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Abstract
UnCAL was introduced as a graph transformation language for un-
ordered finite graphs, and has a powerful transformation method
for finite graphs: structural recursion. Although UnCAL is pow-
erful and recently applied to model driven software engineering,
there are two major limitations. One is that its graph model is only
unordered graph in which branches of nodes are unordered. The
other is its limited expressive power: structural recursion functions
transform depth-direction well, but not well on sibling-direction.
We solve these problems by generalizing the graph model and ex-
tending the expressive power of UnCAL. We generalize the type
of branches of nodes from powerset to general monad, so that we
introduce graph transformation languagesλT

FG which are param-
eterized by (finitary) monadsT . The special case whereT is the
finite powerset monad becomes an extension of UnCAL. Our cru-
cial instance is the case of list monad for treating ordered graph,
where we solve how to define bisimilarity between ordered graphs
having edges labeled by an invisible labelε. Also we extend the ex-
pressive power ofλT

FG from that of UnCAL: higher order functions
and transformations for sibling dimension. We demonstrate that we
can modularize designing graph transformation languages, by our
generalization with monads and by monad transformers.

1. Introduction
Structural recursion, such as fold on lists or catamorphism [Mei-
jer et al.1991] on algebraic data structures including trees, plays
an important role in functional programming, providing a sys-
tematic way for construction and manipulation of functional pro-
grams [Bird and de Moor1996; Gill et al. 1993; Hu et al.2006].
It is, however, a challenge to define structural recursions for graph
data structures, the most ubiquitous data in computing. This is be-
cause unlike lists and trees, graphs are essentially not inductive
and cannot be formalized as an initial algebra in general [Gibbons
1995].

It is certainly possible to use full recursion operator (fixed point
operator) to manipulateinfinite data structures such as stream and
graph, but there are many cases targeting onlyfinite graphs espe-
cially in database application. Therefore, it is very much desirable
that we could represent graphs in finite form, while guaranteeing
transformations (or queries) for graphs always terminate.

UnCAL [Buneman et al.2000] was introduced in the database
community to provide such a powerful querying method by struc-
tural recursion for finite graphs. The graph model of UnCAL is
unordered (directed) graph, where outgoing edges are not ordered.
In UnCAL we can treat graphs semantically asregular trees[Ginali
1979], based on a suitable definition of bisimulation, up to which
finite graphs and regular trees are equivalent.

The benefit from this bisimulation is that structural recursion
on regular trees can be used for graphs, and moreover, it gives
an interesting and important semantics of structural recursion on
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Figure 1. An Example of Unsound Encoding

graphs:bulk semantics. With bulk semantics, a structural recursion
is evaluated by first processingin parallel on all edges of the
input graph and then combining the results. This bulk semantics
relies on introduction ofε-edges (likeε transition in automata)
to graphs, providing a smart way of treating shared nodes and
cycles in graphs. In addition, UnCAL is designed carefully such
that (i) every transformation isbisimulation genericin the sense
that it returns bisimilar results for bisimilar inputs, and (ii) every
transformation necessarilyterminatesand transformsfinite graphs
to finitegraphs.

Despite its beauty in theory and usefulness in graph querying,
there are two limitations in UnCAL that prevent it from being used
widely. One is that UnCAL can treat only unordered graphs, being
weak in other graph models, such as ordered graphs where edges
from a node are ordered, which is widely used in many applica-
tions: e.g., in Ecore, MOF, and KM3 [Jouault and B́ezivin 2006].
The other limitation is lack of expressive power of transformations
on sibling dimension. For example, when a graph labeled with nat-
ural number, we can not write in UnCAL a transformation which
extracts all such edges of some node that are labeled with the aver-
age number among all the siblings.

At the first sight, it seems that the first limitation could be easily
solved by encoding ordered graphs by unordered ones with suitable
edge labels, say usinghd andtl to represent the first branch and the
rest of the branches respectively. However, there is a fatal problem
with this encoding. The above encoding isunsoundin the context
of UnCAL whereϵ-edges must be taken into account for graph
construction and structural recursion. As shown in Figure1, the
ordered graphsG1 andG2, where we use dotted arrows to represent
ε-edges, are naturally bisimilar, but their corresponding encoded
graphsG′

1 andG′
2 are not at all.

In fact, it has been anopen problemfor more than ten years
whether structural recursion in UnCAL can be extended from un-
ordered graphs to ordered ones or not, since it was first raised in the
conclusion of the paper [Buneman et al.2000]:
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... we have shown how the principles of UnQL will work
on an ordered tree. However, it is not clear how they can
be extended to an ordered graph model. ... we still lack a
complete picture of this topic ...

In this paper, we provide a novel solution to this open problem,
by defining a subtle notion of bisimilarity for ordered graph having
ε-edges so that structural recursion can be extended from that for
unordered graphs to that for ordered graphs. Moreover, we propose
λT
FG, powerful higher order graph transformation languages, which

extends the lambda calculus with graph operations generalized with
monads and also extended with sibling transformation.

The main technical contributions of this paper can be summa-
rized as follows.

There are mainly two independent contributions; (i) one is the
definition of bisimilarity for ordered graphs, which has a subtle
problem of infinite width, which can not be seen in other graph
models; (ii) the other one is the generalization with monadsT and
extension of expressive power of graph transformations: introduc-
tion of higher order function and sibling transformation. Further
detail of these contributions are the following:

(i). We give the first definition of the bisimilarity between ordered
graphs havingε-edges, which forms the semantic foundation
for λList

FG . Specifically, we identify that the branch order of even
finite graphs is not necessarily finite butcountable linear order,
and clarify that combination ofε-edges and cycles will induce
such countable linear order on branching, which would produce
new issues not occurring for the unordered case. We show that
the judgment of emptiness of ordered graphs is decidable, and
that it is decidable whether we can eliminate allε-edges—with
keeping finite width of graph—for a finite ordered graph having
ε-edges.

(ii). UnCAL consists of the following three technical points:

• graph models and bisimilarity,

• syntactic graph representation (calledgraph constructors),
and

• structural recursion.

We generalize all the three points with monadsT and extend
further:

• We generalize the graph model in such a way that collec-
tion of outgoing edges of a node has the structure of the
monadT . With this, unordered graph and ordered graph
correspond to finite powerset monad and list monad, respec-
tively. We can see its usefulness from other examples of
multiset monad and distribution monad which correspond
to weighted graph and probability graph, respectively.

Then we give a definition of bisimilarity for such graph
models generally withT . The above (i), i.e., the definition
of bisimilarity for ordered graph is independent contribution
from this general definition; since for the general definition
we assume existence ofiteration operators, which is newly
given in this paper for ordered graph, while those for other
graph models are already known.

• Then according to the generalization of graph model, we
also give generalized definition of graph constructors and
structural recursion with monads. Specifically, we general-
izebulk semanticsof the structural recursion, and show that
structural recursion isbisimulation generic. The bisimula-
tion genericity is a stronger result than that in [Buneman
et al.2000] even for the case of unordered graph, since here
we prove bisimulation genericity of structural recursion as
a higher order function, while in [Buneman et al.2000] it

is proved as first order functions. This higher order bisimu-
lation genericity enables us to introduce higher order func-
tions to UnCAL and reformulation as a lambda calculus.

• We define our graph transformation languagesλT
FG as ex-

tensions of the simply typed lambda calculus, which is in
sharp contrast to UnCAL (first order calculus). This refor-
mulation does not only provides us higher order functions,
but also a clear vision of how to extendλT

FG further, with
other primitive functions or other type systems such as co-
product types, inductive data types, monad types, and poly-
morphic types.

• We show how to overcome the second limitation of UnCAL,
i.e., expressive power on sibling dimension, by introducing
two sibling transformationl-sbl andu-sbl upon the above
flexibility of extensions. For instance, whenT = List , we
can manipulate branches of nodes as we transform lists: we
can, for example, reverse the order of branches of a node in
an ordered graph with reverse function of list.

• Summarizing the above, we formulate parametrized graph
transformation languagesλT

FG with monadsT .

(iii). Then we have the following discussion for further extension.

• We extend the structural recursion to unify the above sib-
ling transformations with the extended structural recursion,
so that we can transform graphs in depth-direction and in
sibling-direction at the same time.

• Finally we discuss how we can systematically compose
graph transformation languages to increase language power,
by using monad transformer. For instance, althoughλList

FG

can treat ordered graphs but not unordered graphs, by this
modular method, we can systematically obtainλ

Pfin×List
FG ,

which can treat both unordered and ordered graphs.

Organization of the Paper We shall start by an overview ofλT
FG,

focusing on the case whenT = List , in Section2. Then in Sec-
tion 3, we see the first key technical contribution of this paper, i.e.,
the definition of bisimilarity for ordered graphs havingε-edges.
Then we give a general definition of bisimilarity for graphs inλT

FG.
In Section4, we give interpretations of terms ofλT

FG, which in-
cludes graph constructors, structural recursion, and sibling transfor-
mations; then we show their bisimulation genericity. In Section5,
we extend structural recursion with sibling transformation. In Sec-
tion 6, we discuss how we can extend the languages with monad
transformers. We discuss the related work in Section7 and con-
clude the paper in Section8.

2. Overview ofλT
FG

We start with an overview of our general graph transformation
languageλT

FG, especially whenT = List . In fact, λList
FG , which

treats ordered graphs, is the most important case to understand
essence ofλT

FG. In the following, after giving general definition
of graphs, we will move to the case ofList , and see how ordered
graphs are constructed and how structural recursion can be easily
used to transform ordered graphs. In Section4.4, we will see how
to design the syntax of generalλT

FG.

2.1 Graph Model ofλT
FG

Graph inλT
FG is rooted, directed, and edge-labeled graph. Addi-

tionally, graph inλT
FG has two prominent features,ε-edgesand

markers. An ε-edge represents a shortcut between the two nodes,
working like the ε-transition in an automaton. Nodes may be
marked withinput andoutput markers, which are used as an inter-
face to connect them to other graphs byε-edges.
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Figure 2. Examples of Graphs

We introduce the notion of graph with “T -kind of branch” for a
monadT . First let us recall the notion of monad (in the Kleisli triple
style):T = (T, return, lift) is amonadonSet if T : Set → Set
is a functor,

return : S → T (S)

and

lift : (S → T (S′)) → (T (S) → T (S′))

are natural transformations, and they satisfy certain axioms called
monad laws, see [Benton et al.2000; Moggi 1989] for the axioms.

Example 1(List Monad). List is a monad defined as follows.

return(s) = [s] (s ∈ S)

lift f = concat ◦ List(f) (f : S → List(S′))

where

concat : List(List(S′)) → List(S′)

is flattening a list of lists to a list.

Now we define the graph model. We useL to denote a set of
labelsandLϵ to denote the disjoint unionL ∪ {ε}. Let X andY
be finite sets ofmarkers; we add the prefix& for meta-variables of
markers like&x . Then aT -graph (or justgraph) G is defined as a
triple (V,B, I) where

• V is a set ofnodes,

• B : V → T (Lϵ×V+Y ) is abranch function, where an element
x in Lϵ×V+Y (calleda branch) is eitheran edgeEdge (l, v)
or an output markerOutm (&y), and

• I : X → V is a function, which determinesinput nodes(roots)
of the graph.

Note that in the terminology of coalgebra theory, aT -graph is a
coalgebraB of the endofunctorT (Lϵ×(-)+Y ) equipped with|X|-
number of initial statesI.

Example 2(Ordered Graph). We callList-graphsordered graphs,
where the branches are ordered. The graph in Figure2(a) is repre-
sented as(V,B, I) where

V = {1, 2, 3, 4}
B(1) = [Edge (d, 2) ,Edge (a, 4) ]
B(2) = [Edge (c, 3) ]
B(3) = [Edge (d, 2) ]
B(4) = [Edge (b, 3) ,Outm (&y) ]
I(&) = 1.

The set of graphs—withX andY as sets of input and output
markers, respectively—is denoted byT DBX

Y , whereT may be
omitted if it is clear from context. We call aT -graph afinite T -
graph whenV is a finite set, and writeT DBf

X
Y for the set of

finite T -graphs. (“DB” is from [Buneman et al.2000] and means
“DataBase”.)

We occasionally use record notation(-).V, (-).B, and(-).I for
components of a graph: i.e.,G = (G.V, G.B, G.I).

We allow a graph to have multiple roots: multi-rooted graph is to
forest what single-rooted graph is to tree. For single-rooted graphs,
we often usedefault marker& to indicate the root, and useDBY to
denoteDB{&}

Y .
An output marker is a place holder through which the input

node of another graph can be connected with anε-edge. (This is
done with@, cycle (see Figure3), andsrec (see Figure7) to be
explained later.)

Example 3 (Unordered Graph, Weighted Graph, Probability
Graph). For the finite powerset monadPfin, Pfin-graph isun-
ordered graph, which is (equivalent to) the graph model of UnCAL.

Let us consider thefinite multiset monad(bag monad)Mfin:

Mfin(S)
def
= {ϕ: S→N | ϕ−1(N−{0}) is a finite set}.

Then branch ofMfin-graph has a bag semantics (rather than set
semantics ofPfin), i.e., multiplicity (calledweight) of an identical
branch is not ignored.

Thefinite probability distribution monadDfin is defined as:

Dfin(S)
def
= {ϕ: S→[0, 1] | ϕ−1((0, 1]) is a finite set,Σsϕ(s)=1}.

The monad structure is defined as below: fors ∈ S, return(s) is
the Dirac delta function

δs : S → [0, 1]

s 7→ 1

(other thans) 7→ 0

and forf : S → Dfin(S
′),

lift(f): Dfin(S) → Dfin(S
′)

(ϕ: S → [0, 1]) 7→

(
lift(f)(ϕ): S′ → [0, 1]

s′ 7→ Σs∈S(ϕ(s) · f(s)(s′))

)
Dfin-graph has probabilistic branch.

2.2 Overview ofλList
FG

From now we see an overview ofλT
FG whenT = List .

2.2.1 Graph Equivalence

For ordered graphs, we consider bisimilarity as their graph equiva-
lence, which is calledvalue-equivalencein [Buneman et al.2000],
since we observe only “values”l and&y pointed by a “pointer”v.
For instance, the graphsG andG′, in Figure2(a)and2(b), respec-
tively, are considered as being equivalent. InG′, nodes3 and3′

are bisimilar because both of them only have one outgoing edge la-
beledd to the node2. Also inG′, from node1 to node3, there is an
ε-edge (denoted by the dotted line), which can be eliminated with
keeping its bisimilarity by adding outgoing edge labeledd from
node1 to node2. Unreachable parts from roots are disregarded.
The definition of bisimulation on ordered graphs withε-edges is
one of the important results in this paper, and this will be addressed
formally in Section3.

A graph functionf is calledbisimulation genericif f(G) and
f(G′) are bisimilar wheneverG and G′ are bisimilar.λT

FG is
designed to make the interpretation of every term bisimulation
generic.

