oot ouoogdod

oo h

(20130 0-201800)

Activity Report of Research Laboratory
for External Review

April 2013 - March 2019
(FY.2013-2018)

Research Institute of Electrical Communication

Tohoku University

HEERERERERERERERERERE
Software Construction

April 2013 — March 2019 (FY. 2013 — 2018)

A.0000 / Research Laboratory

goooobogoog

Software Construction

B. 00O / Faculty and Research Staff (as of May 1, 2019)

00 / Professor

oo oo o
Name Atsushi Ohori
ood Oooooooooooo
Research Field Software Construction
000 / Associate Professor
oo oo od
Name Katsuhiro Ueno
ood goooooooooooooa
Research Field Reliable Software Development

00 / Assistant Professor

00 / Name ‘ 00 00O / Kentaro Kikuchi

C.0000 / Research Purpose

gobbooobbooobobbooboobbooobbooobobooooobooobboo
gobogdobooobbooboooboobooobooboooboobboobooboon
gobodobobobooobuoobbooboobbooboobbooboboobobuooboon
gobuodboggboobobuodbobooobobbooboobobubboooobbuooboon
obooboboboboboobooboobooobooboobooboooooooboon

The general goal of our research is to establish firm theoretical basis and implementation
method for flexible, efficient and reliable programming languages and environments for advanced
applications. Our main focus is on typed higher-order functional languages, ranging from their
type theoretical foundation, compilation method, and efficient implementation on multicore
processors. In addition to those basic researches, we are also developing a new practical ML-
style programming language, SML#, that embodies some of our research results such as record

polymorphism, and high-degree of interoperability with existing languages and databases.

D.0000000O / Research Topics

O00oooooo SMLAO OO
goboooobooobagn
gogbogbbuobbooboooboobbuooboo
gobooooboobooooboo
goboo0oboooboobbooboo

AN e A

Development of SML#, a new language in the ML family
Concurrent garbage collection method for functional languages
Massively parallel lightweight thread support for multicore processors

Static program analysis for compiler optimization

ol W=

Static typing for external data access

E.0D00D0O0O00 / The Number of Research Papers

2013 | 2014 | 2015 | 2016 | 2017 | 2018
(1) 0O0O0ODDO0OO0O0
0 1 2 2 0 2
Refereed journal papers
(2) 0O0O0O0OOOOOOODOODOOOOOOO
Full papers in refereed conference 1 1 2 2 0 1
proceedings equivalent to journal papers
(3) 0O0O0DO00O000
) 1 6 2 4 3 0
papers in refereed conference
(4 0O00O0OO0O0OOOO0ODO0ODOOO
) 0 0 0 0 0 0
papers in refereed conference
(5) DOOOD
)) 0 1 0 0 0 0
Review articles
(6) 0O0O0D0DOO0
. . . 3 0 0 0 0 3
Refereed proceedings in domestic conference
gooooooooooo
(7) 3 2 3 7 2 2
Proceedings in domestic conference
8 oo
(®) 0 0 0 0 0 0
Books
0o
(9) 0 0 0 0 0 0
Patents
1 agooag
(10) 1 0 1 0 0 0

Invited talks

F.OOOODOOOODOO/ Signification Research Achievements (FY.2013-2018)

See Ref. 1. * #” mark indicates research carried out at a former organization.

2013-2018 000000000000 O00O0O0O00O00O00O02013-201500000002016-20180000000000000002-300
pooooooobooooooboooOoOoO0oOooboboOo0oOoooboboO0o0oO0ooboOoO0O0O0ObOOoO0O0O00ObOO0O000 30000
00000000 /Abstract 0000000000000 0OO0DOOOOODOOOODOOOO 10000000000000D0O0O0DOODOOO
gooooooobooooooooooooboobooooooooOOobObOOOoOoOoOooOObObOOOODOoOoOoOoOOObOOOOoOOOoODOObODD
pooooooooooooboOooobooOoOoOoooboOoOoooboOoOoO0bOoOOoO0obOoOOO0bOOOO0OODObOObOOOO0DbOOOOOOOOOOOBO
go0ooooooOoOoOoO0oO0oO0o0ooooooOoOObOOO0OoOoOoooooObOoD

[2013-2015]

