ISSN 1884-0760

GRACE TECHNICAL REPORTS

Parameterized Graph Transformation Languages
with Monads

Kazuyuki Asada Soichiro Hidaka Hiroyuki Kato
Zhenjiang Hu Keisuke Nakano

GRACE-TR-2012-07 October 2012

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein
are maintained by the authors or by other copyright holders, notwithstanding that they
have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author’s copyright.
These works may not be reposted without the explicit permission of the copyright holder.

Parameterized Graph Transform

Kazuyuki Asada Soichiro Hidaka
Hiroyuki Kato Zhenjiang Hu
National Institute of Informatics, Japan

{asada,hidaka,kato,hu}@nii.ac.jp

Abstract

UnCAL was introduced as a graph transformation language for un-
ordered finite graphs, and has a powerful transformation method
for finite graphs: structural recursion. Although UnCAL is pow-

erful and recently applied to model driven software engineering,
there are two major limitations. One is that its graph model is only

unordered graph in which branches of nodes are unordered. The

other is its limited expressive power: structural recursion functions
transform depth-direction well, but not well on sibling-direction.
We solve these problems by generalizing the graph model and ex-
tending the expressive power of UnCAL. We generalize the type

of branches of nodes from powerset to general monad, so that we

introduce graph transformation languagds, which are param-
eterized by (finitary) monadg. The special case whefE is the
finite powerset monad becomes an extension of UnCAL. Our cru-
cial instance is the case of list monad for treating ordered graph,
where we solve how to define bisimilarity between ordered graphs
having edges labeled by an invisible labeRlso we extend the ex-
pressive power okL from that of UnCAL: higher order functions
and transformations for sibling dimension. We demonstrate that we
can modularize designing graph transformation languages, by our
generalization with monads and by monad transformers.

1. Introduction

Structural recursion, such as fold on lists or catamorphiigtai{

jer et alllI99]] on algebraic data structures including trees, plays
an important role in functional programming, providing a sys-
tematic way for construction and manipulation of functional pro-
grams [Bird and de Modi1996 [Gill et alll1993 Hu et alll200§|.

It is, however, a challenge to define structural recursions for graph
data structures, the most ubiquitous data in computing. This is be-

ation Languages with Monads

Keisuke Nakano

University of Electro-Communications, Japan
ksk@cs.uec.ac.jp

tl

G
v :
0 N o OB
N~ d %Jd
a 5 ®
A
® 5

Figure 1. An Example of Unsound Encoding

graphsbulk semanticswith bulk semantics, a structural recursion

is evaluated by first processirig parallel on all edges of the
input graph and then combining the results. This bulk semantics
relies on introduction okt-edges (likes transition in automata)

to graphs, providing a smart way of treating shared nodes and
cycles in graphs. In addition, UnCAL is designed carefully such
that (i) every transformation ibisimulation generian the sense
that it returns bisimilar results for bisimilar inputs, and (ii) every
transformation necessaritgrminatesand transformdinite graphs

to finite graphs.

Despite its beauty in theory and usefulness in graph querying,
there are two limitations in UnCAL that prevent it from being used
widely. One is that UnCAL can treat only unordered graphs, being
weak in other graph models, such as ordered graphs where edges
from a node are ordered, which is widely used in many applica-
tions: e.g., in Ecore, MOF, and KM3duault and Bzivin[200€.

cause unlike lists and trees, graphs are essentially not inductiveThe other limitation is lack of expressive power of transformations

and cannot be formalized as an initial algebra in gen€&djons
1994.

Itis certainly possible to use full recursion operator (fixed point
operator) to manipulat@finite data structures such as stream and
graph, but there are many cases targeting €iniye graphs espe-
cially in database application. Therefore, it is very much desirable
that we could represent graphs in finite form, while guaranteeing
transformations (or queries) for graphs always terminate.

UnCAL [Buneman et &l200(] was introduced in the database
community to provide such a powerful querying method by struc-
tural recursion for finite graphs. The graph model of UnCAL is
unordered (directed) graph, where outgoing edges are not ordered
In UnCAL we can treat graphs semanticallyragular treeqGinali
1979, based on a suitable definition of bisimulation, up to which
finite graphs and regular trees are equivalent.

The benefit from this bisimulation is that structural recursion

on sibling dimension. For example, when a graph labeled with nat-
ural number, we can not write in UnCAL a transformation which
extracts all such edges of some node that are labeled with the aver-
age number among all the siblings.