2.2.2 Graph Constructors

Figure3 summarizes the nine graph constructors used inλList
FG , and

their typing rules are shown in Figure5. They are similar with
graph constructors for unordered graphs in UnCAL [Buneman et al.
2000]. Note that these constructors should be written as e.g. []Y

3



[] 〈a : G〉

G

a 

G

&x := G

&x

()

&x1 ... &xk

&y1 ... &yn

&x’1 ... &x’m

&y1 ... &yn

G1 G2

G1 G2 G1@G2

&x1 ... &xk

&y1 ... &ym

G1

&z1 ... &zn

&y1 ... &ym

G2

ε ε

cycle (G)

&x1 ... &xm

&x1 ... &xm

ε ε

G

〈&y〉

&y

G1 ++ G2

G1 G2

&x1 ... &xm

&y1 ... &yn

Figure 3. Graph Constructors

e ::= x | λx.e | ee | case e of inl(x) → e or inr(y) → e
| inl e | inr e | (e, e) | πle | πre { terms of lambda calculus}
| if e then e else e { conditional}
| a | &y | e = e { label (a ∈ L), marker, and their equality}
| [] | e++ e { algebraic graph constructors}
| ⟨e : e⟩ | ⟨&y⟩ | &x := e | () | e⊕ e | e @ e | cycle(e)

{ common graph constructors}
| isEmpty(e) { graph emptiness checking}
| srec(e)(e) { structural recursion application}
| nil | cons(e, e) | foldr(e, e, e) | ... { list operators}
| l-sbl(e)(e) | u-sbl(e)(e) { sibling transformations}

Figure 4. λList
FG Language

andG1 ++X,Y G2; however we will omit the subscriptX andY to
avoid clutter.

Let us see each constructor; also see how type discipline on in-
put and output markers works for each constructor. First, [] con-
structs a root-only graph with the default input marker and no
output markers. For two graphsG1 andG2 having identical in-
put markers and output markers,G1 ++ G2 adds two branchingε-
edges from each new root to the corresponding old roots ofG1 and
G2. Next,⟨a : G⟩ extendsG with onea-labeled edge pointing the
old root from a new fresh root node; and the constructor⟨&y⟩ con-
structs a graph with a single node marked with an output marker&y
(in [Buneman et al.2000], ⟨a : G⟩ and⟨&y⟩ are denoted as{a : G}
and&y , respectively).Marker renaming&x :=G associates an input
marker&x to the root node ofG; () constructs a trivial graph that
has neither a node nor an edge; andG1 ⊕ G2 constructs a disjoint
union ofG1 andG2, where their branching functionsB1 andB2

work independently. Then,G1 @G2 composes two graphs sequen-
tially by connecting the output nodes ofG1 with the corresponding
input nodes ofG2 by ε-edges, andcycle(G) connects the output
nodes with the input nodes ofG to form cycles. It is worth noting
that this set of constructors are powerful enough to describe any
finite ordered graphs.

2.2.3 Syntax ofλList
FG

Our graph transformation languageλList
FG (and in generalλT

FG)
is an extension of the simply typed lambda calculus with graph
constructors and graph operations. The syntax ofλList

FG is depicted
in Figure4, and the types and typing rules are in Figure5.

The typeDBX
Y is interpreted toDBf

X
Y : the set offinite graphs,

andα are type variables, which are used just foru-sbl and ex-
plained later. We omit the standard explanations for lambda terms,
conditional, label, and equality for labels.

σ ::= σ + σ | σ × σ | σ → σ { variant, product, function types}
| Bool | Label |DBX

Y { base types}
| α | Y | List(σ) { types for sibling transformation}

Γ ⊢ [] : DB∅

Γ ⊢ e1 : DBX
Y

Γ ⊢ e2 : DBX
Y

Γ ⊢ e1 ++ e2 : DBX
Y

Γ ⊢ e1 : Label
Γ ⊢ e2 : DBY

Γ ⊢ ⟨e1: e2⟩ : DBY

(&y ∈ Y )

Γ ⊢ ⟨&y⟩: DBY

Γ ⊢ e: DBY

Γ ⊢ &x := e: DB
{&x}
Y

Γ ⊢ (): DB∅
Y

Γ ⊢ e1 : DBX1
Y Γ ⊢ e2 : DBX2

Y
(X1 ∩X2 = ∅)

Γ ⊢ e1 ⊕ e2 : DBX1∪X2
Y

Γ ⊢ e1 : DBX
Y

Γ ⊢ e2 : DBY
Z

Γ ⊢ e1 @ e2 : DBX
Z

Γ ⊢ e: DBX
X∪Y (X ∩ Y = ∅)

Γ ⊢ cycle(e): DBX
Y

Γ ⊢ e: DBX
Y

Γ ⊢ isEmpty(e): Bool

Γ, l:Label, g :DBY ⊢ e1 : DBZ
Z Γ ⊢ e2 : DBX

Y

Γ ⊢ srec(λ(l, g).e1)(e2): DBZ×X
Z×Y

Γ, x:List(Label×DBY +Y ) ⊢ e1 : List(Label×DBY +Y )
Γ ⊢ e2 : DBY

Γ ⊢ l-sbl(λx.e1)(e2): DBY

Γ, x:List(Label×α+Y ) ⊢ e1 : List(Label×α+Y )
Γ ⊢ e2 : DBX

Y

Γ ⊢ u-sbl(λx.e1)(e2): DBX
Y Γ ⊢ &y : Y

(Just unfamiliar rules are listed. We usel andg as meta variables
for variables of typesLabel andDBX

Y , respectively.)

Figure 5. Types and Typing Rules of UnCALList

The graph constructors here are described separately, divided
into algebraic graph operatorsand common graph constructors.
Algebraic graph operators depend onT , while the seven common
graph constructors are fixed independently fromT . In fact, alge-
braic graph operators further depend onsignaturesof T , as seen in
Section6; but independently from choice of such signatures, their
expressive power remains the same not just on closed terms but
also on open terms. The boolean expressionisEmpty(e) results
in true when the graph of the result ofe has no non-ε edge in the
accessible part.

Structural Recursion Now we explain structural recursion,
which is a powerful mechanism borrowed from UnCAL [Bune-
man et al.2000] to describe graph transformations. The structural
recursionf = srec(λ(l, g).e) is such a function thatf satisfies the
following equations, where we ignore output markers and consider
the case whenX is singleton, for simplicity:

f([]) = []
f(⟨l : g⟩) = e(l, g) @f(g)
f(g1 ++ g2) = f(g1) ++ f(g2)

The above equations give a definition off as a function which
inputsfinite graphs and outputsinfinite graphs, in recursive way.
However the outputs off are in fact (bisimilar to)finitegraphs, and
it is made clear by thebulk semanticsof f , which will be given in
Section4.2. Intuitively, in the bulk semantics, structural recursion
f transforms a graph in a bulk way by keeping structure of the
graph—as map functions for list or tree—, transforming each edge
labeledl to new graph partse(l, g). Heree can refer not only the
labell but also its successor graphg in the input graph off .

4



Example 4. The following structural recursiona2d xc replaces all
labelsa with d and contracts edges labeledc.

a2d xc = srec(rc)

where

rc = λ(l, g). if l=a then ⟨d : ⟨&⟩⟩
else if l=c then ⟨&⟩

else ⟨l : ⟨&⟩⟩
Applying the functiona2d xc to the graph in Fig.2(a) yields the
graph in Fig.2(c).

Example 5. Consider an ordered graph representation of books.
Since “sections” are ordered and there are some reference links in
books, we can see books as ordered graphs. The following struc-
tural recursiontoc, which is adapted from [Robertson et al.2009],
computes the table of contents of books in which sections can be
arbitrarily nested:

toc(db) = srec( λ(l, g). if l=section

then ⟨section : (get title(g) ++ ⟨&⟩)⟩
else ⟨&⟩ ) (db)

where the functionget title results in the title of the section.

get title(g) = srec( λ(l1, g1). if l1=title

then ⟨title : srec( λ(l2, g2).⟨l2 : []⟩ ) (g1)⟩
else [] ) (g)

Sibling Transformation Structural recursion functions are pow-
erful transformations which terminate at evaluation and preserve
finiteness of graphs, but we need more expressive power: transfor-
mations on sibling dimension.

Let us consider an ordered graph and its unfolded (maybe infi-
nite) tree. The branches under the root are then a list of the subtrees.
Then if one wants to, e.g., reverse the order of the branches under
the root, we can not do so with the structural recursion.

To resolve this problem, we introducelocal sibling transforma-
tions l-sbl anduniform sibling transformationsu-sbl, which en-
able such transformations. The formerl-sbl transforms branches
only of the root node of a single-rooted graph; and by combination
with the structural recursion,l-sbl can transform branches of any
one node which the structural recursion function can reach. The
latteru-sbl transforms branches uniformly of all nodes in a graph.

Let us return to the Figure4. List operators in the syntax are
usual ones; we can add anything that is convenient such ascar,
cdr, filter, andreverse etc. These list operators are used for
the two sibling transformations;l-sbl(λx.e) and u-sbl(λx.e)
transform sibling asλx.e transforms lists. In the typing rule for
u-sbl, we use type variablesα to prepare a parametric poly-
morphic functionλx.e on List(Label×α+Y ) so thatλx.e and
henceu-sbl(λx.e) become “uniform” onα. The parametricity
guarantees bisimulation genericity ofu-sbl. For the detail see
Section4.3.

3. Bisimilarity for ε-edge and Ordered Graph
Section2.1 gives a general definition ofT -graph, for a monadT .
To this end, we shall give the semantic equivalence for the graph
model ofλT

FG: bisimilarity betweenT -graphs.
The main point is a treatment ofε-edge. The case of ordered

graph (List-graph) involves a big problem which does not occur
for unordered graph (Pfin-graph): i.e.,ε-elimination might induce
infinite width. In the following, we shall see the problem and
how to define bisimilarity between ordered graphs. Also we give
some effective procedure to avoid such infinite width. Then we
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Figure 6. Graphs with Stream Branching and with Dense Branch-
ing

give a general definition of bisimilarity forT -graphs. Finally, we
extend the bisimilarity equivalence from graph types to higher
order function types.

We here remark that our bisimilarity for the invisible labelε
is different fromweak bisimilarityfor the invisible labelτ in the
context of process algebra [Milner 1999]. Our bisimilarity is char-
acterized by theε-elimination (Proposition8.2) which is familiar
in automata theory. One purpose of our use ofε-edge is to post-
pone calculation of graph constructors, structural recursion and so
on, but weak bisimilarity is unsuitable with respect to properties of
such graph transformations: e.g. associativity of++ fails with weak
bisimilarity.

3.1 Bisimilarity for Ordered Graph

Now we see the bisimilarity between ordered graphs: its intuition
and formal definition.

Intuition of the Bisimilarity

First let us see some examples of ordered graphs in order to have
some feeling of the bisimilarity to be defined. Consider the graphs
in Figure6. For the graphGs, first, in order to make our problem
easily understandable, let us unfold the graph to an infinite tree, i.e.,
the graph in the middle. Then intuitive “ε-elimination” of the tree
is the graph on the right, where the branching is as a stream. Note
that for ordered graph there is noidempotencywhich unordered
graph has. The way of branching of graphs havingε-edges are
thus possibly infinite essentially. However, it is not necessarily just
a stream type, as in the next exampleGb. Unfolding of graph
Gb yields the tree in the middle, and then its “ε-elimination” is
the graph on the right. This graph has a branch like the ordered
set{n/2m∈Q |n,m∈N, 0<n<2m}, which is a dense countable
linear ordered set. (In this paper, the termcountableincludes the
case of finite.)

In fact, for any countable linear ordered set, there is some
ordered graph havingε-edges such that the branches of the root
after eliminatingε-edges are exactly as the given ordered set. (For
the detail, see AppendixA.)

Formal Definition of the Bisimilarity

Now let us define bisimilarity between ordered graphs. As seen
above, theε-elimination of an ordered graph might induce count-
able width. So we shall first define a generalized notion of “ordered
graph with countable width”, and define bisimilarity for such gen-
eralized graphs. This asks us to extend the list monad

List(S)
def
= Σn∈NS

n
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to the countable list monadCList which can be defined as the
following:

CList(S)
def
= ΣL∈LS

L

whereN is generalized toL, the set of countable linear ordered
sets up to order isomorphism (with chosen representativesL). (See
AppendixB for the precise definition ofCList .) Thus we extend
ordered graphs toCList-graphs.

ForB(v) ∈ ΣL∈L(Lϵ×V+Y )L, let |B(v)| denote the count-
able linear ordered setL of B(v). Then, we calli ∈ |B(v)| a
branch indexof a nodev, and writeB(v).i ∈ Lϵ×V+Y for the
i-th branch.

Next we prepare the notion of “transitive closure” ofε-edges.
Let G = (V,B, I) ∈ CList DBX

Y andv ∈ V . Let us consider a
pair of anε-path fromv and a branch indexin of the last node in
theε-path:

v (= v0)
ε→i0 v1 ...

ε→in−1 vn →in (n ∈ N)

wherevn →in means just thatin ∈ |B(vn)|. We call thisproper
branch ofv if the in-th branchB(vn).in is not anε-edge, i.e., it
is either a non-ε edge or an output marker. The set of all proper
branches ofv in G is denoted byPb(G, v). It is easily shown that
Pb(G, v) is a countable set.

Then there is a natural linear order≤Pb onPb(G, v): for two
different proper branches

p = (v
ε→i0 v1 ...

ε→in−1 vn →in),

p′ = (v
ε→i′0

v′1 ...
ε→i′

n′−1
v′n′ →i′

n′
),

we obtain their branch indices sequences:p̃
def
= (i0, ..., in−1, in)

and p̃′
def
= (i′0, ..., i

′
n′−1, i

′
n′). With the starting nodev, we can

recoverp andp′ from these indices sequences. Then, betweenp̃
and p̃′, we can consider lexicographical order≤l , then we define

p ≤Pb p′
def⇐⇒ p̃ ≤l p̃′.

Now we define the bisimilarity.

Definition 6 (Bisimilarity). ForCList-graphsG = (V,B, I), G′ =
(V ′, B′, I ′) ∈ CList DBX

Y , a relationR betweenV andV ′ is
called abisimulation relationif for any vRv′, there is an order iso-
morphismf : (Pb(G, v), ≤Pb) → (Pb(G′, v′), ≤Pb) satisfying
the following property. For any proper branch

p = (v
ε→i0 ... vn →in) ∈ Pb(G, v)

with

f(p) = (v′
ε→i′0

... v′n′ →i′
n′
) ∈ Pb(G′, v′),

• if B(vn).in = Edge (l, u) for somel ∈ L, u ∈ V , then there
existsu′ ∈ V ′ such thatB′(v′n′).i′n′ = Edge (l, u′) anduRu′,

• if B(vn).in = Outm (&y) for some&y ∈ Y , thenB′(v′n′).i′n′ =
Outm (&y).

Two graphsG andG′ arebisimilar (denoted byG ∼ G′) if there is
a bisimulation relationR such that for every input marker&x ∈ X,
I(&x )R I ′(&x ).

Note that the bisimulation relation is an equivalence relation on
CList DBX

Y . Next, let us defineε-elimination.

