研究スタッフ

准教授: 角田 齊藤 教 授: 匡清 伯、 教: 小川 智之、技術職員:小野寺 政信 助 研究員: 飛世 正博、日向 慎太朗



本研究室では、スパッタ法を中心としたドライプロ セスならびに化学合成を中心としたウェットプロセス を駆使することによって、超高密度磁気記録媒体、高 性能・高感度を有するMRAM・SVヘッドおよび高周 波デバイスを実現し得る、新たな材料設計・プロセス 技術の確立を目指している。

# 主な研究テーマ

Composition modulated atomic layer stacking for high-K<sub>11</sub> material  $Co_{80}Pt_{20}$  ( $T_{sub}$  = const. 300 °C,  $P_{Ar}$  = 2.0 Pa) HAADF-STEM images HAADF-STEM Incident electron ray iameter: Co<sub>80</sub>Pt<sub>20</sub> Sample

## HDD beyond 1 Tb/inch<sup>D</sup>



Media structure for perpendicular recording

In-line UHV sputtering machine





Ru

Composition modulated atomic layer stacking (Pt poor/rich) are formed.





Image: Atom position

+ compositional contrast

Scattered ray

 $H_2O < 1 \text{ ppb}$ Oil-free pump Base P: 1 × 10<sup>-8</sup> Pa

Fcc stacking as faults in macroscopic of hcp phase accompanies with irregularities for the periodicity of the compositional modulation



Dot diameter (nm)

#### **Ordered-arrangement structure by a self-assemble phenomenon**

### 齊藤・角田研究室

#### http://www.ecei.tohoku.ac.jp/electronic\_physics/

Spin nano technology for high performance magnetoresistive random access memory Ta 3 nm Ru 0.9 nm Co<sub>65</sub>Fe<sub>35</sub> 4 nm **Co<sub>100-x</sub>Fe<sub>x</sub>** 0.5 nm BCC **FCC**  $L1_2$ -Mn<sub>3</sub>Ir 10 nm MRAM Spin-RAM 2-11/13/ Ru 10 nm Ta 5 nm  $J_{\rm k}~({\rm erg/cm}^2)$ <del>0</del>.8 Si/SiO2  $\gamma$ -Mn<sub>77</sub>Ir<sub>23</sub> 0.6 current Ta 1 nm Ru 1 nm Co<sub>50</sub>Fe<sub>50</sub> 3.5 nm A ANA **Co<sub>100-x</sub>Fe<sub>x</sub>** 0.5 nm Électric ( Pin -FM γ-Mn<sub>77</sub>Ir<sub>23</sub> 10 nm AFM Ru 5 nm Ta 4 nm 20 40 60 80 10 Si/SiO2 Fe content in Co-Fe layer (at.%) Enhanced exchange bias property with ultra-thin insertion layer  $T_{a} = 360^{\circ} C$ psi target Newly developed process 360°C Post annealed **As-deposited.** cess Та (C)(a)



Single phase NPs formation with gram scale !!

#### Challenge to GHz-band magnetic response

















#### http://www.ecei.tohoku.ac.jp/electronic\_physics/

 $\sim\sim\sim\sim\sim$