having a shared-memory; one
uses a static and the other uses a dynamic method for prop-
er load balancing. FEzperimental results demonstrate the
performance of the proposed collision detection methods.

1 Introduction

Collision detection is one of the central problems
in many application fields. For example, in order to
enhance the reality of a virtual environment, it is nec-
essary to avoid inter-penetration among objects, and
to accurately simulate several kinds of physical phe-
nomena. Other applications such as motion monitor-
ing of mobile robots have the same requirement. For
this purpose, we have to detect the “collisions” among
polyhedral objects in the environment. In addition, we
have to determine more precisely the “colliding pair of
faces” and their normal vectors to accurately simulate
the physical phenomena. Unfortunately, however, this
1s clearly an expensive proposition for a typical envi-
ronment, which includes multiple objects with com-
plicated shapes. It is also difficult to detect collisions
accurately in real-time [1,2].

The basic method of collision detection among
polyhedral objects is to perform static intersection
tests at discrete time instants by testing all combina-
tions of faces and edges for the presence of an edge of
one object piercing the face of another object [3]. How-
ever, this requires much computation as the number of
objects with complicated shapes increases. Moreover,
if the time interval between tests is not short enough,

IEEE International Workshop on
Robot and Human Communication
0-7803-2904-x/95 $4.00 © 1995 IEEE

211

collisions within the time intervals may be missed. E-
specially for such applications as object manipulation
in a virtual environment [4] and motion simulation of
a mobile robot, it is essential not to miss the colli-
sions among objects and it is further desirable to de-
tect potential collisions before they occurs. For this
purpose, in addition to the static interference test at
discrete time instants, we have to interpolate objec-
t positions during the time interval and predict fu-
ture object motion. This requires much computation;
therefore, it has been impossible to accurately detect
potential collisions in a typical environment in real-
time. Although there is much literature devoted to
solving these problems, most algorithms have limita-
tions on object shape or environment. No method has
been proposed to accurately detect collisions in a typ-
ical environment in real-time.

On the other hand, parallel computers have recent-
ly become more inexpensive recently, and are attract-
ing wide interest. Even some types of conventional
workstations have dozens of high speed processors and
are provided with useful parallel libraries [5]. How-
ever, no report exists on a colliding face detection
method that uses multiple processors.

This paper proposes parallel algorithms for detect-
ing collisions among 3-D objects in real-time. First,
the basic algorithm that efficiently detects potential
collisions is described. Then, two parallel algorithm-
s are proposed for MIMD multi-processors having a
shared-memory; one uses a static and the other uses
a dynamic method for proper load balancing. Final-
ly, experimental results that demonstrate the perfor-
mance of the proposed methods are given with discus-
sion on the method’s features.

2 Detection of Colliding Faces

Polyhedral shape representation is one of the most
common shape representations. Basic methods for de-
tecting collisions between polyhedral objects are de-
scribed along with some efficient approaches.

2’1 ‘ Basic Methods

The basic method of interference detection among
polyhedral objects is to perform static intersection
tests at discrete time instants by testing all combi-
nations of faces and edges for the presence of an edge
of one object piercing the face of another object [3].
However, some applications require flawless detection
of collisions before they occur. For example, in mo-
tion simulation of a mobile robot in a 2-D or 3-D envi-
ronment, the robot must judge whether it will collide
with obstacles if it maintains the current motion until
the next time instant once again it recognizes its po-
sition. Here, the position and orientation of the robot
at discrete time instants are assumed to be known.
Other applications, such as object manipulation in a
virtual environment [4], have the same requirement.
For this purpose, in addition to the static interfer-
ence test at discrete time instants, we have to inter-
polate the object position between the time instants
and predict future object motion to completely detect
potential collisions. As an example, there are meth-
ods in which the colliding point and time can be de-
rived analytically by using mathematical expressions
to solve the equations that represent trajectories of
vertices and edges. In order to simplify the process of
solving these equations, some restrictions are added
to the motion of vertices and edges. For example, E]
assumed that one of the objects stands still while the
other object moves straight or rotates around an axis,
[6] assumed that the motions of objects are transla-
tions with constant velocities or rotations with con-
stant angular velocities, and [7] assumed that the mo-
tions of objects are represented by cubic functions of
time. An extension of these approaches is a sweeping
approach,which computes the volume swept out by
object motion and tests whether these swept volumes
intersect with other swept volumes [8]. However, the
generation of sweeping volumes and intersection tests
among them require much computation, so it is diffi-
cult to use this approach in an environment involving
complicated shapes or motions.