Definition 7 (ε-elimination). For aCList-graphsG = (V,B, I) ∈
CList DBX

Y , ε-elimination ε-elim(G) of G is a CList-graph

(V,B′, I) ∈ CList DBX
Y where |B′(v)| def

= Pb(G, v) and for

p = (v
ε→i0 ... vn →in) in |B′(v)|, B′(v).p

def
= B(vn).in.

Note that theε-elimination does not change sets of nodes.

Proposition 8. 1. For all CList-graphs G ∈ CList DBX
Y ,

ε-elim(G) has noε-edge, andG and ε-elim(G) are bisim-
ilar.

2. For CList-graphsG,G′ ∈ CList DBX
Y , G andG′ are bisimi-

lar if and only ifε-elim(G) andε-elim(G′) are bisimilar.

Here we first gave the definition of bisimilarity for graphs hav-
ing ε-edges and then gave that ofε-elimination and the above
proposition. However, we can define the bisimilarity for graphs
havingε-edges by the equivalence stated in Proposition8.2with the
ε-elimination and with the bisimilarity for graphs having noε-edge;
the latter can be easily derived from general coalgebraic definition
of bisimilarity [Rutten2000]. Then we see that such definition is
not just equivalent to but almost the same as that in Definition6.
Thus we find that the key here is the definition ofε-elimination.
In the following we give a general definition of bisimilarity forT -
graphs byε-elimination.

3.2 Decidability for Finite Width Graphs

Before going to the general setting with monadsT , we give one
important decidability result forCList-graphs.

Let FG/ε be the set of finiteList-graphs which are bisimilar to
some finiteList-graphs having noε-edge. There is a procedure
which answers, for a finiteList-graphG, if G is in FG/ε or not.
If G is in FG/ε, we can effectively eliminateε-edges; otherwise, it
is impossible to eliminateε-edges, keeping finite width. This pro-
cedure is as the following. First note that for each node accessible
from a root, we can check if there is anε-cycle—a cyclic path con-
sisting only ofε-edges—on the node. Then if, for every accessible
node withε-cycle, there is no proper branch, then the input graph
is in FG/ε; otherwise, not in FG/ε.

This is enough for run-time use of the query languageλList
FG ,

because, though we needε-edge for implementation—for structural
recursion and for efficiency of graph calculation—practical graphs
in the real world has noε-edge. If a user of the language writes
such a practical query, then the result should return a graph in FG/ε;
if it is an incorrect query not intended by the user, and then if the
result has inevitableε-edges, the procedure above can check it and
can warn the user.

Note that, in the class FG/ε, since we can eliminateε-edges, we
can obtain familiar effective procedures for bisimilarity-checking
and for obtaining the minimum graphs in a similar way to un-
ordered graph. Also note that ifG is not in FG/ε, thenG is not
empty, henceisEmpty is decidable.

3.3 Generic Definition of Bisimilarity

Now we define the notion of bisimilarity in general forT -graphs.
We define this bisimilarity for any monadT whose Kleisli category
SetT has a uniform iteration operator.

For a monadT on Set, the Kleisli categorySetT of T is
defined as below: objects inSetT are sets, and morphismsS → S′

are functionsS → T (S′). The identity morphismid onS is

id
def
= return : S → T (S),

and the compositiong ◦ f of f : S → T (S′) andg : S′ → T (S′′)
is defined as

g ◦ f def
= lift(g) ◦ f : S → T (S′′).

A Kleisli category has coproducts: the coproduct ofS1 andS2 is
justS1+S2, and the injections are

in l
def
= return ◦ in l : S1 → T (S1+S2)

inr
def
= return ◦ inr : S2 → T (S1+S2).
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Copairing of a pair of functionsf1 : S1 → T (S′) andf2 : S2 →
T (S′) is the same as the copairing inSet, i.e.,

[f1, f2]: S1+S2 → T (S′).

We write ∇: S+S → T (S) and+ for the codiagonal and the
coproduct on morphisms inSetT , respectively.

Next we recall the notion of iteration operator [Haghverdi2000;
Kakutani 2002], which is the dual notion of fixed point opera-
tor [Simpson and Plotkin2000]; also, iteration operator is to while
operator as coproduct type is to the boolean type. Though iteration
operator can be defined for any category with finite coproducts, we
here define directly on the Kleisli categorySetT of a monadT on
Set. An iteration operatoriter onSetT is a function which maps
a function

f : S → T (S+A)

to

iter(f): S → T (A)

such that the mapping satisfies the following axioms:

• (naturality:) forf : S → T (S+A) andg : A → T (A′),

g ◦ iter(f) = iter((idS+g) ◦ f): S → T (A′),

• (dinaturality:) forf : S → T (S′+A) andg : S′ → T (S+A),

[iter([f, inr ] ◦ g), idA] ◦ f = iter([g, inr ] ◦ f): S → T (A)

• (unfolding:) forf : S → T (S+A),

iterf = [iterf, idA] ◦ f : S → T (A),

• (codiagonal:) forf : S → T (S+S+A),

iter(iterf) = iter((∇+idA) ◦ f): S → T (A).

Further, iter is calleduniform if for functions f : S → T (S′),
g : S′ → T (S′+A) andh: S → T (S+A),

iter(g) ◦ f = iter(h): S → T (A)

whenever

g ◦ f = (f+idA) ◦h: S → T (S′+A).

The axiom of uniformity is used for logical relation for iteration
operator [Hasegawa2002]. We use uniformity to show that strong
bisimilarity implies bisimilarity.

The following characterization ofε-elimination as iteration op-
erator is due to [Hasuo2011; Jacobs2010a].

Definition 9 (ε-elimination). LetT be a monad anditer be an iter-
ation operator inSetT . For anT -graphG = (V,B, I) ∈ T DBX

Y ,
its ε-elimination ε-elim(G) ∈ T DBX

Y is (V,B′, I) where

B′ def
= embed ◦ iter(iso ◦ B); here embed is the embedding

T (L×V+Y ) → T (Lϵ×V+Y ), andiso is the composition of

T (Lϵ×V+Y ) ∼= T ((L+1)×V+Y ) ∼= T (V+(L×V+Y )).

Conversely,ε-elimination induces an iteration operator; let
us consider aT -graph (V,B, I) in the case whenL=0. Then
B : V → T ({ε}×V+Y ), and if we applyε-elimination, the re-
sulting branch function isB′ : V → T (0×V+Y ). That is, we get
an operator which maps a functionV → T (V+Y ) to a function
V → T (Y ). This is just the same as the structure of an iteration
operator in the Kleisli category (if we allowY to be arbitrary
sets); and we find that it is natural to adopt the axioms of iteration
operator also as axioms ofε-elimination.

Now we give a general definition of bisimilarity forT -graphs,
using the aboveε-elimination.

Before that, let us recall the notion of bisimulation relation for
general endofunctorF on Set. First we recallF -lift of relations:
for (the inclusion function of) a relationr: R ↪→ V×V ′, let
r1

def
= pr l ◦R: R → V andr2

def
= pr r ◦R: R → V ′; so

⟨F (r1), F (r2)⟩ : F (R) → F (V )×F (V ′).

ThenF̃ (R) is defined as the image

⟨F (r1), F (r2)⟩ (F (R)) ⊆ F (V )×F (V ′).

For a functorF onSet, and twocoalgebrasof F , i.e., two func-
tionsB : V → F (V ) andB′ : V ′ → F (V ′), a bisimulation re-
lation R betweenB andB′ is a relationR ⊆ V×V ′ such that
(B×B′)(R) ⊆ F̃ (R).

Definition 10 (Strong Bisimilarity and Bisimilarity). Let T be
a monad, andG = (V,B, I) and G′ = (V ′, B′, I ′) be T -
graphs inT DBX

Y . ThenG andG′ are strong bisimilar if there
is a bisimulation relationR w.r.t. the endofunctorT (Lϵ×(-)+Y )
betweenB andB′ such that for any&x ∈ X, I(&x ) R I ′(&x ).

Now let iter be a uniform iteration operator inSetT . Then
G andG′ are bisimilar (written asG ∼ G′) if ε-elim(G) and
ε-elim(G′) are strong bisimilar.

Note that the notions ofε-elimination and bisimilarity depend
on a given iteration operator, but in this paper we do not refer the
dependency in the terminology.

We assume that all monadsT in the paper preserve weak-
pullbacks, which is just a mild assumption often used in coalgebra
theory [Rutten2000; Sokolova2005]. Especially, thenT preserves
injections and finite intersections. Using this assumption, it is eas-
ily checked that the strong bisimilarity relation is an equivalence
relation onT DBX

Y .
It is immediately shown that strong bisimilarity implies bisim-

ilarity from the uniformity of an iteration operator. We use this
property in some proofs in the papers. (In fact we can weaken the
assumption of uniformity to that ofuniformity with respect to mor-
phisms inSet [Simpson and Plotkin2000, Definition 2.7].)

Thus we gave the definition of bisimilarity, but it is not neces-
sary that every monad has an iteration operator in the Kleisli cat-
egory. However, as the case ofList with CList , there is the case
that a monadT is presentable in programming languages, does not
have iteration operator, and has an extensionT ′ which might not be
presentable in languages but has a uniform iteration operator. We
say thatT has an extensionT ′ for ε-eliminationif there is a monad
T ′, an injective monad morphismι : T ↪→ T ′, and a uniform iter-
ation operator in the Kleisli category ofT ′. Heremonad morphism
is a natural transformation which is compatible withreturn ’s, and
with lift ’s (see [Benton et al.2000], for the detail).

By this, we generalize the definition of bisimilarity:

Definition 11 (Bisimilarity Generalized on Size). Let T be a
monad which has an extensionT ′ for ε-elimination. Then there
is the embeddingι-DBX

Y : T DBX
Y ↪→ T ′ DB

X
Y which maps

(V,B, I) to (V, ι(Lϵ×V +Y )◦B, I). For G andG′ in T DBX
Y , G

andG′ are bisimilar if ι-DBX
Y (G) andι-DBX

Y (G′) are bisimilar
in the sense of Definition10.

By the assumption thatι has injective components and
T preserves weak pullback,ι-DBX

Y reflects strong bisimilar-
ity [Sokolova2005, Theorem 4.3.6], and hence forT -graphs hav-
ing no ε-edges, strong bisimilarity and the above bisimilarity are
equivalent.

Example 12. It is easy to see that the original bisimilarity for
unordered graphs is equivalent to the general definition of bisim-
ilarity with T = Pfin andT ′ = Pcnt: countable powerset. For
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f : S → Pcnt(S+S′),

iter(f)(s)
def
=
∪
n∈N

(f2 ◦ (f1)n)(s)),

where

f1
def
= [idS , const{}] ◦ f : S → Pcnt(S)

f2
def
= [const{}, idS′ ] ◦ f : S → Pcnt(S

′)

and then-times composition(f1)n is that inSetPcnt .
Similarly, finite multiset monadMfin has an extension forε-

elimination, i.e.,countable multiset monadMcnt:

Mcnt(S)
def
= {ϕ: S → N∪{∞} | ϕ−1(N−{0}) is countable}.

The iteration operator forMcnt is given with the same formula as
that forPcnt.

Also finite probability distribution monadDfin has an extension
for ε-elimination, i.e.,countable subprobability distribution monad

SubDcnt: SubDcnt(S)
def
=

{ϕ: S → [0, 1] | ϕ−1((0, 1]) is countable,Σxϕ(x) ≤ 1}.

Note that here the summation of probabilitiesΣxϕ(x) is not neces-
sarily 1; this is because the probability1−Σxϕ(x) is reserved for
that of the abort of the iteration operator. The definition of the it-
eration operator forSubDcnt is also similar to those forPcnt and
Mcnt, see [Jacobs2010b] for the detail.

ForList with CList , conversely rather we can give the iteration
operator inSetCList with the ε-elimination in Definition7 in the
way described after Definition9.

3.4 Bisimilarity for Higher Order Functions

So far we have given the semantics for base types, i.e., bisimilarity
for graph typesDBX

Y , and give just equality relations for the other
base types. Here we extend such equivalence relations for base
types to higher order function types.

It is well known that if we want to lift equivalence relation to
function types then we need to switch from the notion of equiva-
lence relation to that ofpartial equivalence relation, i.e., an equiv-
alence relation on some subset of an original set. This is because,
now not all functions onDBf

X
Y are bisimulation generic, so we

have to cut out thesubsetconsisting of bisimulation generic func-
tions.

Now let us see the formal definition. Letσ be a type ofλT
FG.

We define binary logical relation∼σ from the above equivalence
relations on the base types. Let us recall the logical relation∼σ

only on the essential case, i.e., function type:σ = σ1 → σ2. By
induction hypothesis, we already defined a binary relation∼σi on

[[σi]]. Then we define a binary relation∼σ on [[σ]]
def
= [[σ1]] → [[σ2]]

as

f ∼σ f ′ def⇐⇒ ∀x, x′ ∈ [[σ1]]. (x ∼σ1 x′ ⇒ f(x) ∼σ2 f ′(x′))

⇐⇒ ∀x ∈ |∼σ1 |. f(x) ∼σ2 f ′(x).

Then for any typeσ, ∼σ becomes a partial equivalence relation
on [[σ]], i.e., an equivalence relation on the subset

|∼σ|
def
= {x ∈ [[σ]] | x ∼σ x}.

We call a functionf : [[σ1]] → [[σ2]] (higher order) bisimulation
genericif f is in |∼σ1→σ2 |, i.e.,

∀x, x′ ∈ [[σ1]]. (x ∼σ1 x′ ⇒ f(x) ∼σ2 f(x′)).

Then by the Basic Lemma of logical relation, interpretations
of all the terms are bisimulation generic if interpretations of
all the constants are bisimulation generic; and then we obtain a

model ofλT
FG in the cartesian closed categorySet, see the text-

book [Mitchell 1996] for the detail. Note that the above lifting to
function types is possible for any equivalence relations such as
strong bisimilarity.

In the next section we show the bisimulation genericity for all
constants.

4. UnCAL Generalized with Monad
In this section we give interpretations of terms ofλT

FG and show
their bisimulation genericity. As explained in the last of the previ-
ous section, it is enough to consider only constants; we will see
graph constructors, structural recursion, and sibling transforma-
tions. In the last place, we see how to define syntax ofλT

FG.

4.1 Graph Constructors

UnCAL andλList
FG respectively have nine graph constructors, as in

Section2.2.2, by which we can represent all finite graphs. Here
we define such graph constructors forT -graphs by which we can
represent all finiteT -graphs.

Among the nine graph constructors ofλList
FG , [] and++ are in-

herent in the list monadList , and the other seven constructors are
common for all monads.List(S) is free monoid (generated by a set
S), which has nullary and binary operations: unit and multiplica-
tion. The nullary graph constructor [] and binary graph constructor
++ correspond to the unit and the multiplication, respectively.

First we define the seven common graph constructors forT -
graphs.

Definition 13 (Common Graph Constructors).

• ForG = (V,B, I) ∈ DBY ,

⟨l : G⟩ def
= (V ∪ {v0 : fresh}, B′, {& 7→ v0}) ∈ DBY

B′ def
= B ∪ {v0 7→ return

(
Edge (l, I(&))

)
}.

