研究スタッフ

教授: 上原洋一、 准教授: 片野 諭

研究目的

本研究室では、ナノメートル領域で起こる物理、 化学現象の研究とナノフォトエレクトロニック・ デバイスへの応用を目的とした研究活動を展開し ている。走査トンネル顕微鏡(scanning tunneling microscopy, STM)の探針から放出される電子 ビームを利用したナノ構造の光電子物性の解明、 新奇なナノスケール計測法の開発を通して、次世 代デバイスへの応用展開を進めている。

主な研究テーマ

1. ナノ構造の物性・機能探索、分子エレクトロニクス

近い将来、現在の Si 技術が到達するであろうダウン サイジングの限界を突破するために、次世代の分子を ベースとした電子デバイスの加工と動作の原理に関す る研究を行っている。STM の電子トンネルを用いる ことにより、固体表面の個々の原子や分子の位置を変 えたり、それらに化学反応を誘起することが可能で ある。このような単一原子・分子の光電子特性をSTM を用いて明らかにする研究を進めている。

上原・片野 研究室

STM発光分光法。STM探針からよく収束された トンネル電子ビームを探針直下のナノ構造に照 射し、励起される発光を分光、解析することに

別し、励起される充元を分元、解析すること より、探針直下のナノ構造の物性を決定する。

www.nanophoto.riec.tohoku.ac.jp

2. 高い時間と空間の分解能を併せ持つナノ構造解析手法の開発

STMは原子レベルの空間分解能を有し、優れたエネルギー分析能力と相まって、広範囲な研究分野 で革新的な成果をもたらした。しかし、微弱なトンネル電流検出に基づくため、動作原理上、時間 分解能は大きな制約を受ける。ピコ秒かそれより 優れた時間分解能を有するSTMは現在でも活発に 研究開発がなされている。我々はポンプ-プロー ブSTM発光分光法を提案し、従来の高い空間分解 能とエネルギー分解能に加え、ピコ秒の時間分解 能を有するナノ構造解析手法の開発に成功した。

ポンプープローブSTM発光分光法

Sb₂Te₃のポンプ-プローブSTM発光分光

2. ナノ構造の物性・機能探索、分子ナノエレクトロニクス

3. 高い時間分解能を併せ持つナノ構造解析手法の開発

上原・片野 研究室

www.nanophoto.riec.tohoku.ac.jp