2.2 Efficient
proaches

Collision Detection Ap-

Much research on collision detection for polyhedra
aims to drastically reduce the number of edge-face
pairs that need to be checked for intersection. A com-
mon first step in many collision detection routines is an
approximate bounding region (usually an axis-aligned
box or a sphere) overlap test to quickly eliminate many
objects as not interfering. An extension of this idea is
to use a hierarchy of bounding regions to quickly local-
ize collision regions [2] and methods that use octrees
or voxel sets [9-15]. However, these methods have lim-
ited usefulness because objects are essentially limited
to being rigid; this is because when an object deforms
its auxiliary data structures must be recomputed, and
this is usually an expensive operation. In addition to
being expensive to recompute, storing auxiliary da-
ta structures for each object can occupy considerable
memory. This limits the number of objects for which
such algorithms can be effectively used.

212

Another method for collision detection involves
keeping track of the distance between each pair of ob-
jects in the world; if the distance between a pair goes
below some small threshold then the pair has collided
L16—18]. However, these algorithms have limitations

ecause they require objects to be rigid and convex.

A fast algorithm using a recursive spatial subdi-
vision technique for typical (i.e. the environment can
contain both convex and concave objects), deformable
polyhedral objects undergoing arbitrary motion is pro-
posed [19]. However, because collision is tested at dis-
crete time instants, if an object moves faster relative
to the time interval, collisions within the time interval
may be missed.

2.3 Real-time Detection of Potential Col-
liding Faces

Suppose position and orientation of each object at
discrete time instants are known and collisions are
tested at the same discrete time instants. We sug-
gest a simple method to detect potential collisions a-
mong objects with continuoes motion without miss-
ing actual collisions: if a volume swept by each face
during a unit time interval interferes with another vol-
ume, then these faces collide. Because this method re-
quires much computation in generating sweeping vol-
umes and testing interference among them, it has been
difficult to detect colliding faces of complicated ob-
jects in real-time. However, as these processes are
repetitions of relatively simple calculations, speedup
can be achieved by using efficient algorithms. In addi-
tion, further speedup of these processes can be easily
achieved by using a data parallel algorithm.

Generally, such systems as a mobile robot recog-
nizes their own position and orientation at some dis-
crete time intervals based on the processing time of
sensor information. Similarly, in other applications of
direct object manipulation in a virtual environment
[4], object position and orientation are usually mea-
sured at discrete time instants. For example, it is pos-
sible to measure them several times per second if an
image processing technique is used, and tens of mea-
surements are available by a magnetic sensor which is
widely used in the latter application as the position
and orientation sensor. In this paper, we assume that
object position and orientation are obtained almost
ten times every second and set up a standard of real-
time performance by detecting collisions safely within
this time interval (100 milliseconds). This standard a-
grees with the cycle time of a perceptual processor for
human perceptual ability [20] and is recognized as an
average time to provide a user with a natural impres-
sion of motion if the user interface incorporates visual
feedback with computer graphics.

3 Algorithm for Colliding Face Detec-
tion
This section describes a basic serial algorithm for

colliding face detection. Parallelization is described in
the next section.

3.1 Assumptions

Every object in the world is modeled as a polyhe-
dron (boundary representation). Objects can be con-
cave or convex. Objects can perform motion that is
not predetermined; object motion can be both trans-
lation and rotation. Objects can be deformed dur-
ing motion. The position and orientation of each
object are given every At at discrete time instants
(---, ti-1, ti, tiz1, --+). If an object deforms, each
vertex point of the object is supposed to be known.
Here we assume that the speeds of moving objects are
sufficiently slow relative to the sampling intervals, i.e.
[ﬁobject.-(ti) '"ﬁobjcct,-(ti——l)l < L/ZI where ﬁOb]'eCtj (t) is
the position vector of objects numbering ¢ at time ¢,
L is the side length of the entire workspace, and [is
the depth of the face octree.

3.2 Approximate Interference Detection
Using Bounding Boxes (stepl)

At each time instant, axis-aligned bounding boxes
are computed for all objects, and all pairs of objects
are compared for overlap of their bounding boxes. For
each pair of objects whose bounding boxes overlap,
the intersection between the two bounding boxes is
determined (called an overlap region) and put into a
list of overlap regions for each of the two objects. The
overlap regions are utilized in the next step.