• ForG = (V,B, I) ∈ DBY ,

(&x := G)
def
= (V,B, {&x 7→ I(&)}) ∈ DB

{&x}
Y .

• For&y ∈ Y ,

⟨&y⟩ def
= ({&}, {& 7→ return(Outm (&y))}, id{&}) ∈ DBY .

• ()
def
= (∅, ∅, id∅) ∈ DB∅

Y .
• For G = (V,B, I) ∈ DBX

Y andG′ = (V ′, B′, I ′) ∈ DBX′
Y

such thatX ∩X ′ = ∅,

G⊕G′ def
= (V+V ′, B′′, I+I ′) ∈ DBX∪X′

Y

B′′ def
= [T (Lϵ×(in l)+Y ) ◦B, T (Lϵ×(inr )+Y ) ◦B′]

: V+V ′ → T (Lϵ×(V+V ′)+Y ).

• For G = (V,B, I) ∈ DBX
Y andG′ = (V ′, B′, I ′) ∈ DBY

Z ,

G @G′ def
= (V+V ′, B′′, in l ◦ I) ∈ DBX

Z where

B′′(inl(v))
def
= lift(f)(B(v)) f : Lϵ×V+Y → T (Lϵ×(V+V ′)+Z)

Edge (l, v) 7→ return(Edge (l, in l(v)))

Outm (&y) 7→ (T (Lϵ×(inr )+Z))(B′(I ′(&y)))


B′′(inr(v

′))
def
= (T (Lϵ×(inr )+Z))(B′(v′)).

• For a graphG = (V,B, I) ∈ DBX
X∪Y whereX ∩ Y = ∅,

cycle(G)
def
= (V,B′, I) ∈ DBX

Y where
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B′(v)
def
= T (f)(B(v)).

f : Lϵ×V+(X ∪ Y ) → Lϵ×V+Y

Edge (l, v) 7→ Edge (l, v)

Outm (&x) 7→ Edge (ε, I(&x))

Outm (&y) 7→ Outm (&y)



In the definition ofB′′(inl(v)) in the definition of@, by replac-
ing lift(f)(B(v)) with T (f ′)(B(v)) where

f ′ : Lϵ×V+Y → Lϵ×(V+V ′)+Z

Edge (l, v) 7→ Edge (l, in l(v))

Outm (&y) 7→ Edge
(
ε, I ′(&y)

)
we obtain@′ operator, which is bisimilar to@ operator. With@
operator, we find that we do not needε-edge for graph constructors
except forcycle, but @′ is useful to postpone extra calculation of
@, which is in effect equivalent to one step ofε-elimination.

We note that the multi-rootedness is semantically the same as
power of sets of graphs (or tuple of graphs):DBf

X
Y

∼= (DBfY )X .
The functionDBf

X
Y → (X → DBfY ) is G 7→ (&x 7→ ⟨&x ⟩ @G),

and the inverse is

f 7→ (&x1 := f(&x1))⊕ ...⊕ (&xn := f(&xn))

when X = {&x1 , ..., &xn}. Still multi-rootedness is useful for
efficient implementation, i.e., to share bisimilar nodes and to save
the size of graphs as small as possible.

Now we define the other graph constructors which depend on
each monadT . For Proposition19 and so on, we finally assume
that a monadT is finitary; though we can postpone the definition
of finitary monad till Proposition19, we first explain finitary monad
so that the reader has more concrete intuition in the following
definitions and propositions.

A finitary monadon Set is a monadT on Set such that
the functorT preserves all directed colimits inSet. We use this
property only in the following form (and an equivalent condition
explained soon): for any setS, and anyx ∈ T (S), there is a
finite subsetS′ ⊆ S such thatx ∈ T (S′). The monadsPfin,
List , Mfin, and Dfin are all finitary monads; for example, for
[4, 1, 6, 4, 6, 4] ∈ List(N), we have a finite subset{4, 1, 6} ⊆ N
and [4, 1, 6, 4, 6, 4] ∈ List({4, 1, 6}).

Next we recall one equivalent condition of finitary monadT :
shortly speaking,T is generated by finite arity algebraic operations.

For a monadT on Set, an elementf ∈ T (A) can be seen
as an|A|-ary algebraic operation onT (S) for anyS ∈ Set: for
g ∈ T (S)A,

f̂(g)
def
= lift(g)(f) ∈ T (S).

For example, whenT = Pfin, for f = {0, 1} ∈ Pfin({0, 1}) and
g0, g1 ∈ Pfin(S),

f̂(g0, g1) = lift(0 7→ g0, 1 7→ g1)({0, 1}) = g0 ∪ g1,

i.e., {̂0, 1} = ∪.
For a monadT , let us take a family of setsΣ(n) ⊆ T (n)

(n ∈ N), where we regardn as the set{0, ..., n−1}. Let us define
T

(i)
Σ (S) ⊆ T (S) (S ∈ Set) by induction oni ∈ N as below:

T
(0)
Σ (S)

def
= return(S) ⊆ T (S)

T
(i+1)
Σ (S)

def
= {f̂(g) ∈ T (S) | m∈N, g ∈ (T

(i)
Σ (S))m f ∈Σ(m)}.

Then a monadT is finitary if and only if there is aΣ such that

T (S) =
∪
i∈N

T
(i)
Σ (S),

and in this case, we call suchΣ a family of signature sets ofT and
we call elements inΣ(n) signatures.

Example 14. The three monadsPfin, Mfin, andList correspond
to (upper) semilattice, commutative monoid, and monoid, respec-
tively; then their zero ary operations and binary operations corre-
spond to signatures as below.

ForPfin,

Σ(0)
def
= {{}} ⊆ Pfin(0)

Σ(2)
def
= {{0, 1}} ⊆ Pfin(2)

Σ(n)
def
= ∅ (for othern).

For{} ∈ Σ(0), {̂} = {} ∈ Pfin(S), and as seen above,

{̂0, 1} = ∪: Pfin(S)
2 → Pfin(S).

Then any element inPfin(S) can be represented as a composition
of these operators and singletons, i.e., elements inreturn(S): e.g.
{a, b, c} = ({a} ∪ {b}) ∪ {c}.

ForMfin, similarly,

Σ(0)
def
= {{}} ⊆ Mfin(0)

Σ(2)
def
= {{0, 1}} ⊆ Mfin(2)

Σ(n)
def
= ∅ (for othern).

Here{} and{0, 1} are regarded as multisets.
ForList , similarly again,

Σ(0)
def
= {[]} ⊆ List(0)

Σ(2)
def
= {[0, 1]} ⊆ List(2)

Σ(n)
def
= ∅ (for othern).

ForDfin,

Σ(2)
def
= {sigr : 2 → [0, 1] | r ∈ [0, 1]} ⊆ Dfin(2)

Σ(n)
def
= ∅ (for othern)

wheresigr is defined assigr(0)
def
= r andsigr(1)

def
= 1−r. Then

for ϕ1, ϕ2 : S → [0, 1] in Dfin(S), ŝigr(ϕ0, ϕ1) ∈ Dfin(S) is
ŝigr(ϕ0, ϕ1): S → [0, 1] such that

ŝigr(ϕ0, ϕ1)(s) = r · ϕ0(s) + (1−r) · ϕ1(s).

Now recall that “singletons” inDfin(S), i.e., elements inreturn(S)
are given as the Dirac delta functionsδs as in Example3. Then it
is easy to see that the above family becomes a family of signature
sets; for example,ϕ: N → [0, 1] in Dfin(N) such that

ϕ(0) =
1

2
, ϕ(1) =

1

6
, ϕ(2) =

1

3
,

ϕ(n) = 0 (for othern),

can be represented by signatures and “singletons” as

ϕ =
1

2
δ0 +

1

6
δ1 +

1

3
δ2

=
1

2
δ0 +

1

2
(
1

3
δ1 +

2

3
δ2)

= ŝig 1
2
(δ0, ŝig 1

3
(δ1, δ2)).

The above family of signature sets ofDfin has infinitely many
signatures. Still, when implementingλT

FG in a programming lan-
guage, one can represent it as the image of a function. For exam-
ple, first let us interpretDfin(S) asFinSet(S×Float) (or with fi-
nite multiset instead of finite set). Here a distributionf ∈ Dfin(S)
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is regarded as a relation rather than a function, then a probability
f(s) ∈ [0, 1] can be regarded as the sum of the multi values of
f(s). Then the family of signature setsΣ for Dfin is presented as
sig: Float → Dfin(Nat) defined as below:

let sig r = {(0,r), (1,1-r)}

Now we define a graph constructor forT -graphs for each alge-
braic operator ofT , i.e., for each element inT (A). Before this, note
that in the definitions of graph and common graph constructors, we
can easily extend set of marker from finite to arbitrary setA, and⊕
from binary operator toA-ary operator:⊕: (DBX

Y )A
∼=→ DBA×X

Y .
These are used in the following definition, but the reader who is
interested only in finiteA’s—which are enough for implementable
language—may apply the following simply to the caseA = n =
{0, ..., n−1}.

Definition 15 (T -Algebraic Graph Constructors). Let T be a
monad onSet. For f ∈ T (A) (A ∈ Set), and a finite setX, let

GX
f

def
= (X,B, id) ∈ DBX

A×X where

B(&x)
def
= T (g)(f) ∈ T (Lϵ×X+A×X),

g : A → Lϵ×X+(A×X)

&a 7→ Outm ((&a, &x)) .

Then we define aT -algebraic graph constructorf : (DBX
Y )A →

DBX
Y . For(Gi)i∈A ∈ (DBX

Y )A, f((Gi)i)
def
= GX

f @ (⊕((Gi)i)).

We callT -algebraic graph constructors and the common graph
constructorsgraph constructors.

Example 16. WhenT = List , let us considerf = [0, 1] ∈ Σ(2)
in Example14. Let us see the picture ofG1++G2 in Figure3. This
is the@′ version of[0, 1](G1, G2). The topm-roots areG[0,1] and
theε-edges are those by@′; and one can find that the juxtaposition
of two graphsG1 andG2 in G1 ++ G2 are the same as that in
G1 ⊕G2 in the same figure.

Proposition 17. Let T be a monad onSet with an extension for
ε-elimination. Forf ∈ T (A) (A ∈ Set), andfi ∈ T (Ai) (i ∈
A,Ai ∈ Set), let⨿

i∈A
fi : A(∼=

⨿
i∈A 1) → T (

⨿
i∈A Ai)

be the coproduct of the morphismsfi : 1 → T (Ai) in the Kleisli
categorySetT . Then

f((fi(-))i∈A):
∏

i∈A(DB
X
Y )Ai → DBX

Y

is bisimilar to

lift(
⨿

i∈A
fi)(f): (DB

X
Y )

⨿
i∈A Ai → DBX

Y ,

via the isomorphism∏
i∈A(DB

X
Y )Ai ∼= (DBX

Y )
⨿

i∈A Ai .

Hence, ifT is further a finitary monad with a family of signature
setsΣ, the graph constructorf of anyf ∈ T (A) is a composition
of the graph constructors of a finite number of some signatures in
Σ.

At the same time, when we add graph constructors of all the sig-
natures in one family of signature sets to a calculus, then expressive
power on graph constructors are the same independently from the
choice of families of signature sets.

Proof. ForGi
i′ =(V i

i′ , B
i
i′ , I

i
i′) (i ∈ A, i′ ∈ Ai),

f((fi((G
i
i′)i′))i).V = X+Σi∈A(X+Σi′∈Ai

V i
i′)

and

lift(
⨿

i∈A
fi)(f)((G

i
i′)(i,i′)).V = X+Σ(i,i′)∈

⨿
i∈A Ai

V i
i′ .

In the former there are extraA-copy ofX, i.e.,Σi∈A(X) than the
latter; but with@ (rather than@′) in Definition 15, the nodes in
Σi∈A(X) in the former are not reachable from the roots in the
former graph, so can be ignored.

The second and third points are immediate from the first point
by the definition of a family of signature sets of a finitary monad.

This proposition also implies thatT -algebraic graph construc-
tors obey the same axioms as those of algebra ofT . For exam-
ple, finite powersets are free algebras of upper semilattice, hence
the graph constructors{} and(-) ∪ (-) satisfy all axioms of upper
semilattice: i.e., associativity, unitality, commutativity, and idem-
potency.

Proposition 18 (Bisimulation Genericity of Graph Constructors).
All the graph constructors (including@′) are strong-bisimulation
generic and also are bisimulation generic.

Proof. It is obvious that they are strong-bisimulation generic. Then,
for a graph constructorf , prove thatε-elim(f(G1, ..., Gn)) is
bisimilar toε-elim(f(ε-elim(G1), ..., ε-elim(Gn))). (For the case
of cycle, use unfolding axiom of iteration operator.) This implies
that strong-bisimulation genericity implies bisimulation genericity.

The next proposition is the most important property of the graph
constructors, for which we requireT to be finitary.

Proposition 19(Full-Representability). LetT be a finitary monad
on Set which has an extension forε-elimination. Any finiteT -
graphs can be constructed by the graph constructors.

Proof. The proof is basically the same as that for UnCAL [Bune-
man et al.2000]. See AppendixD for the detail.

4.1.1 Remark on Representability of Monads

We give an important remark on “representability” of monads in
languages, which explains why we need care to infinite width for
List-graphs, and why we do not need such special care forPfin-
graph.

For T with an extension forε-eliminationT ′, we definedε-
elimination for anyT -graphs, but in fact it is enough to define
ε-elimination for finiteT -graphs, since our languages target only
finite graphs. IfT is finitary, in order to defineε-elimination only
for finite T -graphs, without loss of generality we can replace the
extensionT ′ with its finitary partT ′|fin:

T ′|fin(S)
def
=
∪

S′∈Pfin(S) T
′(S′).

(See AppendixC for the detail why generality is not lost.)
Then,(Pcnt)|fin is equal toPfin, hence we do not needPcnt

for λ
Pfin
FG anymore. On the other hand,CList |fin(S) consists of

countable listsl such that the number of elements inS which occur
in one l are finite. For example,[0, 1, 0, 1, ...] ∈ CList |fin(N),
but [0, 1, 2, 3, ...] /∈ CList |fin(N), ThusCList |fin is far different
from List ; we can not avoid the use of the notion of countable
linear ordered set. (However the authors do not know if for arbitrary
countable linear ordered setL there is anfiniteList-graphG whose
ε-elimination involvesL; though we found suchG asinfiniteList-
graphs as in AppendixA. As in Figure6, it is certain that a dense
countable linear ordered set (and more countable linear ordered sets
concatenated further) occur.)

For the other two examples,

(Mcnt)|fin(S) = {ϕ: S→N∪{∞} | ϕ−1(N−{0}) is finite},
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and (SubDcnt)|fin is thefinite subprobability distribution monad
SubDfin:

SubDfin(S)
def
= {ϕ: S→[0, 1] | ϕ−1((0, 1]) is finite,Σxϕ(x) ≤ 1}.