At the first sight, it seems that the first limitation could be easily
solved by encoding ordered graphs by unordered ones with suitable
edge labels, say usirigl andtl to represent the first branch and the
rest of the branches respectively. However, there is a fatal problem
with this encoding. The above encodinguissoundn the context
of UnCAL where e-edges must be taken into account for graph
construction and structural recursion. As shown in Fidliréhe
ordered graph&'; andG., where we use dotted arrows to represent
e-edges, are naturally bisimilar, but their corresponding encoded
graphsG; andGy are not at all.

In fact, it has been aopen problenfor more than ten years
whether structural recursion in UnCAL can be extended from un-

on regular trees can be used for graphs, and moreover, it givesordered graphs to ordered ones or not, since it was first raised in the

an interesting and important semantics of structural recursion on

conclusion of the papeBluneman et d00(:

... we have shown how the principles of UnQL will work
on an ordered tree. However, it is not clear how they can
be extended to an ordered graph model. ... we still lack a
complete picture of this topic ...

In this paper, we provide a novel solution to this open problem,
by defining a subtle notion of bisimilarity for ordered graph having

e-edges so that structural recursion can be extended from that for
unordered graphs to that for ordered graphs. Moreover, we propose

AL, powerful higher order graph transformation languages, which

extends the lambda calculus with graph operations generalized with

monads and also extended with sibling transformation.

The main technical contributions of this paper can be summa-
rized as follows.

There are mainly two independent contributions; (i) one is the
definition of bisimilarity for ordered graphs, which has a subtle
problem of infinite width, which can not be seen in other graph
models; (ii) the other one is the generalization with mori&dsd
extension of expressive power of graph transformations: introduc-
tion of higher order function and sibling transformation. Further
detail of these contributions are the following:

(i). We give the first definition of the bisimilarity between ordered

is proved as first order functions. This higher order bisimu-
lation genericity enables us to introduce higher order func-
tions to UnCAL and reformulation as a lambda calculus.

We define our graph transformation languagés as ex-
tensions of the simply typed lambda calculus, which is in
sharp contrast to UnCAL (first order calculus). This refor-
mulation does not only provides us higher order functions,
but also a clear vision of how to exter)éCG further, with
other primitive functions or other type systems such as co-
product types, inductive data types, monad types, and poly-
morphic types.

We show how to overcome the second limitation of UnCAL,
i.e., expressive power on sibling dimension, by introducing
two sibling transformatiori-sbl andu-sbl upon the above
flexibility of extensions. For instance, wh@h= List, we

can manipulate branches of nodes as we transform lists: we
can, for example, reverse the order of branches of a node in
an ordered graph with reverse function of list.

e Summarizing the above, we formulate parametrized graph
transformation languageg. with monadsT".

graphs having:-edges, which forms the semantic foundation (iif). Then we have the following discussion for further extension.

for \k&*. Specifically, we identify that the branch order of even
finite graphs is not necessarily finite lmguntable linear order

and clarify that combination of-edges and cycles will induce
such countable linear order on branching, which would produce

new issues not occurring for the unordered case. We show that
the judgment of emptiness of ordered graphs is decidable, and

that it is decidable whether we can eliminatecaldges—with
keeping finite width of graph—for a finite ordered graph having
e-edges.

UnCAL consists of the following three technical points:
¢ graph models and bisimilarity,

(ii).

e syntactic graph representation (callg@ph constructors
and

e structural recursion.

We generalize all the three points with monadsnd extend
further:

e We generalize the graph model in such a way that collec-
tion of outgoing edges of a node has the structure of the
monad7. With this, unordered graph and ordered graph
correspond to finite powerset monad and list monad, respec-
tively. We can see its usefulness from other examples of
multiset monad and distribution monad which correspond
to weighted graph and probability graph, respectively.

Then we give a definition of bisimilarity for such graph
models generally witlf". The above (i), i.e., the definition
of bisimilarity for ordered graph is independent contribution
from this general definition; since for the general definition
we assume existence ibération operatorswhich is newly
given in this paper for ordered graph, while those for other
graph models are already known.

Then according to the generalization of graph model, we
also give generalized definition of graph constructors and
structural recursion with monads. Specifically, we general-
ize bulk semanticsf the structural recursion, and show that
structural recursion ibisimulation genericThe bisimula-
tion genericity is a stronger result than that [Buheman

et all200(even for the case of unordered graph, since here
we prove bisimulation genericity of structural recursion as
a higher order function, while irBuneman et a(200(it

e We extend the structural recursion to unify the above sib-
ling transformations with the extended structural recursion,
so that we can transform graphs in depth-direction and in
sibling-direction at the same time.

e Finally we discuss how we can systematically compose
graph transformation languages to increase language power,
by using monad transformer. For instance, althodgt’*
can treat ordered graphs but not unordered graphs, by this
modular method, we can systematically obtajfi ",
which can treat both unordered and ordered graphs.