3.3 Determination of Faces Intersecting
Overlap Regions (step 2)

For every object with a list of overlap regions, all
faces of the object are compared for intersection with
the overlap regions. Once a face of an object is deter-
mined as intersecting with at least one overlap region,
it is placed in a face check list for the object. If there
are face check lists for two or more objects, these pro-
ceed to the next stage.

3.4 Face Octree Spatial Subdivision Stage
(step 3)

A face octree is built to a user-specified resolution
for the remaining faces starting from the world cube
of side length L as its root. To minimize computa-
tion, only as much of the face octree as is necessary
for collision detection is built; in particular, a paren-
t node is subdivided into its eight children only if it
contains faces from two or more objects, and only the
faces found to intersect the parent node are tested for
intersection with the children nodes. Also, there is
no condensation of the face octree (i.e., eight black
child nodes are not erased and replaced by their sin-
gle black parent node). If there are voxels in the face
octree, then in each voxel there are faces from two
or more objects. For each voxel, all possible pairs of
faces, where the faces are from different objects, are
determined and put into a face pair checklist. Howev-
er, a face pair is only included if it was not previously
put there by examination of another voxel. The face
pair checklist then passes to the next stage. Note that
it is not necessary to allocate memory and actually
build a face octree; faces can simply be checked for

213

intersection with the standard cubes of an octree and
checked recursively for lower-level cubes (thus requir-
ing no memory, beyond the small amount used by the
stack during recursion, for storing octrees). Also note
that a face octree is built for only a very small portion
of the aggregate faces; the previous stage eliminates
most faces as not interfering.

3.5 Face Pair Collision Check (step 4)

The faces identified above are checked for collisions.
At any time instant ¢;, the possibility of a collision
between ¢; and t;41 is tested by considering the volume
expected to be swept by each face during the interval
[ti, ti+1] (Figure 1). This is how collisions between
discrete time instants are avoided. To be conservative,
collision is assumed if these volumes intersect, even
though this type of intersection is a necessary, but not
sufficient, condition for the occurrence of collisions.

For each moving face A, the method computes the

convex hulls V¥ of a set of vertex points of A% (i.e.

af, abi, a,..) and A%+ (ie. aptt, af*) ahitt)
(chapter 3 in [21]) expected to be swept by face

during the interval [t;, ¢;41]. For each face B' with
which intersection of A% is to be tested during the
interval [t;, t;41], the convex hulls V}} of a set of vertex

points of B** and B+ are also computed. Here, faces
A and B at time ¢t = t; are specified by A% and B%,
respectively.

Next, the intersection between V' and V' is test-
ed. An intersection is detected by testing whether one
of the following positional relationships of all combi-
nations of faces and edges exists: both endpoints of
an edge lie on the same side of the plane containing
the face (Edge 1), an edge intersects the outside of the
face plane (Edge 2), or an edge intersects the inside of
the face plane %Edge 3). An intersection is detected in
the case of Edge 3.

This identifies all pairs of faces that are expected
to collide in the time interval [¢;, t;41] by testing for
collisions between faces in the face pair checklist. This
method is not efficient when the number of vertices of
each face is large. In this case, a more efficient method

such as the Muller-Preparata method in chapter 7 of
21]) might be useful to test for intersection of convex
plol}ahedra. Figure 1 shows the simplest case (trian-
gles).

4 Parallelization

For the method described in section 3, steps 1 and 2
take such a small percentage of the computation time
that it is best to do them serially (i.e. the paralleliza-
tion overhead will probably be excessive). Thus, this
method’s parallelization is focused on steps 3 and 4.
Especially since step 4 must test every pair of faces in
the face pair checklist, this step requires much compu-
tation. However, as this process involves repetitions of
relatively simple calculations and does not require any
memory intensive auxiliary data structures, speedup
can be easily achieved by using a data parallel algo-
rithm. In this section, we describe two parallelization

Figure 1: Collision detection between moving faces
identified by octree representation as potentially col-
liding.

strategies that prove useful for enhancing the perfor-
mance of the collision detection algorithm.

