研究スタッフ

講師: 加藤 教授: 金子 俊郎、 俊顕

電子、イオン、ラジカルから成るプラズ マをナノスケール領域で利用すると、フ

ラーレン・カーボンナノチューブ・グラ フェン等の新しいナノカーボン物質を生み 出すことができ、量子コンピュータ素子、 太陽電池、極小トランジスタ等への先端的 応用が期待できます。一方で、プラズマを 生体細胞や植物に照射し、遺伝子導入や植 物工場等へ応用する研究も注目を集めてい ます。本研究室では、未知の領域・未来科 学技術開拓の担い手であるプラズマの基礎 的挙動と物性を解明することにより、新し い工学的応用を切り拓くことを目的とした 研究を行っています。

1. プラズマ医療・農業応用

医療・農業分野における新規 応用技術の開発を目的として、 独自のプラズマ生成制御技術を 積極的に活用した革新的応用技 術の開発に関する研究を行って います。

具体的には、プラズマを利用 した高効率低侵襲遺伝子導入技 術の開発、及び無農薬安全安心 農業技術の開発等に関して研究 を行っています。

プラズマ高効率低侵襲遺伝子導入 ガス 電極

電源

細胞&遺伝子

プラズマ

http://www.plasma.ecei.tohoku.ac.jp/

2.プラズマ応用新物質・ナノエ学

フラーレン、カーボンナノ チューブ、グラフェン等のナノ カーボン物質に対して、プラズ マを利用した構造制御合成と機 能化、及びデバイス開発に関す る研究を行っています。

具体的には、グラフェンシートの螺旋度 (カイラリティ)を

制御したカーボンナノチューブ の合成、原子・分子を内包した フラーレン、カーボンナノ チューブの創製とデバイス応用、 グラフェンの選択的エッジ修飾、 グラフェンナノリボンの高度集 積化合成等を行っています。

3.プラズマの基礎物理

核融合プラズマ異常輸送現象 の解明を目的として、その原因 の一つと考えられている電子温 度勾配不安定揺動(モード)の 励起および抑制機構を明らかに する基礎実験を行っています。

また、プラズマ(気相)と液 体(液相)を接触させた際に形 成される、気相一液相界面反応 場における物理化学現象解明に 関する研究も行っています。本 手法により、ウェットプロセス とドライプロセス融合の新たな プラズマ応用の実現が期待でき ます。

www.plasma.ecei.tohoku.ac.jp