Here(Mcnt)|fin and(SubDcnt)|fin are representable in a language
for implementingλT

FG in a similar way to that after Example14,
while it seems difficult to represent whole ofCList |fin, because of
the notion of countable linear ordered set.

Note the difference between being finitary and being “rep-
resentable”, and also note the difference between being “repre-
sentable” ofT and that ofT ′. (On the other hand, recall that as
above ifT is finitary thenT ′ can be finitary.) As above, it is not
clear that being finitary of a monad implies that the monad is
“representable” in a language; and being finitary ofT is used to
prove the property that every term inλT

FG preserves finiteness (of
nodes) of graphs, while “representability” ofT is needed for syn-
tax of graph constructors and implementation of the graph model
B : V → T (Lϵ×V+Y ). On the other hand, “representability” of
T ′ is needed for representation of graphs withoutε-edges, which
is important if, in an application, graphs observable from users of
λT
FG should beε-edge free; in order to resolve this problem, we

gave the effective procedure in Section3.2for the case ofList with
CList .

4.2 Structural Recursion

Now we give a general definition of the structural recursion, which
is the most important transformation method ofλT

FG. In [Buneman
et al. 2000], there are two semantics for the structural recursion:
bulk semantics and memoized recursive semantics. Here we gener-
alize the bulk semantics.

A picture of the bulk semantics for ordered graphs is given
in Figure 7. As seen in the picture, with bulk semantics first we
calculate the application of a given input functionf to a pair of
each edge and its following subgraph of an input graph. Then we
connect the results in keeping with the shape of the original graph,
usingε-edges.

Recall the record notationG = (G.V, G.B, G.I), which is used
in the following.

Definition 20 (Bulk Semantics of Structural Recursion). Let T be
a monad onSet. For a functione: L×DBY → DBZ

Z , astructural
recursion functionsrec(e): DBX

Y → DBZ×X
Z×Y is defined as the

following.

For G = (V,B, I) ∈ DBX
Y , srec(e)(G)

def
= (V ′, B′, I ′) ∈

DBZ×X
Z×Y where

• V ′ def
= (Z×V ) + (Σ(l,v′)∈L×V e(l, G|v′).V)

(Here, an element(&z , v) in the left setZ×V —Z-copy of
nodes ofG—is a “hub” of the new graph, for this case we
use the labelHub(&z , v) below. While, on the right of “+”
and further in the case of(l, v′) of the direct sum “Σ”, a node
u in e(l, G|v′).V is “a piece of bulk”; eachl-labeled edge to
v′ in G is replaced with this subgraphe(l, G|v′).V, which is
represented by a dotted box in Figure7. For this case, we use
the labelBulk(l,v′)(u). )

• B′ : (Z×V ) + (Σ(l,v′)e(l, G|v′).V) →
T
(
Lϵ×

(
(Z×V ) + (Σ(l,v′)e(l, G|v′).V)

)
+ (Z×Y )

)
Hub(&z, v) 7→ T (g)

(
lift(λx.(&z , x))(B(v))

)

e(a, ) :

0 1

2

a d

&z1 &z2

&z1 &z2

e(b, ) :

0 1

2

b
3

c

&z1 &z2

&z1 &z2

&x

... (input marker)

...

&x (output marker)

0 2

a
1

b

&

&y

srec(e)
7−→

(&z1,&)      

&z1,0

b,0 (&z1,&y) a,0

(&z2,&)      

&z2,0

b,1 (&z2,&y) a,1

&z1,2 &z2,2

b,2

b
b,3

c

&z1,1 &z2,1

a,2

a d

Figure 7. Bulk Semantics of Structural Recursion



g : Z×(Lϵ×V+Y ) →
Lϵ×

(
(Z×V ) + (Σ(l,v′)e(l, G|v′).V)

)
+ (Z×Y )

(&z,Edge
(
l, v′
)
) 7→

(if l = ε ) Edge
(
ε,Hub(&z, v′)

)
(if l ̸= ε ) Edge

(
ε,Bulk(l,v′)((e(l, G|v′).I)(&z))

)
(&z,Outm (&y)) 7→ Outm ((&z, &y))


Bulk(l,v′)(u) 7→ T (h)

(
(e(l, G|v′).B)(u)

)
h: Lϵ×(e(l, G|v′).V)+Z →

Lϵ×
(
(Z×V ) + (Σ(l,v′)e(l, G|v′).V)

)
+ (Z×Y )

Edge
(
l′, u′) 7→ Edge

(
l′,Bulk(l,v′)(u

′)
)

Outm (&z) 7→ Edge
(
ε,Hub(&z, v′)

)


• I ′ : Z×X → (Z×V ) + (Σ(l,v′)e(l, G|v′).V)
(&z , &x ) 7→ Hub(&z , I(&x ))

Next we see how structural recursion preserves finiteness of
graphs.

Proposition 21. Let T be a finitary monad. Structural recursion
function maps finite graphs to finite graphs; more precisely, for
e: L×DBfY → DBf

Z
Z and a finiteT -graphG, the accessible part

of srec(e)(G) is finite.

Proof. SinceT is finitary, for each elementv ∈ V , there is a finite
subsetEv ⊆ Lϵ×V such thatB(v) ∈ T (Ev+Y ). Let

E
def
= (
∪

v∈V Ev) ∩ (L×V ) ⊆ L×V,

then sinceV is finite, so isE, and B is decomposed through
T (E+Y ) ⊆ T (Lϵ×V+Y ). Then the accessible part ofsrec(e)(G)
is included in the finite set

V ′′ def
= (Z×V ) + (Σ(l,v′)∈Ee(l, G|v′).V) ⊆ V ′,

i.e.,I ′(Z×X) ⊆ V ′′ andB′(V ′′) ⊆ V ′′.

Now recall the notion of bisimilarity for higher order functions.
The following is stronger result than that proved in [Buneman et al.
2000] even whenT = Pfin, because here bisimulation genericity is
proved also on the first argumente, while in [Buneman et al.2000]

11



it is proved only on the second argumentG. This is the key why we
can extend from UnCAL to the higher order calculusλ

Pfin
FG .

Theorem 22. LetT be a finitary monad having an extension forε-
eliminationT ′. Structural recursionsrec is bisimulation generic,
i.e., if

e1 ∼ e2 : L×T DBfY → T DBf
Z
Z , and

G1 ∼ G2 ∈ T DBf
X
Y ,

then

srec(e1)(G1) ∼ srec(e2)(G2) ∈ T DBf
Z×X
Z×Y .

Proof. Basically the proof is similar to that of Proposition18 but a
bit subtle, becauseε-elim embedT DBf into T ′ DB , while higher
order function types make inclusion relations between types oppo-
site. So, first we show that the structural recursion is defined “uni-
form” on size of graphs: i.e., let

i
def
= (ι-DBX

Y )|T DBf
X
Y
: T DBf

X
Y → T ′ DB

X
Y ,

then for

e: L×T DBfY → T DBf
Z
Z ,

e′ : L×T ′ DBY → T ′ DB
Z
Z ,

G ∈ T DBf
X
Y ,

if e′ ◦ (L×i) = i ◦ e then

srecT
′
(e′)(i(G)) = i(srecT (e)(G)).

This reduces the setting of the theorem to the case whenι: T →
T ′ is the identity and also the case of infinite graph (T DB rather
thanT DBf ), because for any

e1 ∼ e2 : L×T DBfY → T DBf
Z
Z ,

there are

e′1 ∼ e′2 : L×T ′ DBY → T ′ DB
Z
Z

such thate′i ◦ (L×i) = i ◦ ei.
Now, in this reduced setting, we can prove commutativity of

srec with ε-elim:

ε-elimZ×V (ε-elimΣ(l,v′)e(l,G|v′ ).V(srec(e)(G)))

∼s srec(ε-elim ◦ e)(ε-elim(G)).

Here, whileε-elim eliminatesε-edges inv0
ε→ v1...

ε→ vn
a→ u

and addsv0
a→ u, ε-elimW does so only ifv0, ...,vn are inW .

Then it is sufficient in order to conclude the proof to prove that
if

e1 ∼s e2 : L×T DBY → T DBZ
Z , and

G1 ∼s G2 ∈ T DBX
Y ,

then

srec(e1)(G1) ∼s srec(e2)(G2) ∈ T DBZ×X
Z×Y .

We can define a needed bisimulation relation just as we defined the
set of nodes ofsrec(e)(G) in the bulk semantics.

4.3 Sibling Transformation

So far we generalized all of UnCAL, parameterizing with monads.
However, when we take a monad other than powerset monad, say,
the list monad for ordered graph, we need more expressive power
than what we got so far: i.e., graph transformations on sibling
dimension.

Here we introduce two term constructors for sibling transforma-
tion: first local sibling transformationl-sbl(f) and thenuniform
sibling transformationu-sbl(f).

1 2 n 
… 

… 

& 
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Figure 8. l-sbl(swap-hd-tl) (= uf -1 ◦ swap-hd-tl◦ uf )

The two functionsl-sbl(f) andu-sbl(f) can be applied only
to graphs withoutε-edge. Hence we takeε-elimination ofG before
evaluatingl-sbl(f)(G) or u-sbl(f)(G). For T such that its ex-
tensionT ′ is not presentable in a programming language (such as
List with CList), we check if theε-elimination of a given graph
results in aT -graph—by the procedure in Section3.2 for ordered
graphs—and if it is impossible, put an error. IfT ′ is presentable in
a language such as multiset, then we consider theT ′ as an instance
of T in the following. Thus below we consider a finitary monad
T andT -graphs withoutε-edges. (In Example23, we see why we
avoidε-edges.)

4.3.1 Local Sibling Transformation

Local sibling transformation

l-sbl(f): DBfY → DBfY

for

f : T (L×DBfY +Y ) → T (L×DBfY +Y )

manipulates branches of the root node of an input graph in sibling
direction. Before applyl-sbl, we take 1-step unfolding of the input
graph, which we now define, so we do not have to mind cycles
which the root might belong to.

We define the 1-step unfolding

uf : DBfY → T (L×DBfY +Y ),

where note thatL has noε since we consider graph having noε-
edges. First, for a graphG = (V,B, I) ∈ DBX

Y , and a nodev ∈ V ,
we define

G|v
def
= (V,B, {& 7→ v}) ∈ DBY .

Now forG = (V,B, I) ∈ DBfY ,

uf (G)
def
= T (L×f+Y )(B(I(&)))

wheref
def
= G|(-) : V → DBfY . A picture ofuf can be seen in

Figure8.
This coalgebrauf is calledfinal locally finite coalgebra, and by

the results [Adámek et al.2006, Theorem 3.3] with [Milius 2010,
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Corollary III.15], we can show that for any finitary monadT , this
uf is isomorphic up to bisimilarity and bisimulation generic. For
example, whenT = List ,

uf -1 = foldr(++, []) ◦ List([⟨- : -⟩, ⟨-⟩]).

See AppendixD for the detail ofuf -1.
Thenl-sbl is defined as below: for

f : T (L×DBfY +Y ) → T (L×DBfY +Y )

andG ∈ DBfY ,

l-sbl(f)(G)
def
= (uf )-1(f(uf (G))).

A picture of an example of local sibling transformation is given
in Figure8, where swap-hd-tl is the list function which swaps the
head and tail and maps nil to nil.

Since we takeε-elimination ofG before applyingl-sbl(f) to
G, and sinceuf is bisimulation generic, it is obvious thatl-sbl
is (higher order) bisimulation generic. On the other hand, if we
apply l-sbl(f) to G havingε-edges, bisimulation genericity does
not necessarily hold:

Example 23. Let us considercar defined ascar([])
def
= [] and

car(a :: as) = [a]. Then if we applyl-sbl(car) to the two
bisimilar graphs below left, then the results below right are not
bisimilar.

0

��
a
��6

66
6 0

a��

l-sbl(car) 0

��

0
a��∼ 7→ ∼/

1 2 2 1 2

We remark that, when takingε-elimination of G before the
applicationl-sbl(f)(G), it is enough to eliminate onlyε-edges
from the root node ofG—by which all branches of the root node
become non-ε edges or output markers—rather than the fullε-
elimination.

Example 24. One can also transform branches of any nodes in an
input graph, by the combination ofl-sbl with traversing the input
graph by the structural recursion, or by multiple use ofl-sbl. For
example, the following apply transformatione to branches of all
nodes pointed bya-labeled edges.

apply lct a(e)(db) = srec( λ(l, g). if l=a

then ⟨l : l-sbl(e)(g)⟩ @ () else ⟨l : ⟨&⟩⟩)(db)
The following applies a transformationl-sbl(e) to branches of the
first branch of the root.

apply lct first branch(e)(db) = l-sbl( λbs.cons(
case car(bs) of Edge(l, g)→ Edge(l, l-sbl(e)(g))

or y → y,
cdr(bs)
) )(db)

4.3.2 Uniform Sibling Transformation

While l-sbl(f) transforms branches only of one node (root node),
u-sbl(f) transform branches uniformly of all nodes in a given
graph, as in Figure9.

Let us see the definition. Let

ϕ: T (L×(-)+Y ) → T (L×(-)+Y )

be a natural transformation. For aT -graphG = (V,B, I) ∈
DBf

X
Y ,

u-sbl(ϕ)(G)
def
= (V, ϕV ◦B, I).

& 

a b c 

e f g 

h 

& 

c b d 

e f g 

h 

 d a 

Figure 9. u-sbl(swap-hd-tl)

The naturality ofϕ implies thatu-sbl(ϕ) is bisimulation generic.
In the languageλT

FG, the naturality is realized by parametricity.
The term

λx.e: T (Label×α+Y )→T (Label×α+Y )

in u-sbl(λx.e) should be written as a parametric term. Then the
interpretation ofλx.e becomes a natural transformation, by the free
theorem.

Functions u-sbl(ϕ) are used for transforming (a list of)
branches for each node. For example, using the list reverse function
reverse, the transformationu-sbl(reverse) reverses the orders
of branches for all nodes in an input graph.

The introduction ofu-sbl also enhances the expressive power
of structural recursion. The structural recursion law

f(G++G′) = f(G) ++ f(G′)

with f = srec(e) is too restrictive in the sense that the function
f cannot change the order of branches of any nodes. Under this
restriction, we cannot write a transformationf which satisfies

f(G++G′) = f(G′) ++ f(G).

To circumvent the restriction, we can use theu-sbl construct
to rearrange the order of branches during structural recur-
sion; for example, we can write the transformation above by
srec(e)(u-sbl(reverse)(G)).

The counterexample in Example23 is also a counterexample
for the fact that if we applyu-sbl(ϕ) to graphs havingε-edges
thenu-sbl(ϕ) is not necessarily bisimulation generic.

If ϕ: T (-) → T (-) is not just a natural transformation but also
a monad morphism such that the lifted endofunctorFϕ

Fϕ : SetT → SetT

(f : S → T (S′)) 7→ (ϕS′ ◦ f : S → T (S′))

preserves a given iteration operator, then we do not need to calcu-
late ε-elimination before application ofu-sbl. For example, the
reverse operatorreverse is suchϕ. We can add suchnon ε-
eliminating uniform sibling transformationu-sbl′(ϕ) for ϕ satis-
fying the above condition, whose proof are subject to users. Or an
implementer can addu-sbl′(ϕ) as primitive functions, after prov-
ing the condition forϕ.