4.1 Parallelization by wusing a Shared-

Memory

The basic idea in realizing the method described in
section 3 as a data parallel algorithm is to parallelize
step 4. The output of step 3 will be a list of possibly
colliding face pairs. Step 4 is then easily parallelized
by dividing up the possibly colliding face pairs equally
among the available processors; each processor then
runs the same code to determine whether the face
pairs assigned to it collide. In order to execute this
method efficiently, face pairs must be assigned equally
to achieve a flat rate of load distribution, and data
concerning face pairs or results of collision tests must
be communicated between specified processors at high
speed. There are basically two communication meth-
ods. The first using a shared-memory, which is accessi-
ble from all processors equally. In the second method,
each processor has local memory and communicates
with other processors by passing messages on the com-
munication network. In the former case, because data
is read and written through a bus, it is said to take
a longer transfer time between processors. Howev-
er, the computer we use has suitable architecture for
parallelized implementation using the shared-memory
model of interprocessor communication; in this model,
processors communicate by modifying variables that
are accessible by all processors. This system is the
Silicon Graphics Onyx/Reality Engine with 24 150
MHz R4400 RISC processors. The memory architec-
ture of this machine is shared-memory, where each
processor has a 16 Kbyte instruction cache, a 16 K-
byte data cache, and a 1 Mbyte secondary unified in-
struction/data cache; the main (shared) memory has
a 512 Mbyte size, and is 4-way interleaved. Paral-
lelization was effected by using the Sequent compati-
ble parallel programming primitive library [5] on IRIX
5.2. To effect parallelization with library, the m_fork
function is used to create multiple copies of a func-
tion and to start them running on multiple proces-
sors; each processor then identifies itself with its ID

214

using the m_get_myid function and performs unique
computation based on this ID. In addition, the sys-
tem function sysmp [22] was used to schedule the pro-
cesses to always run on the same processor; this was
done to take advantage of cache affinity (i.e. a pro-
cess quickly fills up its cache with needed data—if the
process is rescheduled to a new processor, it has to
refill the cache of the new processor, which requires
time-consuming main memory accesses). In addition
to being faster than rescheduling, this technique also
allowed the programs to run more smoothly (i.e. there
were not wild variations in computation time at each
step of the simulation).

In the following subsections, we assume use of a
MIMD (Multiple Instruction stream/Multiple Data
stream) type architecture with about ten multiple pro-
cessors. We describe two parallelization algorithms
useful for enhancing the performance of the collision
detection algorithm.

4.2 Parallel Algorithm based on Static
Load Distribution

The simplest parallelization method follows the S-
ingle Program, Multiple Data (SPMD) [123] abstrac-
t model of parallel computation in parallelizing only
step 4; in SPMD, the processors all run the exact same
program, but on different data. The method is as fol-
lows. Perform steps 1, 2 and 3 serially (i.e. using just
one processor). The output of step 3 will be a list of
possibly interfering face pairs (i.e. face pairs for which
both faces intersected the same voxel). Step 4 is then
easily parallelized by dividing up the possibly interfer-
ing face pairs equally among the available processors;
each processor then runs the same code to determine
whether the face pairs assigned to it interfere. In oth-
er words, if there are N processors then processor i
will receive face pairs ¢,i4+ N,i4+2N,... . In this case,
because the face pairs are assigned to the processors
staticly, good performance is expected if computation
time on each processor is equal.

4.3 Parallel Algorithm based on Dynamic
Load Distribution

In the first parallel algorithm based on static load
distribution, proper load balancing cannot be achieved
if computation time on each processor is not equal.
Actually, there are face pairs which are determined
as not colliding in an earlier stage of step 4, but all
tests have to be performed when a pair collides. This
is one source of bad load balancing. Therefore, the
second algorithm is a model of parallel computation in
parallelizing steps 3 and 4; this method dynamically
assigns face pairs to the processors. It is based on
the well-known parallel paradigm known as “producer-

‘consumer” [5]. In this paradigm, one processor is the

“producer” that produces the items the “consumers”
grab and consume (i.e. do some computation on).
This second method works as follows. Perform step-
s 1 and 2 serially. Then, have one processor (producer)
determine the possibly interfering face pairs (step 3);
as soon as this processor finds a possibly interfering
face pair, it puts it on a list accessible by all of the

processors. The other processors (consumers) go di-
rectly to step 4, grab the possibly colliding face pairs
from the list (as they are added to the list by the
first processor), and check whether they collide. Af-
ter completing the list of possibly colliding face pairs,
the producer becomes a consumer and helps in the
checking. Here, multiple processors can access the
shared-memory exclusively by using the m_lock sys-
tem function. This method should be faster than the
first static algorithm because it parallelizes both steps
3 and 4 by distributing the load dynamically.