1. The development of SML# language

SML# is a new generation of Standard ML we have been developing since 2003. The original
goal we had set is to provide moderate but practically important features including: record poly-
morphism and rank-1 polymorphism, seamless interoperability with C, seamless integration of
SQL, and separate compilation and linking, which are not well supported in conventional imple-
mentation of ML. Properly supporting some of them is indeed inherently difficult in conventional
compilation methods for ML. At the end of previous evaluation period of 2007 — 2012, we had
successfully realized all the functionalities we had originally planned, and had released the ver-
sion 1.0 compiler. We have continued the research and development, and have significantly
enhanced its functionalities, stability and efficiency. The important features achieved in the
current evaluation period of 2013 — 2018 include the following.

e the LLVM based native code generator ([1-18]),

e a fully concurrent GC ([1-13]),

e runtime support for massively parallel lightweight native (system C library) threads on

multicore professors ([1-30]),

e optimized type-directed compilation based on finitary polymorphism ([1-14]),

o type-safe external interface for JSON and other persistent data ([1-12]).
This long-standing effort has been well recognized in Japan. Ohori and Ueno have been given
several invited talks, including the keynote speech of Ohori at the 30th annual meeting of JSSST
(Japan Society for Software Science and Technology) in 2013 ([1-57]). Ohori’s proposals for
developing software production infrastructure based on SML# have been accepted to Science
Council of Japan’s Recommendation of the 22nd and 23rd “Japanese Master Plan of Large
Research Projects” (Master Plan 2014 and Master Plan 2017) ([8-1, 8-2]). Our development of
SML# has also been well recognized in the international research community and the “SML#"
have become listed as one of key words of ACM ICFP conference, the leading conference on
functional programming.

2. SML# in Industry

The original motivation of SML# includes making the ML language as a robust software de-
velopment tool in industry. To contribute to software development in industry, we have done
various efforts to inseminate SML#, including open lectures for software engineers in industry
and consultation and industry-academia joint projects of software developments ([3-1, 3-2]). A

success of one of these efforts have been reported in ACM ICFP 2014 conference, as show below.

Article [1-9]: Atsushi Ohori, Katsuhiro Ueno, Kazunori Hoshi, Shinji Nozaki, Takashi Sato,
Tasuku Makabe, Yuki Ito. SML# in Industry: A Practical ERP System Development.
Abstract: This paper reports on our industry-academia project of using a functional language

in business software production. The general motivation behind the project is our ultimate

goal of adopting an ML-style higher-order typed functional language in a wide range of ordi-
nary software development in industry. To probe the feasibility and identifies various practical
problems and needs, we have conducted an 15 month pilot project for developing an enterprise
resource planning (ERP) system in SML#. The project has successfully completed as we have
planned, demonstrating the feasibility of SML#. In particular, seamless integration of SQL
and direct C language interface are shown to be useful in reliable and efficient development of a
data intensive business application. During the program development, we have found a number
of possible extensions of an ML-style language with records. This paper reports on the project

details and the lessons learned from the project.

2016-2018]
We list the papers with their abstracts that represent our major results of our basic research on

functional languages and compilers achieved in this period.

1. High-level and type-safe interface to external data
Article [1-12]: Atsushi Ohori, Katsuhiro Ueno, Tomohiro Sasaki, Daisuke Kikuchi. A Calculus
with Partially Dynamic Records for Typeful Manipulation of JSON Objectsd (ECOOP 2016))
Abstract: This paper investigates language constructs for high-level and type-safe manipula-
tion of JSON objects in a typed functional language. A major obstacle in representing JSON
in a static type system is their heterogeneous nature: in most practical JSON APIs, a JSON
array is a heterogeneous list consisting of, for example, objects having common fields and pos-
sibly some optional fields. This paper presents a typed calculus that reconciles static typing
constraints and heterogeneous JSON arrays based on the idea of partially dynamic records origi-
nally proposed and sketched by Buneman and Ohori for complex database object manipulation.
Partially dynamic records are dynamically typed records, but some parts of their structures are
statically known. This feature enables us to represent JSON objects as typed data structures.
The proposed calculus smoothly extends with ML-style pattern matching and record polymor-
phism. These results yield a typed functional language where the programmer can directly
import JSON data as terms having static types, and can manipulate them with the full benefits
of static polymorphic type-checking. The proposed calculus has been embodied in SML#, an
extension of Standard ML with record polymorphism and other practically useful features. This
paper also reports on the details of the implementation and demonstrates its feasibility through
examples using actual Web APIs. The SML# version 3.1.0 compiler includes JSON support
presented in this paper, and is available from Tohoku University as open-source software under

a BSD-style license.