4.4 Syntax ofλT
FG

Finally let us see how to define the syntax ofλT
FG for generalT ,

modifying that ofλList
FG , i.e., Figures4 and5 in Section2.2.3.

First we choose a convenient family of signature setsΣ =
(Σ(n))n∈N of T , and we replace algebraic graph constructors []
ande++ e with constantsops(s ∈ Σ), then we give the following
typing rules.

Γ ⊢ ei : DBX
Y (i ∈ n)

Γ ⊢ ops(e1, ..., en): DBX
Y

(s ∈ Σ(n))

Also we replace the type constructorList with that of the cur-
rent monadT . Then we replace list operators with any convenient
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Figure 10. Bulk Semantics of Structural Recursion: An Example ofsrec(rc, foldr(++, []))

operators on the monadT ; according to adding operators onT ,
l-sbl andu-sbl become more powerful.

5. Structural Recursion with Sibling
Transformation

In Section4.3, we gave two kinds of sibling transformations. Here
we show one attempt to extend the structural recursion so that by
it we can transform graphs both in depth-direction and in sibling-
direction at the same time. In this section we concentrate on the
case whenT = List .

First we show our idea briefly. The original structural recursion
function f = srec(e) is characterized with the following equa-
tions:

f(⟨l1 : g1⟩++ ...++ ⟨ln : gn⟩)
= e(l1, g1) @f(g1) ++ ...++ e(ln, gn) @f(gn)

We generalize above++ with arbitrary operators⊙ satisfying
certain axioms, i.e., as the following

f(⟨l1 : g1⟩++ ...++ ⟨ln : gn⟩)
= e(l1, g1) @f(g1)⊙ ...⊙ e(ln, gn) @f(gn)

so that we can transform graphs in sibling direction with⊙.
Now let us see the typing rule for the extended structural recur-

sion function:

Γ ⊢ e1 : Label×DBY → DBZ
Z

Γ ⊢ e2 : List(DBZ
α ) → DBZ

α

e1 ande2 are production-consumption compatible

Γ ⊢ srec(e1, e2): DBX
Y → DBZ×X

Z×Y

In the typing rule,e2 is a parametric polymorphic term on
the sets of output markers. We generalize⊙ above from binary

operator to list operator; for a binary operator (with unit) we can
construct a list operator by foldr (or foldl), where we do not need to
require them to be a monoid. We explain production-consumption
compatibility after giving bulk semantics of thissrec.

Before giving the formal definition of bulk semantics of
srec(e, d), we illustrate the bulk computation behavior using

a2d xc
def
= srec(rc, foldr(++, [])) (see Example4 for rc). It con-

sists of two steps of bulk computations followed by a grouping
step, starting with the input graph (a) in Figure10.

1. Applying Map Computation on Edges withe

Apply function rc (which renames edges labeleda to those
labeledd and contracts edges labeledc) to every edge labeled
l and the graphg following to the edge, and yields a graph in
DBZ

Z . We call these graphs computed bye(= rc) e-graphs;
graph (b) showse-graphs.

2. Applying Map Computation on Nodes withd

For every node of the original graph, use binary operator++ to
combine all branchinge-graphs. We call these graphs computed
by d(= foldr(++, [])) d-graphs; graph (c) shows the result.
The nodes1 and4 have more than one branches which need to
be merged using++.

Before applyingd = foldr(++, []) on a node of the original
graph, for eachith branch of the node, we add the indexi to
the output markers of theith e-graph, which will be used in the
next “grouping” step.

3. Grouping Subgraphs withε-Edges

Group alld-graphs computed in Step 2: for eachd-graph, its
output marker produced bye with an indexi is connected via an
ε-edge to the root of thed-graph on the node which the original
ith edge points to. We do not need anymore the original nodes,
and also delete indicesi of the remaining output markers (e.g.,
2 of (2, &y) in the graph (c)). The root of new graph is the root

14



of thed-graph on the original root node. With these, we can get
Graph (d) from Graph (c).

Graph (e) is the graph obtained byε-elimination for Graph (d).
(We can further minimize Graph (e) if necessary; then nodes
2, 3, 5 are identified, since they are bisimilar.) We remark a
difference between the two bulk semantics: the result graph (e)

of a2d xc
def
= srec(rc, foldr(++, [])) is not isomorphic to the

result graph (c) in Figure2 of a2d xc
def
= srec(rc); but on the

other hand, in generalsrec(e) andsrec(e, foldr(++, [])) are
bisimilar.

Now let us give a formal definition of bulk semantics of the
structural recursion. For a functionf : X → Y , we definemarker-

renaming graph⌊f⌋ def
= ⊕&x∈X&x := ⟨f(&x )⟩ ∈ DBX

Y .

Definition 25. For e: L × DBY → DBZ
Z , d: List(DBZ

α ) →
DBZ

α , andG = (V,B, I) ∈ DBX
Y ,

srec(e, d)(G)
def
= (V ′, B′, I ′) ∈ DBZ×X

Z×Y

is defined as below.
We assumeG has noε-edges since we can takeε-elimination;

if ε-elim(G) has infinite width, we put an error.
We first extende to the following dependent type function

ē: L×V + Y → DBZ
Zx

x = Edge (l, v) 7→ e(l, G|v) (Zx = Z)

x = Outm (&y) 7→ ⊕&z∈Z&z := ⟨(&z, &y)⟩ (Zx = Z×Y ),

and then to the following dependent type function

eList : List(L×V + Y ) → List(DBZ
Wl

)

l = (li)i∈n 7→ (ē(li) @⌊ini⌋)i∈n (Wl =
⨿

i∈n Zli).

Next, for eachv ∈ V , we defined-graph onv as

dv
def
= d(eList(B(v))) ∈ DBZ⨿n

i=1 Zi
,

wheren = |B(v)| and

Zi =

{
Z (if B(v).i is an edge)

Z×Y (if B(v).i is an output marker).

Then,

• V ′ def
=
⨿

v∈V dv.V

• B′ :
⨿

v dv.V → List
(
L×(

⨿
v dv.V) + Z×Y

)
(v, u) 7→ List(g)( (dv.B)(u) )

(dv.B)(u) ∈ List
(
L×(dv.V) +

⨿n
i=1 Zi

)
g : L×(dv.V) +

⨿n
i=1 Zi → L×(

⨿
v dv.V) + Z×Y

Edge
(
l, u′) 7→ Edge

(
l, (v, u′)

)
Outm ((i, &z)) 7→ letB(v).i = Edge

(
l, v′
)

in

Edge
(
ε,
(
v′, (dv′ .I)(&z)

))
Outm ((i, (&z, &y))) 7→ Outm ((&z, &y))


• I ′ : Z×X →

⨿
v dv.V

(&z , &x ) 7→
(
I(&x ), (dI(&x).I)(&z )

)
Now we explain the assumption in the above typing rule. Terms

e1 and e2 are calledproduction-consumption compatibleif the
interpretationse = [[e1]] andd = [[e2]] satisfy the following. Let
Gi ∈ DBZ

Zi
, G′

i ∈ DBZi

Z′
i
(i = 1, ..., n) be graphs such that for

eachi, either

• Gi is an application ofe and soZi = Z, or

• Gi = ⊕&z∈Z&z := ⟨(&z , &y)⟩ for some&y ∈ Y , Zi = Z′
i =

Z×Y , andG′
i = ⌊id⌋.

Then the following must be satisfied

d((G1 @G′
1 @⌊in1⌋), ..., (Gn @G′

n @⌊inn⌋))
= d(G1 @⌊in1⌋, ..., Gn @⌊inn⌋) @ (G′

1+...+G′
n)(

∈ DBZ
Z′

1+...+Z′
n

)
whereG′

1+G′
2

def
= (G′

1 @ ⌊in1⌋)⊕ (G′
2 @ ⌊in2⌋) ∈ DBZ1+Z2

Z′
1+Z′

2
.

This condition means thatd “consumes” only the information
of the graphs “produced” bye.

By this assumption, we can show that the bulk semantics agrees
with the recursive semantics: i.e., the structural recursion function
f = srec(e, d) in Definition 25 satisfies (and is characterized by)
the following equation

f(⟨l1 : g1⟩++ ...++ ⟨ln : gn⟩)
= d(e(l1, g1) @f(g1), ..., e(ln, gn) @f(gn)).

If d = foldr(⊙, ι⊙) for some⊙ and ι⊙, then the following
characterizing equations are also available

f([]) = ι⊙
f(⟨l1 : g1⟩++ g) = (e(l1, g1) @f(g1))⊙ f(g).

Further, if(⊙, ι⊙) is a monoid, then we obtain also the following
simpler characterizing equations

f([]) = ι⊙
f(⟨l : g⟩) = e(l, g) @f(g)
f(g1 ++ g2) = f(g1)⊙ f(g2).

Above we considered the case whenX is a singleton and omit-
ted the case when a branch might be an output marker&y ; for the
general case, first note that

srec(e, d): DBX
Y → DBZ×X

Z×Y

is bisimilar to the singleton case to theXth power

srec(e, d)X : (DBY )X → (DBZ
Z×Y )X

with the isomorphisms

⊕: (DBY )X ∼= DBX
Y , ⊕: (DBZ

Z×Y )X ∼= DBZ×X
Z×Y ,

hence the case of generalX is reduced to the case whenX is a
singleton. On the matter that a branch might be an output marker,
we replace

e(l, g) @f(g) for ⟨l : g⟩

with

⊕&z∈Z &z := ⟨(&z, &y)⟩ for ⟨&y⟩.

For example, the above second characterizing equations whend =
foldr(⊙, ι⊙) becomes

f([]) = ι⊙
f(⟨l1 : g1⟩++ g) = (e(l1, g1) @f(g1))⊙ f(g)
f(⟨&y⟩++ g) = ⊕&z∈Z&z := ⟨(&z , &y)⟩ ⊙ f(g).

Example 26. The following left a path cut down the left side
of the leftmost path consisting only ofa-labeled edges, as in Fig-
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Figure 11. left a path

ure11. We explain the detail after the definition.

left a path : DBY → DBY

left a path(g) = ⟨&⟩ @f(g) @ ⌊pr r⌋ (pr r : {&, &z}×Y → Y )
where

f : DBY → DB
{&,&z}
{&,&z}×Y

f = srec(e, foldr(o, i))

e: Label×DBY → DB
{&,&z}
{&,&z}

e(l, g) = ⟨l : ⟨&⟩⟩ ⊕ &z := ⟨l : ⟨&z ⟩⟩
is a under root of : DBY → Bool
is a under root of (g) = not(isEmpty(

srec(λ(l, g). if l=a then ⟨a : []⟩ else [])(g) ))
o: DB

{&,&z}
α ×DB

{&,&z}
α → DB

{&,&z}
α

o(g1, g2) = if is a under root of (⟨&z ⟩ @g1)
then ((⟨&⟩ @g1) ++ (⟨&z ⟩ @g2)) ⊕

&z := ((⟨&z ⟩ @g1) ++ (⟨&z ⟩ @g2))
else (⟨&⟩ @g2)⊕ &z := ((⟨&z ⟩ @g1) ++ (⟨&z ⟩ @g2))

i: DB
{&,&z}
α

i = [] ⊕ &z := []

First, it is easily checked that the abovee and foldr(o, i) are
production-consumption compatible. In fact,

o(e(l1, g1) @g′1 @⌊in1⌋, e(l2, g2) @g′2 @⌊in2⌋)
= if is a under root of (⟨&z⟩ @e(l1, g1) @g′1 @⌊in1⌋)

then ... else ...

= if is a under root of (⟨l1 : (⟨&z⟩ @g′1 @⌊in1⌋)⟩)
then ... else ...

= if l1 = a

then
(
(⟨&⟩ @e(l1, g1) @g′1 @⌊in1⌋)++
(⟨&z⟩ @e(l2, g2) @g′2 @⌊in2⌋)

)
⊕ &z:=(

(⟨&z⟩ @e(l1, g1) @g′1 @⌊in1⌋)++
(⟨&z⟩ @e(l2, g2) @g′2 @⌊in2⌋)

)
else

(
⟨&⟩ @e(l2, g2) @g′2 @⌊in2⌋

)
⊕ &z:=(

(⟨&z⟩ @e(l1, g1) @g′1 @⌊in1⌋)++
(⟨&z⟩ @e(l2, g2) @g′2 @⌊in2⌋)

)



(∗)

and on the other hand,

o(e(l1, g1) @⌊in1⌋, e(l2, g2) @⌊in2⌋) @ (g′1 + g′2)

= ...

=
(
if l1 = a

then
(
(⟨&⟩ @e(l1, g1) @⌊in1⌋)++
(⟨&z⟩ @e(l2, g2) @⌊in2⌋)

)
⊕ &z:=(

(⟨&z⟩ @e(l1, g1) @⌊in1⌋)++
(⟨&z⟩ @e(l2, g2) @⌊in2⌋)

)
else

(
⟨&⟩ @e(l2, g2) @⌊in2⌋

)
⊕ &z:=(

(⟨&z⟩ @e(l1, g1) @⌊in1⌋)++
(⟨&z⟩ @e(l2, g2) @⌊in2⌋)

))
@ (g′1 + g′2)

= (∗).
The&z -root graph off(g) is the original graphg; in fact, by the

recursive semantics, we can check that⟨&z ⟩ @ f(g) @ ⌊pr r⌋ = g
as below:

⟨&z⟩ @f([]) = ⟨&z⟩ @ i = [] ,

⟨&z⟩ @f(⟨l1 : g1⟩++ g)

= ⟨&z⟩ @o(e(l1, g1) @f(g1), f(g))

= if is a under root of (⟨&z⟩ @e(l1, g1) @f(g1))

then ⟨&z⟩ @e(l1, g1) @f(g1) ++ (⟨&z⟩ @f(g))

else ⟨&z⟩ @e(l1, g1) @f(g1) ++ (⟨&z⟩ @f(g))

= ⟨&z⟩ @e(l1, g1) @f(g1) ++ (⟨&z⟩ @f(g))

= ⟨l1 : (⟨&z⟩ @f(g1))⟩++ (⟨&z⟩ @f(g)).

(The above is paramorphism of structural recursion by tupling,
regarding multi-rootedness as tuple.)

Then let us seeleft a path(g), i.e., the&-root graph off(g):

⟨&⟩ @f([]) = ⟨&⟩ @ i = [] ,

⟨&⟩ @f(⟨l1 : g1⟩++ g)

= ⟨&⟩ @o(e(l1, g1) @f(g1), f(g))

= if is a under root of (⟨&z⟩ @e(l1, g1) @f(g1))

then (⟨&⟩ @e(l1, g1) @f(g1)) ++ (⟨&z⟩ @f(g))

else (⟨&⟩ @f(g))

= if is a under root of (⟨l1 : (⟨&z⟩ @f(g1))⟩)
then ⟨l1 : (⟨&⟩ @f(g1))⟩++ (⟨&z⟩ @f(g))

else (⟨&⟩ @f(g))

= if is a under root of (⟨l1 : g1⟩)
then ⟨l1 : (⟨&⟩ @f(g1))⟩++ g

else (⟨&⟩ @f(g)).