5 Experimental Results

This section is concerned with the performance
of the proposed collision detection algorithms and
presents experimental results from a serial algorithm
using one processor and two parallel algorithms us-
ing multiple processors. For performance evaluation,
sphere-like objects approximated by differing numbers
of triangular patches were used; spheres were select-
ed for testing because of their orientation invariance.
The basic experiment had two identical sphere objects
start at different (non-penetrating) positions, moving
toward each other (with both translation and rota-
tion motion) until they collide. For collision detection
between spheres, constraints such as the distance be-
tween centers against the sum of diameters, or among
other parametric approaches might be useful for e-
liminating candidate faces. However, since such con-
straints are not always suitable for concave or complex
objects, we did not use them.

5.1 Experiment with Serial Algorithm

Detection of collisions between two identical ob-
jects (spheres) represented by several kinds of poly-
hedral shapes, each having a different number of pla-
nar patches, was used for the single-processor serial
algorithm described in section 3. Figure 2 shows for
four of the experimental objects the computation time
required at each processing cycle from t = 1(cycle),
when there is no collision, until ¢ = 72(cycle), when
faces from two sphere objects are found to be col-
liding. In the last cycle, the spheres with 960 faces
required 126 milliseconds to determine that 21 out
of 186 checked pairs were colliding; the spheres with
3968 faces required 434 milliseconds to determine that
121 out of 1160 face pairs were colliding. According-
ly, the percentage of face pairs tested accurately was
only 0.007 (%) and 0.02 ('go) among all possible pairs
for each case, respectively.

5.2 Experiment with Parallel Algorithm

To determine where parallelization should actual-
ly be directed, we measured the computation times
of the four steps of the collision detection algorithm.
The computation time required at the last stage for
the spheres with 3968 faces was broken down into the
time for each step of the algorithm (table 1). Sim-
ilar percentages were obtained for the spheres with
960 faces each, and, in general, for the objects in oth-
er experiments. Thus, it is clear from these numbers

215

450 }
3968 faces

400

350

300

250

computation time (msec)

200

150

960 faces
100

0 20

40 0

6
t (cycle)

Figure 2: Computation time by single-processor serial
algorithm for each processing cycle for two standarized
objects

that steps 3 and 4 dominate the total computation
and should be the main focus of parallelization.

Table 1: Computation time for each processing step

Processing step | computation time (%)
step 1 0.5
step 2 2.4
step 3 13.2
step 4 83.9

5.2.1 Experiment with Parallel Algorithm
based on Static Load Distribution

The implementation of the first parallel method was
done by having the serial stage ?i.e. steps 1, 2, and
3) write the possibly colliding face pairs to an array
accessible by all of the processors. Then, in the paral-
lel stage, the face pairs are distributed evenly among
the processors, and each processor checks for collision
of its face pairs. This implementation provided fair-
ly good speedups, and the computation time (at the
last cycle, when faces were found to be colliding) ver-
sus the number of processors can be seen in figures
3 and 4 respectively (graphs identified by “static” in
both figures). For the spheres with 3968 faces, 430
milliseconds are required to detect colliding faces by
one processor; however, performance increases as the
number of processors increase, so that 120 milliseconds

are required when 12 processors are used. Here, per-
formance does not increase significantly beyond useof
about nine processors.

&
=)

400

350

300

(oesw) swy uopeindwod

250

200

150

static
Ideal
dynamic

100

50

6 8 10 12

number of processors

Figure 3: Computation time by parallel algorithm in
the last cycle of collision detection for two standarized
objects (3968 faces) against the number of processors

5.2.2 Experiment with Parallel Algorithm
based on Dynamic Load Distribution

As expected, the implementation of the second parallel
method gave better results. In this implementation,
after completing steps 1 and 2 serially, one processor
finds the possibly interfering face pairs (step 3) and
writes them to an array accessible by all of the pro-
cessors. The other processors go directly to step 4 and
wait for this array to fill up. These other processors
grab face pairs as they are added by the first proces-
sor and check them for interference (thus, the distri-
bution of face pairs to processors is dynamic). The
first processor, after creating the list of possibly inter-
secting face pairs, then goes on to step 4 and helps the
other processors finish checking for intersection of the
face pairs. This implementation provided very good
speedups and the computation time (in the last cy-
cle, when faces were found to be colliding) versus the
number of processors can be seen in figures 3 and 4,
respectively (graphs identified by “dynamic” in both
figures). 80 milliseconds were required to detect col-
liding faces for the spheres with 3968 faces when us-
ing 11 processors. On the other hand, 27 milliseconds
were needed for the spheres with 960 faces when us-
ing eight processors. However, performance does not
increase significantly when more than about nine pro-
cessors are used (in fact, it decreases).