2. Fully Concurrent GC for Functional Languages

Article [1-13]: Katsuhiro Ueno, Atsushi Ohori. A fully concurrent garbage collector for
functional programs on multicore processors. (ICFP 2016)

Abstract: This paper presents a concurrent garbage collection method for functional pro-
grams running on a multicore processor. It is a concurrent extension of our bitmap-marking
non-moving collector with the Yuasa’s snapshot-at-the-beginning strategy. Our collector is un-
obtrusive in the sense of the Doligez-Leroy-Gonthier collector; the collector does not stop any
mutator thread nor does it force them to synchronize globally. The only critical sections be-
tween a mutator and the collector are the code to enqueue/dequeue a 32 kB allocation segment

to/from a global segment list and the write barrier code to push an object pointer onto the col-

lector’s stack. Most of these data structures can be implemented in the standard lock-free data
structures. This achieves both efficient allocation and unobtrusive collection in a multicore sys-
tem. The proposed method has been implemented in SML#, a full-scale Standard ML compiler
supporting multiple native threads on multicore CPUs. Our benchmark tests show drastically
short pause time with reasonably low overhead compared to the sequential bitmap-marking

collector.

. Finitarty Polymorphism: theory and its application

Article [1-14]: Atsushi Ohori, Katsuhiro Ueno, Hisayuki Mima: Finitary Polymorphism for
Optimizing Type-Directed Compilation. (ICFP’18)

Abstract: We develop a type-theoretical method for optimizing type
directed compilation of polymorphic languages, implement the method in a full-scale compiler
of Standard ML extended with several advanced features that require type-passing operational
semantics, and report its effectiveness through performance evaluation. For this purpose, we first
define a predicative second-order lambda calculus with finitary polymorphism, where each type
abstraction is explicitly constrained to a finite type universe, and establishes the type soundness
with respect to a type-passing operational semantics. Different from a calculus with stratified
type universes, type universes of the calculus are terms that represent the exact finite set of
instance types. We then develop a universe reconstruction algorithm that takes a term of the
standard second-order lambda calculus, checks if the term is typable with finitary polymorphism,
and, if typable, constructs a term in the calculus of finitary polymorphism. Based on these
results, we present a type-based optimization method for polymorphic functions. Since our
formalism is based on the second-order lambda calculus, it can be used to optimize various
polymorphic languages. We implement the optimization method for natural (tag-free) data
representation and record polymorphism, and evaluate its effectiveness through benchmarks.
The evaluation shows that 83.79% of type passing abstractions are eliminated, and achieves the

average of 15.28% speed-up of compiled code.

G.0000000/ Signification Achievements (FY.2013-2018)

See Ref. 1. * #” mark indicates research carried out at a former organization.

goo0ooo0o0o000o0oO0 200000000002013-201800000000000000000000000000002013-2015000
gooo201e-20180000000000000OOO0OO0O0OOOOOOOOOOOOOOO

2013 — 2015]

1. The proposal for Japanese Master Plan 2014([88])

2013 — 2015]

1. The proposal for Japanese Master Plan 2017 ([88])

Description of the two:

We have taken the initiative in planning an academia-industry collaborative project on developing
an infrastructure for highly efficient and reliable software production. This proposal was accepted by
the Science Council of Japan and was included in the 22nd “Recommendation: Japanese Master Plan
of Large Research Projects” (Master Plan 2014). We further refined and extended the plan, which
was again accepted by the Science Council of Japan and was included in the 23rd “Recommendation:
Japanese Master Plan of Large Research Projects” (Master Plan 2017). The revised and the extended
plan involves 5 universities (Tohoku U., JAIST, U Tokyo, Tokyo Institute of Technology, Kyusyu U.),
2 national institutes (NII, AIST) and 7 companies (NEC solution innovators, Fujitsu, and others).

Although the Master Plans of Japanese Science Council are only the recommendations to Japanese
government, and the master plans themselves do not have research budgets to realize the planned
projects, they represents the state of the art of scientific activities of Japan in all the research fields,
from philosophy to applied engineering. Acceptance of these proposals have positive impact on insem-

inating SML# and the related research activities.