Now it is clear that the functionleft a path(= ⟨&⟩ @ f(-))
works as in Figure11.

By the bulk semantics, it is clear that the above structural re-
cursion function preserves finiteness of graphs. Also, similarly to
Theorem22, we can show that the above structural recursion is
bisimulation generic.

Comparison of Sibling Transformations

The structural recursion extended above is similar to the combina-
tion ofu-sbl and the original structural recursion in Section4.2. in

fact, whene: L×DBY → DB{&} is “identity” i(l, g)
def
= ⟨l : g⟩,

srec(i, d) is similar tou-sbl(f), though hered andf have a bit
different types. The main difference between the extended struc-
tural recursion and the combination ofu-sbl and the original struc-
tural recursion is the following. In general,srec(e, d) transforms
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graphs in sibling direction by traversing graphs produced bye. This
sibling transformation can not be simulated byu-sbl(f) used after
the originalsrec; in the latterf traverses just one step of children,
while in the formerd can traverse more deep descendants as long
as production-consumption compatibility holds.

The extended structural recursion includes also the feature of
l-sbl in the following sense. Let

f : List(Label×DB0+0) → List(Label×DB0+0)

be a function such that there is

f ′ : List(DB{&,&z}
α ) → DBα

satisfying

f ′ ◦ List(pair) = uf -1 ◦ f(
= foldr(++, []) ◦ List([⟨- : -⟩, ⟨-⟩]) ◦ f

)
where

pair : Label×DB0 → DB
{&,&z}
0

pair(l, g)
def
= ⟨l : []⟩ ⊕ &z := g.

Thenl-sbl(f) can be represented bysrec as the following:

l-sbl(f) = ⟨&⟩ @srec(e, d)

where

e: Label×DB0 → DB
{&,&z}
{&,&z}

e(l, g)
def
= ⟨l : []⟩ ⊕ &z := (g @⌊!⌋) (!: 0 → {&, &z})

d: List(DB{&,&z}
α ) → DB{&,&z}

α

d(l)
def
= f ′(l)⊕ &z := [] .

(Here again we used tupling technique forsrec:) This is because,

srec(e, d)(⟨l1 : g1⟩++ ...++ ⟨ln : gn⟩)
= d(e(l1, g1) @srec(e, d)(g1), ..., e(ln, gn) @srec(e, d)(gn))

= d(pair(l1, g1), ..., pair(ln, gn))

hence,

⟨&⟩ @srec(e, d)(⟨l1 : g1⟩++ ...++ ⟨ln : gn⟩)
= f ′(pair(l1, g1), ..., pair(ln, gn))

= (f ′ ◦ List(pair))((l1, g1), ..., (ln, gn))
= (uf -1 ◦ f)(uf (⟨l1 : g1⟩++ ...++ ⟨ln : gn⟩))
= l-sbl(f)(⟨l1 : g1⟩++ ...++ ⟨ln : gn⟩).

6. Modularized Extension of UnCAL
In Section4, we saw how we can generalize (and extend) UnCAL
to obtainλT

FG with monadsT which satisfy certain assumptions:
i.e.,

• T has an extension forε-elimination,
• T preserves weak-pullbacks, and
• T is a finitary monad.

Also we saw four examples of such monads:Pfin, List , Mfin, and
Dfin. Here we see how we can compose monadsT to obtainλT

FG.
Since monad was introduced for the notion of computational

effects [Moggi 1989], there has been much study about how to
compose monads from smaller monads: i.e., monad transformers.
In [Benton et al.2000] many examples of unary monad transform-
ers are listed. In [Hyland et al.2006], the authors studied binary
monad transformers and show also how they can be used to pro-
duce unary monad transformers such as those in the former paper.

In the following, as a demonstration of our modular approach,
we take up one simple binary monad transformer—the product
T×T ′ of monads—, and see the languageλT×T ′

FG .

6.1 Product of Monads

For a pair of monadsT1 andT2 on Set, we define their product
T1×T2 just as

(T1×T2)(X)
def
= T1(X)×T2(X)

for a setX and

(T1×T2)(f)
def
= T1(f)×T2(f)

for a functionf . Then

returnT1×T2 def
=
⟨
returnT1 , returnT2

⟩
: X → (T1×T2)(X),

and forf : X → T1(Y )×T2(Y ),

liftT1×T2(f)
def
= liftT1(pr l ◦ f)× liftT2(pr r ◦ f).

From now we check that taking the product of monads preserves
the above three assumptions.

It is easy to check that if two monadsT1 andT2 have uniform
iteration operators in their Kleisli categories, so does the product
T1×T2: for f : X → T1(X+Y )×T2(X+Y ),

iterT1×T2(f)
def
=⟨

iterT1(pr l ◦ f), iter
T2(pr r ◦ f)

⟩
: X → T1(Y )×T2(Y ).

If monadsT1 andT2 preserve weak pullbacks, so doesT1×T2,
since the product functor× preserve them.

Also it is clear on finitarity since the product functor is finitary,
but let us see concretely what family of signature sets for the prod-
uct monadT1×T2 we can get from families of signature sets forT1

andT2 since it is needed to define syntax and for implementation.
Let Σ1 andΣ2 be families of signature sets forT1 and T2,

respectively. Then(Σ1⊗Σ2)(n) is defined as the following:

{(f1, f2) ∈ T1(n)×T2(n) | m1,m2 ∈ N, n=max(m1,m2),

f1 ∈ Σ1(m1)(⊆ T1(m1) ⊆ T1(n)),

f2 ∈ Σ2(m2)(⊆ T2(m2) ⊆ T2(n)) }
+ {(f1, return(n−1)) ∈ T1(n)×T2(n) |

n > 0, f1 ∈ Σ1(n−1)(⊆ T1(n−1))}
+ {(return(n−1), f2) ∈ T1(n)×T2(n) |

n > 0, f2 ∈ Σ2(n−1)(⊆ T2(n−1))}
+ {(0, 1) ∈ T1(n)×T2(n) | n = 2 }

where recall that we regard a natural numbern as the set
{0, ..., n−1}. Then one can check that thisΣ1⊗Σ2 becomes a
family of signature sets forT1×T2 by induction.

Example 27. Let us consider the case whenT1 = Pfin and
T2 = List .

Now we have two signatures{} and {0, 1}—which corre-
spond to the syntax{} and ∪, respectively—forPfin, and also
two signatures[] and [0, 1]—which correspond to the syntax
[] and ++, respectively—forList , hence we should have nine
(= 2×2+2+2+1) signatures forPfin×List . However some of
them can be represented as compositions of the other ones and
common graph constructors, then after all signatures we need
for Pfin×List are: ({}, []) (nullary), ({0, 1}, [0, 1]) (binary),
({}, return(0)) (unary), and(return(0), []) (unary).

Let the syntax corresponding to these four signatures be

({}, []) | e(∪,++)e | del-unorder(e) | del-order(e)
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and replace the part{algebraic graph operators} of syntax ofλList
FG

in Figure4 with these four. Also replace all the occurrences of type
List(...) with Set(...)×List(...) both in the BNF type definition
of λList

FG and in the typing rules. The resulting syntax is the core
syntax ofλPfin×List

FG .
The nullary operator({}, []) produces single node graph with

no branches. The binary operator(∪,++) takes union of unordered
branches of the roots of the two argument graphs, and at the same
time, takes append of ordered branches of the roots of the two
argument graphs. The unary operatordel-unorder(e) deletes all
unordered branches only of the roots of an argument graph, so
e.g. unordered branches of ordered branches of the root remain.
Similarly, the unary operatordel-unorder(e) deletes all ordered
branches only of the roots of an argument graph.

As we can add any list operator such asfoldr orfilter, we can
add any operator forPfin×List to the core syntax ofλPfin×List

FG .
For example, we can add the functionl2s which maps lists to

finite sets by forgetting the orders of lists, then we can define the
term

x: Set(b)×List(b) ⊢ (πl(x)∪ l2s(πr(x)), []): Set(b)×List(b)

and applyu-sbl to this to get a function which transform all
ordered branches to unordered ones.

7. Related Work
Structural recursion for graphs, which we generalized, is much
related to research on algebras of programming [Bird and de Moor
1996; Gibbons2002; Hu et al.2006; Meijer et al.1991], where
structural recursion such as folds and catamorphisms are used to
structure programs and to systematically manipulate programs. In
particular, our approach is influenced by many attempts of defining
structural recursion for various kinds of specific graphs, such as
directed acyclic graphs [Gibbons 1995], graphs represented by
trees with specific pointers [Dal Zilio et al. 2004; Hamana2009],
and graphs represented by trees with embedded functions [Fegaras
and Sheard1996]. However, all these attempts are not easy to be
applied in practice, due to lack of expressive power or difficulty in
guaranteeing finite representation of well-formed graphs with no
dangling pointers.

As described in the introduction, it is the structural recursion in
UnCAL [Buneman et al.2000] that is more practical for manipulat-
ing unordered graphs. This forms the basis of our work. OurλT

FG

is parameterized with monadT , and the caseT = Pfin, i.e.,λPfin
FG

is comparable with UnCAL. The following is the comparison be-
tween UnCAL andλPfin

FG . The two graph models are equivalent up
to each bisimilarity, which for UnCAL is called value equivalence
in [Buneman et al.2000]. Also the graph constructors and structural
recursion are the same. Then we extended expressive power in two
points. One is the extension on sibling transformations: i.e.,l-sbl
andu-sbl. The other is the extension of type system; UnCAL is
first order calculus, whileλPfin

FG is a simply typed lambda calculus
(extended with graph types). This extension of type system is not
for free, as we noted before Theorem22.

A lot of work has been devoted to efficient implementation of
graph algorithms in lazy functional languages [Burton and Yang
1990; Erwig 1997; Johnsson1998; King and Launchbury1995].
The emphasis there is placed on the importance of achieving ef-
ficient implementation of general graph algorithms through the
monadic model for including actions on the state in the non-strict
context. In contrast, we focus on inductive traversals of ordered
graphs and aim to provide an efficient way to deal with a specific
class of important graph algorithms – graph querying. Erwig shows
that active patterns can be used to implement an inductive view of

graphs [Erwig 2001], but that inductive view is indirect in that the
graph view is dynamically maintained.

In coalgebra theory, which studies infinitary/cyclic structure,
some work focused also on finiteness of graphs, as in the current
paper.

In the work [Bonsangue et al.2009], for every Kripke polyno-
mial endofunctorF , a systematic way for giving a syntax fully rep-
resenting all finiteF -coalgebras and a sound and complete equa-
tional theory for bisimilarity was given. The differences between
this work and our work are (i) the two classes of endofunctors—
Kripke polynomial ones and ours with monads—are incomparable,
(ii) the work does not treatε-edge, and is not a study for transfor-
mation (iii) in our work the equational theory is restrictive, and (iv)
the approaches to give each syntax are different.

In the work [Adámek et al.2006; Milius 2010], the authors stud-
ied categorical properties of the set of finite coalgebras, and char-
acterized it as thefinal locally finite coalgebra. The class of endo-
functors for coalgebra in this work is wider than ours; some of the
results are applied or influence to our work. In this work, there is
no consideration for finiteness-preserving structural recursion. The
finality among locally finite coalgebras is a kind of corecursion,
and has the similar problem to that of corecursion; i.e., to assure
finiteness-preservation, we have to check locally finiteness of infi-
nite graphs, automation of which seems difficult.

A study of general framework for bisimilarity involvingε-edge
was implicitly started in the paper [Jacobs2010a]. They gave some
sufficient condition for a monad to have an iteration operator in
the Kleisli category. However, the theory can not be applied to the
case ofCList , which does not satisfy the sufficient condition. So
the current paper gave a new example of iteration operator in a
Kleisli category and of such “ε-elimination as iteration operator”
perspective.

8. Conclusions and Future Work
In this paper, we present the first solution to the open problem
of how to modify the graph model and structural recursion from
unordered graphs to ordered ones, based on which we define a
new graph transformation languageλList

FG . The key technical con-
tributions here is the definition of bisimulation relation on ordered
graphs havingε-edges. We also extend expressive power on sibling
dimension with two new operators: local sibling transformation and
uniform sibling transformation.

Furthermore, we generalize these results for ordered graphs
with monads with suitable assumptions, and propose a more gen-
eral graph languagesλT

FG which are parameterized by monadsT .
This abstraction by monadT enables us to compose a language tar-
geting bigger graph model from smaller graph models by monad
transformers. We demonstrate it with the product monad trans-
former.

There are many interesting and important future extensions.
First, we have discussed little about analysis of structural recursion.
One interesting analysis is when a structural recursion function is
productive. A graph function is said to be productive, if it produces
a finite ordered graph withoutε-edges for any input ordered graph
without ε-edge. Second, following our previous work of bidirec-
tionalizing UnCAL [Hidaka et al.2010], we are very interested in
a systematic way to bidirectionalizeλT

FG, which is indeed the first
motivation of this work.

Acknowledgments Thanks are due to Ichiro Hasuo and Naohiko
Hoshino for helpful discussions.

References
J. Ad́amek, S. Milius, and J. Velebil. Iterative algebras at work.Mathemat-

ical. Structures in Comp. Sci., 16(6):1085–1131, Dec. 2006.

18



N. Benton, J. Hughes, and E. Moggi. Monads and effects. InIN INTERNA-
TIONAL SUMMER SCHOOL ON APPLIED SEMANTICS APPSEM’
2000, pages 42–122. Springer-Verlag, 2000.

R. Bird and O. de Moor.Algebras of Programming. Prentice Hall, 1996.

M. Bonsangue, J. Rutten, and A. Silva. Algebras for kripke polynomial
coalgebras. InLICS, IEEE, Computer Science Press, pages 49–58, 2009.

P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: a query language and
algebra for semistructured data based on structural recursion.VLDB
Journal: Very Large Data Bases, 9(1):76–110, 2000.

F. W. Burton and H.-K. Yang. Manipulating multilinked data structures
in a pure functional language.Softw. Pract. Exper., 20:1167–1185,
November 1990.

S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A logic you can count
on. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL’04, pages 135–146, New
York, NY, USA, 2004. ACM.

M. Erwig. Functional programming with graphs. InProceedings of the sec-
ond ACM SIGPLAN international conference on Functional program-
ming, ICFP ’97, pages 52–65, New York, NY, USA, 1997. ACM.

M. Erwig. Inductive graphs and functional graph algorithms.J. Funct.
Program., 11:467–492, September 2001. ISSN 0956-7968.

L. Fegaras and T. Sheard. Revisiting catamorphisms over datatypes with
embedded functions. InProc. ACM symposium on principles of pro-
gramming languages, St. Petersburg Beach, Florida, Jan. 1996.

J. Gibbons. An initial-algebra approach to directed acyclic graphs. InMath-
ematics of Program Construction, MPC ’95, pages 282–303, London,
UK, 1995. Springer-Verlag.