216

-t
N
(=]

-t
o
o

(oasw) awy uopendwod

static

Ideal
20

6 8 10 12

number of processors

Figure 4: Computation time by parallel algorithm in
the last cycle of collision detection for two standarized
objects (960 faces) against the number of processors

6 Discussion
6.1

Both static and dynamic load distribution algo-
rithms transfer data from one processor to aother
through shared-memory. Here, when more and more
processors are used, they all compete for access to the
shared bus (which only one processor can access at a
time), and this creates considerable overhead. Sup-
pose a face pair checklist has P face pairs after step 3
(described in 3.4) and p pairs among P are colliding.
With the static load distribution algorithm, processors
access the shared-memory a total of P +p times in the
parallel stage because the face pair checklist is already
complete. On the other hand, shared-memory is ac-
cessed 2P +p times with the dynamic load distribution
algorithm under the same conditions. Therefore, the
exclusion procedure requires more computation in the
dynamic load distribution algorithm because the num-
ber of times that processors access the shared-memory
increases. Actually, in the last stage of collision detec-
tion, which requires maximum computation, 121 face
pairs out of 1160 were colliding according to the exper-
iment described in the previous section. In this case,
processors accessed the shared-memory 2441 and 1281
times for the dynamic and static load distribution al-
gorithms respectively.

Time required for each communication might be
a problem. In the proposed parallel algorithm using
communication through the shared memory, data is
transferred to/from the shared-memory through the
bus. Therefore, the time required for the communica-
tion is considered the rate-determining step. Commu-

Discussion on Communication

dynamic

nications in the proposed parallel algorithm consist of
data transfer (such as face pairs) and system functions
(such as process of execution). Because the computer
used in this experiment has high speed RISC proces-
sors, data processing was faster than transfer speed.
There seems to be a limit to the performance that can
be achieved through parallelizm. In our experiments,
we noticed that for all of the data sets in figures 3 and
4 this limit was about eight to ten processors. This
is not due to the algorithm, but is a general problem
i 2 parallel architectures

6.2 Discussion on Effeciency of Paral-
lelization

Both parallel algorithms described in section 4 have
the abstract model of parallel computation in paral-
lelizing step 4. In this subsection, expected efficien-
cy of parallelization is discussed for the static load
distribution algorithm under ideal conditions without
overhead of communication between processors. For
the experimental result with the serial algorithm de-
scribed in 5.1, the percentage required for each step is
shown in table 1. Suppose we have N processors and
step 4 (subsection 3.5) is parallelized by the static load
distribution method described in 4.2. In this case, the
computation time required for step 4 becomes 1/N,
while computation times for the other steps (step 1
to 3) do not change because overhead of communica-
tion is neglected here. Therefore, the expected total
computation time Ty is given by

Ty =ttt
N =t +l2+1i3+ N
where t; is the computation time of step 7 on a single
processor. In figures 3 and 4, the expected computa-
tion time Tns for the spheres with 960 and 3968 faces
are shown against the number of processors N (identi-
fied by “ideal”). These graphs are considered to show
the theoretical performance limit that can be expected
if the static load distribution algorithm is used. Ac-
tually, overhead of communication is included in the
measured computation time, and this overhead is con-
sidered to become greater as the number of processors
increase. Figures 3 and 4 closely match the results of
these theoretical expectations.

7 Summary and Conclusions

We proposed parallel algorithms for detecting colli-
sions among 3-D objects in real-time. First, the basic
algorithm that efficiently detects potential collision-
s in a typical environment was described. Then two
parallel algorithms were proposed for MIMD multi-
processors having a shared-memory; one used a stat-
ic and the other used a dynamic method for proper
load balancing. Experimental results showed that 80
milliseconds are required to detect colliding faces a-
mong two identical standerized objects having 3968
faces. Through investigation of the performance of
the proposed parallel algorithms, we found a limit to
performance that can be achieved through parallelism.
This limit is due to communication between processors

217

through the shared-memory being a rate-determining
step. Future work will involve parallelization by com-
munication using message passing and implementation
on other architectures having local distributed memo-
ries.