Organization of the Paper We shall start by an overview of-,
focusing on the case whéh = List, in Sectiorf2 Then in Sec-
tion[3, we see the first key technical contribution of this paper, i.e.,
the definition of bisimilarity for ordered graphs haviaegedges.
Then we give a general definition of bisimilarity for graphs\ify; .

In Sectiond, we give interpretations of terms of., which in-
cludes graph constructors, structural recursion, and sibling transfor-
mations; then we show their bisimulation genericity. In SedBpn
we extend structural recursion with sibling transformation. In Sec-
tion[@ we discuss how we can extend the languages with monad
transformers. We discuss the related work in Sedfiand con-
clude the paper in Sectif@h

2. Overview of AL,

We start with an overview of our general graph transformation
language\r, especially wherl” = List. In fact, A:&!, which
treats ordered graphs, is the most important case to understand
essence ohl.. In the following, after giving general definition

of graphs, we will move to the case é6fst, and see how ordered
graphs are constructed and how structural recursion can be easily
used to transform ordered graphs. In Seddah we will see how

to design the syntax of genersl.

2.1 Graph Model of AL

Graph in\ is rooted, directed, and edge-labeled graph. Addi-
tionally, graph inA\fg has two prominent features;edgesand
markers An e-edge represents a shortcut between the two nodes,
working like the e-transition in an automaton. Nodes may be
marked withinput andoutput markerswhich are used as an inter-
face to connect them to other graphssbgdges.

(a) A Simple GraphG (b) An Equivalent

Graph:G’

(c) Result of
a2d_xcon (a)

Figure 2. Examples of Graphs

We introduce the notion of graph witlT™kind of branch” for a
monadT . First let us recall the notion of monad (in the Kleisli triple
style): T = (T, return, lift) is amonadon Set if T': Set — Set
is a functor,

return: S — T(S)
and

lift: (S = T(8")) — (T(S) = T(5"))

are natural transformations, and they satisfy certain axioms called

monad laws, se@enton et al2000 [Moggi1989 for the axioms.
Example 1(List Monad) List is a monad defined as follows.
(ses)

lift f = concat o List(f)

return(s) = [s]
(f: S — List(S"))
where

concat: List(List(S')) — List(S")
is flattening a list of lists to a list. O

Now we define the graph model. We uSeto denote a set of
labelsand L. to denote the disjoint uniof U {¢}. Let X andY
be finite sets ofnarkers we add the prefix: for meta-variables of
markers likekz. Then ar-graph (or justgraph) G is defined as a
triple (V, B, I') where

e V is a set ofnodes

® B:V — T(LxV+Y) is abranch functionwhere an element
zin L:xV+Y (calleda branch) is eitheran edgeEdge (1, v)
or an output marke©Outm (&y), and

e [: X — V is afunction, which determingsput nodegroots)
of the graph.

Note that in the terminology of coalgebra theoryI'egraph is a
coalgebraB of the endofunctol’ (L. x (-)+Y") equipped witH X |-
number of initial stateg.

Example 2(Ordered Graph)We call List-graphsordered graphs
where the branches are ordered. The graph in F[@(agis repre-
sented agV, B, I) where

Vo = {1,2,3,4}

B(1) = [Edge(d,2),Edge(a,4)]
B(2) = [Edge(c,3)]

B(3) = [Edge(d,2)]

B(4) = [Edge(b,3),0utm (&y)]
I(& = 1.

O

The set of graphs—witlX' andY” as sets of input and output
markers, respectively—is denoted ByDB3, whereT may be
omitted if it is clear from context. We call @-graph afinite 7-
graph whenV is a finite set, and writd-DB;s for the set of
finite T-graphs. (“DB” is from Buneman et [200(] and means
“DataBase”.)

We occasionally use record notati¢).V, (-).B, and(-).I for
components of a graph: i.&5 = (G.V,G.B, G.I).

We allow a graph to have multiple roots: multi-rooted graph is to
forest what single-rooted graph is to tree. For single-rooted graphs,
we often uselefault marke® to indicate the root, and useBy to
denoteDBi,&}.

An output marker is a place holder through which the input
node of another graph can be connected witte-auge. (This is
done with@, cycle (see Figur@), andsrec (see Figurél) to be
explained later.)