J. Gibbons. Calculating functional programs, pages 149–201. Springer-
Verlag New York, Inc., New York, NY, USA, 2002.

A. Gill, J. Launchbury, and S. P. Jones. A short cut to deforestation. In
Proc. Conference on Functional Programming Languages and Com-
puter Architecture, pages 223–232, Copenhagen, June 1993.

S. Ginali. Regular trees and the free iterative theory.J. Comput. Syst. Sci.,
18(3):228–242, 1979.

E. Haghverdi.A Categorical Approach to Linear Logic, Geometry of Proofs
and Full Completeness. PhD thesis, University of Ottawa, 2000.

M. Hamana. Initial algebra semantics for cyclic sharing structures. InPro-
ceedings of the 9th International Conference on Typed Lambda Calculi
and Applications, TLCA ’09, pages 127–141, Berlin, Heidelberg, 2009.
Springer-Verlag.

M. Hasegawa. The uniformity principle on traced monoidal categories.
Electr. Notes Theor. Comput. Sci., 69:137–155, 2002.

I. Hasuo, 2011. personal communication.

S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano. Bidi-
rectionalizing graph transformations. InACM SIGPLAN International
Conference on Functional Programming, pages 205–216. ACM, 2010.

Z. Hu, T. Yokoyama, and M. Takeichi. Program optimizations and trans-
formations in calculational form. InSummer School on Generative and
Transformational Techniques in Software Engineering, pages 139–164,
Braga, Portugal, 2006. Springer, LNCS 4043.

M. Hyland, G. Plotkin, and J. Power. Combining effects: sum and tensor.
Theor. Comput. Sci., 357(1):70–99, July 2006. ISSN 0304-3975.

B. Jacobs. From coalgebraic to monoidal traces.Electronic Notes in
Theoretical Computer Science, 264(2):125 – 140, 2010a. Proceedings
of the Tenth Workshop on Coalgebraic Methods in Computer Science
(CMCS 2010).

B. Jacobs. From coalgebraic to monoidal traces.Electron. Notes Theor.
Comput. Sci., 264:125–140, August 2010b. ISSN 1571-0661.

T. Johnsson. Efficient graph algorithms using lazy monolithic arrays.J.
Funct. Program., 8:323–333, July 1998.

F. Jouault and J. B́ezivin. KM3: A DSL for metamodel specification.
In Formal Methods for Open Object-Based Distributed Systems, pages
171–185. LNCS 4037, Springer, 2006.

Y. Kakutani. Duality between call-by-name recursion and call-by-value
iteration. In J. C. Bradfield, editor,CSL, volume 2471 ofLecture Notes in

Computer Science, pages 506–521. Springer, 2002. ISBN 3-540-44240-
5.

D. J. King and J. Launchbury. Structuring depth-first search algorithms in
haskell. InProceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’95, pages 344–354,
New York, NY, USA, 1995. ACM.

E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. InProc. Conference on
Functional Programming Languages and Computer Architecture(LNCS
523), pages 124–144, Cambridge, Massachuetts, Aug. 1991.

S. Milius. A sound and complete calculus for finite stream circuits.Logic
in Computer Science, Symposium on, 0:421–430, 2010.

R. Milner. Communicating and Mobile Systems: theπ-calculus. Cambridge
University Press, 1999.

J. C. Mitchell. Foundations for programming languages. Foundation of
computing series. MIT Press, 1996.

E. Moggi. Computational lambda-calculus and monads. InLICS, pages
14–23. IEEE Computer Society, 1989.

E. L. Robertson, L. V. Saxton, D. V. Gucht, and S. Vansummeren. Structural
recursion as a query language on lists and ordered trees.Theory of
Computing Systems, 44(4):590–619, 2009.

J. Rutten. Universal coalgebra: a theory of systems.Theoretical Computer
Science, 249(1):3 – 80, 2000.

A. K. Simpson and G. D. Plotkin. Complete axioms for categorical fixed-
point operators. InLICS, pages 30–41, 2000.

A. Sokolova. Coalgebraic Analysis of Probabilistic Systems. PhD thesis,
TU Eindhoven, 2005.

19



Gt

0

2 1

a
3

0

02 01

a
03

12 11

a
13

0

02 01

a
03

12 11

a
13

22 21

a
23

...

Figure 12. Branch with Any Countable Linear Order

A. Ordered Graphs for Any Countable Linear
Ordered Sets

We see here that, for any countable linear ordered set, there is an
infinite ordered graph havingε-edges such that the branches of the
root after eliminatingε-edges are exactly as the given ordered set.

Now let L be an infinite countable linear ordered set, so there
exist a bijective functionf : N

∼=→ L. Then we construct a graph
“representingL” as below. Let us consider the kind of ternary tree
Gt as the left tree in Figure12. We call a leaf in a treeε-leaf if
the path from the root to the leaf consists of justε-edges. First,
corresponding tof(0) ∈ L, we take a freshGt. Next, we again
take a freshGt, and iff(1) < f(0), then we put together the root
of the newGt and the leftε-leaf of the former graph, as the middle
graph in Figure12. Otherwise iff(0) < f(1), we put similarly
to the rightε-leaf (03 in the example). Next, now there are threeε-
leaves (12, 13, 03 in the example) with the obvious linear order, i.e.,
12 < 13 < 03. Then according to the three possible positions of
f(2) in the linear ordered set{f(0), f(1), f(2)}, we again put new
freshGt to the corresponding position ofε-leaf. The right graph in
Figure12 is the example of the case whenf(1) < f(2) < f(0).
Iterating as this, we have an infinite tree with finite (in fact just
three) width. Then it is obvious that the countable linear ordered
set occurring in the result graph ofε-elimination applied to this
tree is order isomorphic toL.

B. Countable List
Here we give a detail explanation about the countable list monad
CList .

First we give a formal (and abstract) definition:CList(S) is the
object-set of the skeleton category of the comma category(U ↓ S)
whereU : CLO → Set is the forgetful functor from the category
CLO of countable linear ordered sets and monotone functions.

Now let us unfold this definition. An object of the comma
category(U ↓ S) is a pair(L, l) of a countable linear ordered set
L and a functionl: L → S. A morphismf from (L, l) to (L′, l′) is
a monotone functionf : L → L′ such thatl′ ◦ f = l. Then we can
take the object-setCList(S) of a skeletoncategory of(U ↓ S),
i.e., we have a subsetCList(S) of the object-set of(U ↓ S) such
that for any object(L, l) in (U ↓ S), there is the uniqueR(L, l) ∈
CList(S) such that(L, l) andR(L, l) are isomorphic in(U ↓ S),
and then also there is a chosen isomorphismη(L,l) : (L, l) →
R(L, l).

There is another equivalent form toCList(S). Let L be the
object-set of a skeleton category ofCLO, i.e., we have a subset
L of the object-set ofCLO such that for any objectL in CLO,
there is the uniqueR(L) ∈ L such thatL andR(L) are isomorphic
in CLO, and then also there is a chosen isomorphismηL : L →
R(L).

Then, we give the following isomorphism

CList(S) ∼= ΣL∈L(S
L/∼=)

where the∼= in the right hand side, is the restriction of the iso-
morphism equivalence on|(U ↓ S)| to its subsetSL; i.e., for
l, l′ : L → S, l ∼= l′ if there is an isomorphismf : L → L such

thatl′ ◦f = l. The above correspondence is given as the following:
for (L, l) ∈ CList(S),

(R(L), [l ◦ η-1
L ]∼=) ∈ ΣL∈L(S

L/∼=),

and for(L, [l]) ∈ ΣL∈L(S
L/∼=),

R(L, l) ∈ CList(S),

which is well-defined, i.e., if(L, l) and(L, l′) are isomorphic, then
R(L, l) andR(L, l′) are equal by the uniqueness in the definition
of R. It is easily checked that this correspondence is bijective.

In the body text, we omit the taking quotient in the right hand
side of the above isomorphism for simplicity.

C. Finitary Monad Extension for ε-elimination
Let T be a monad anditer be an uniform iteration operator in
SetT . We defineε-elimination for finiteT |fin-graphs, as the result
graph is equal to one defined by Definition9.

Let G = (V,B, I) be a finiteT |fin-graphs inT DBX
Y . Since

V is finite andT |fin is finitary by definition, there exists a finite
subsetL′ ⊆ Lϵ and a functionB′ such that the following diagram
commute.

V
B //

B′ ,,XXXXXXXXXXXXXXXXXXXXXXXXXXX T |fin(Lϵ×V+Y )
∼= // T |fin(V+(L×V+Y ))

T |fin(V+(L′×V+Y ))
?�

OO

NowV+(L′×V+Y ) is a finite set, henceT |fin(V+(L′×V+Y )) =
T (V+(L′×V+Y )). We therefore can apply the iteration operator
iter toB′. We defineB′′ as the composition of the below

V
iter(B′)−→ T |fin(L′×V+Y ) ↪→ T |fin(Lϵ×V+Y )

and then defineε-elim(G)
def
= (V,B′′, I).

For a finiteT |fin-graphG, by the inclusionT |fin ↪→ T , we
can regardG also as aT -graph. Then it can be easily checked
that the aboveε-elim(G) is exactly equal toε-elim(G) defined in
Definition9 for theT -graphG.

D. Proof of Full Representability by the Graph
Constructors

Here we give two proofs of Proposition19: full representability of
finite graphs by the graph constructors. The first one is simpler and
highly depends on the notion of marker, while the second one is in
a naive way, which less depends on the notion of markers. The sec-
ond proof shows that the notion of marker is—very convenient as in
the first proof but—not essential for the fact of full representability.

First let us see the notion of 1-step unfoldinguf ε, which is
almost the same as that ofuf defined in Section4.3.1. Here we
consider graphs havingε-edges, while in Section4.3.1we consider
graphs having noε-edge. However the two are essentially the same
notion since here we first consider strong bisimilarity for properties
of uf ε itself, and then we move to the level of bisimilarity by the
fact that strong bisimilarity implies bisimilarity.

Now we define the 1-step unfolding

uf ε : DBfY → T (Lϵ×DBfY +Y ).

First, for a graphG = (V,B, I) ∈ DBX
Y , and a nodev ∈ V , we

define

G|v
def
= (V,B, {& 7→ v}) ∈ DBY .

Then forG = (V,B, I) ∈ DBfY ,

uf ε(G)
def
= T (Lϵ×f+Y )(B(I(&)))
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wheref
def
= G|(-) : V → DBfY .

By the results [Adámek et al.2006, Theorem 3.3] with [Milius
2010, Corollary III.15], we can show that for any finitary monadT ,
thisuf ε is isomorphic up to strong bisimilarity.

Furthermore,uf ε
-1 is constructed just by graph constructors:

uf ε
-1 = t ◦ T ([s, s′])

where

t: T (DBfY ) → DBfY

is defined with theT -algebraic graph constructors using the finitar-
ity T (S) =

∪
i∈N T

(i)
Σ (S), and

s
def
= ⟨(-):(-)⟩: Lϵ×DBfY → DBfY

s′
def
= ⟨-⟩: Y → DBfY .

For example, whenT = List ,

t = foldr(++, []): List(DBfY ) → DBfY .

On the aboves, precisely,s(ε,G) = ⟨ε : G⟩ is not a representation
by graph constructors, because an expression⟨a : e⟩ is not allowed
in λT

FG whena = ε. For the case, in the above definition, replace
such⟨ε : e⟩ with e, which is bisimilar to⟨ε : e⟩.

Now let us see the first proof.

Proof. Let G = (V,B, I) be a finite graph inDBf
X
Y . First we

prepare a marker&v for each nodev, then we write&V for the
set of the markers, and definef : V → &V asf(v) = &v . Then for
eachv,

Gv
def
= uf ε

-1
(
T
(
Lϵ×(⟨-⟩ ◦ f)+Y

)(
B(v)

))
∈ DB&V +Y

can be represented by graph constructors. Then

⌊f ◦ I⌋ @cycle(⊕v∈V &v := Gv) ∈ DBX
Y

is bisimilar to the original graphG.
For example, for the graphG in Example2,

G1 = ⟨d : ⟨&2 ⟩⟩++ ⟨a : ⟨&4 ⟩⟩
G2 = ⟨c : ⟨&3 ⟩⟩
G3 = ⟨d : ⟨&2 ⟩⟩
G4 = ⟨b : ⟨&3 ⟩⟩++ ⟨&y⟩,

thenG is bisimilar to

⟨&1⟩@cycle
(
(&1 :=G1)⊕ (&2 :=G2)⊕ (&3 :=G3)⊕ (&4 :=G4)

)
.

Now we see the second proof. First we define “node in cycle”.
For a finite graph(V,B, I) and v ∈ V we definePv as the
minimum subsetP ⊆ V such thatB(v) ∈ T (Lϵ×P+Y ); this
is the set of all the nodes which are targets of edges fromv. Then

we defineP 0
v

def
= {v} andPn+1

v
def
=
∪

v′∈Pn
v
Pv′ by induction on

n. Now we defineP ∗
v

def
=
∪

n∈N Pn
v andP+

v
def
=
∪

n>0 P
n
v ; P ∗

v is
the set of the nodes which are accessible fromv, andP+

v is the
set of the nodes which are accessible fromv through at least one
transition. We call a nodev such thatv ∈ P+

v acyclic node.
Now let us see the second proof.

Proof. Let G = (V,B, I) be a finite graph inDBf
X
Y . We can

assume thatX = 1(= {&}), recovering other cases by the graph
constructors() and⊕. Now we show the statement by induction on
the natural number

|G| def
= |V |+2×|V cycle|

whereV cycle is the set of cyclic nodes.

If the rootI(&) is cyclic, we define a graph

G′ def
= (V ∪{v0}, B′, I) ∈ DBfY ∪{&y0}

wherev0 and&y0 are fresh ones, andB′ is defined as below.

B′ : V ∪{v0} → T
(
Lϵ×(V ∪{v0})+(Y ∪{&y0})

)
v0 7→ return(Outm (&y0))

v 7→ T (g)(B(v)) g : Lϵ×V+Y → Lϵ×(V ∪{v0})+(Y ∪{&y0})
Edge (l, I(&)) 7→ Edge (l, v0)

the other case : embedding


Then

G = ⟨&y0⟩ @cycle(&y0 := G′), and

|G′| < |G|,
since, whileG′ has just one extra node, at least the root becomes
non-cyclic.

When the rootI(&) is not cyclic, consideruf ε(G); then as seen
above,G is (strong bisimilar, hence) bisimilar touf ε

-1(uf ε(G)),
where recall thatuf ε

-1 is a composition of graph constructors. On
the other hand, let us consider graphsG′ occurring in

uf ε(G) ∈ T (Lϵ×DBfY +Y ),

i.e., a graphG′ in the minimum—then finite sinceT is finitary—set
P ⊆ DBfY such that

uf ε(G) ∈ T (Lϵ×P+Y ).

EachG′ in P is a subgraph ofG, and the root ofG′ is a node in
PI(&) of G. SinceI(&) is not cyclic, the accessible part ofG′ does
not includeI(&), hence|G′| < |G|.
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