References

[1] Pentland, Alex P. Computational complexity ver-
sus simulated environments. Computer Graphics,
Vol. 24, No. 2, pp. 185-192, 1990.

[2] Hahn, James K. Realistic animation of rigid bod-

ies. Computer Graphics, Vol. 22, No. 4, pp. 299-

308, 1988.

Boyse, John W. Interference detection among
solids and surfaces. Communications of the ACM,
Vol. 22, No. 1, pp. 3-9, 1979.

Chanezon, A., Takemura, H., Kitamura, Y., and
Kishino, F. A study of an operator assistant for
virtual space. In Virtual Reality Annual Interna-
tional Symposium, pp. 492-498. IEEE, 1993.

Barr E. Bauer, editor. Practical Parallel Pro-
graming. Academic Press, Inc., 1992.

Canny, John. Collision detection for moving poly-
hedra. I[EEE Transactions on PAMI, Vol. 8,
No. 2, pp. 200-209, 1986.

Kawabe, S., Okano, A., and Shimada, K. Col-
lision detection among moving objects in simu-
lation. Robotics Research, Vol. 4, pp. 489-496,
1988.

Cameron, Stephen. Collision detection by four-
dimensional intersection testing. IJEEE Transac-
tions on Robotics and Automation, Vol. 6, No. 3,
pp. 291-302, 1990.

Moore, M. and Wilhelms, J. Collision detection
and response for computer animation. Computer
Graphics, Vol. 22, No. 4, pp. 289-298, 1988.

Turk, Greg. Interactive collision detection for
molecular graphics. M.sc. thesis, Department of
Computer Science, University of North Carolina
at Chapel Hill, 1989.

Zyda, M. J., Pratt, D. R., Osborne, W. D., and
Monahan, J. G. NPSNET: Real-time collision
detection and response. The Journal of Visual-
1zation and Computer Animation, Vol. 4, No. 1,
pp. 13-24, 1993.

Shaffer, C. A. and Herb, G. M. A real-time robot
arm collision avoidance system. IEEE Transac-

tions on Robotics and Automation, Vol. 8, No. 2,
pp: 149-160, 1992.

Hayward, V. Fast collision detection scheme
by recursive decomposition of a manipulator
workspace. In International Conference on
Robotics and Automation, pp. 1044-1049. IEEE,
1986.

[10]

[11]

(12]

(13]

(18]

[14]

Kitamura, Y., Takemura, H., and Kishino, F.
Coarse-to-fine collision detection for real-time
applications in virtual workspace. In Interna-
tional Conference on Artificial Reality and Tele-
FEzistence, pp. 147157, July 1994.

Garcia-Alonso, A., Serrano, N., and Flaquer, J.
Solving the collision detection problem. Comput-
er Graphics and Applications, Vol. 14, No. 3, pp.
36-43, May 1994.

Lin, M. C., Manocha, D.,; and Canny J. F'. Fast
contact determination in dynamic environments.

In International Conference on Robotics and Au-
tomation, pp. 602-608. IEEE, 1994.

Gilbert, G., Johnson, W., and Keerth, S. A
fast procedure for computing the distance be-
tween complex objects in three-dimensional s-
pace. IEEE Journal of Robotics and Automation,
Vol. 4, No. 2, pp. 193-203, 1988.

Quinlan, Sean. Efficient distance computation be-
tween non-convex objects. In International Con-
ference on Robotics and Automation, pp. 3324-
3329. IEEE, 1994.

Smith, A., Kitamura, Y., Takemura, H., and K-
ishino, F. A simple and efficient method for accu-
rate collision detection among deformable polyhe-
dral objects in arbitrary motion. In Virtual Reali-
ty Annual International Symposium, pp. 136—145.
IEEE, March 1995.

Card, S. K., Moran, T. P., and Newell, A.
The Psychology of Human-Computer Interac-
tion. Hillsdale, NJ: Lawrence Erlbaum Asso-
ciates, 1983.

Preparata, F. P. and Shamos, M. I. Computation-
al geometry, an introduction. Springer-Verlag,
1988.

Silicon Graphics, Inc., Mountain View, CA USA.
Silicon Graphics Online Documentation, 1994.

Alan H. Karp. Programming for parallelism.
IEEE Computer, pp. 43-57, May 1987.

218