Example 3 (Unordered Graph, Weighted Graph, Probability

Graph) For the finite powerset mona#s,, Pan-graph isun-

ordered graphwhich is (equivalent to) the graph model of UnCAL.
Let us consider thénite multiset monagbag monada,:

Min(S) &' {¢: SN | ¢~ (N={0}) is a finite se}.

Then branch ofMz,-graph has a bag semantics (rather than set
semantics ofPs,), i.e., multiplicity (calledweigh) of an identical
branch is not ignored.

Thefinite probability distribution monads,, is defined as:

Diin(S) &' {¢: S—1[0,1] | ¢ 1((0, 1]) is a finite set¥,¢(s)=1}.

The monad structure is defined as below: §og S, return(s) is
the Dirac delta function

0s: S — [0,1]
s 1
(other thans) — 0
andforf: S — Dsa(S"),
lift(f): Dan(S) — Dgn(S")

(65— 0.1]) o <lift(f)(¢):51—> [0,1] /)
5" Uses(o(s) - f(s5)(s))
Dsin-graph has probabilistic branch. O

2.2 Overview of \L&!

From now we see an overview af; whenT = List.

2.2.1 Graph Equivalence

For ordered graphs, we consider bisimilarity as their graph equiva-
lence, which is calledalue-equivalencen [Buneman et d200(,
since we observe only “value$’and&y pointed by a “pointer™.
For instance, the graplfs andG’, in FigurdZ(a}and2(b} respec-
tively, are considered as being equivalentdh nodes3 and 3’
are bisimilar because both of them only have one outgoing edge la-
beledd to the node. Also in G, from nodel to node3, there is an
e-edge (denoted by the dotted line), which can be eliminated with
keeping its bisimilarity by adding outgoing edge labetedrom
nodel to node2. Unreachable parts from roots are disregarded.
The definition of bisimulation on ordered graphs witledges is
one of the important results in this paper, and this will be addressed
formally in Sectiorid

A graph functionf is calledbisimulation generidf f(G) and
f(G") are bisimilar wheneve? and G’ are bisimilar. AL is
designed to make the interpretation of every term bisimulation
generic.

2.2.2 Graph Constructors

Figure@ summarizes the nine graph constructors used:{if, and
their typing rules are shown in Figufg They are similar with
graph constructors for unordered graphs in UnCBLiieman et al.
2004. Note that these constructors should be written as eyg. []

cu=o0+0|oxo|o— o {varant, product, function types

. 4 & & | Bool | Label | DBf { base type$
A | «|Y | List(o) { types for sibling transformatioh
(0 @G (&) &=G O
&y . &, I+ e1: DBY I'F e;: Label
. I'F ey: DBy I'+ ey: DBy
! . . X . .
& & & & ;&Eyl &J; Gu £ F'F[0:DBy Tte Hex:DBY I'F(eize2): DBy
S;] &" . &)Cl . &Xm (&y c Y) 1—\ l_ e: DBY
G G> G L G I'F(&y): DBy T\ gz:=c: DB} TI'+(): DB}
&y1 . &yn] [&yr ... &y b b, | s Emn .. & X X [+ er: DBY
GIBG I'ei: DBy' T'Fez: DBy ep: y
1962 G1@G, cycle (G) (X1 N X2 = 0) T'Fes: DBY
. X1UX . X
Figure 3. Graph Constructors ['Fe1 @ ex: DBy 72 ['Fe1@e2: DBz
I'Fe:DBX,y (XNY =0) 'l e: DBY
. X ; .
e = x| \x.e | ee | case e of in'(z) — eorin®(y) — e I~ cycle(e): DBy I - isEmpty(e): Bool
in'e|in"e| (e,e) | w'e | m"e { terms of lambda calculus T, l:Label, g:DBy F e;: DBZ 'k es: DBY
if e then e else e { conditional} ; ZxXX
algy|e=ce { label @ € £), marker, and their equality I srec(A(l, g).e1)(e2): DBy
llete { algebraic graph constructo}s T, 2:List(LabelxDBy+Y) i ¢ : List(Labelx DBy +Y)
[{eze)| () [ami=c|()|e@e|e@e|cycle(e) I'L c,: DB,
{ common graph constructots : :
isEmpty(e) { graph emptiness checkirjg ['F Isbl(Az.e1)(ez): DBy
srec(e)(e) { structural recursion application I, z:List(Labelxa+Y) I e;: List(Labelxa+Y)
nil | cons(e, e) | foldr(e, e, e) | ... { list operatorsg Tt ey: DBY
1-sbl(e)(e) | u-sbl(e)(e) { sibling transformation3 T F wsbl(Az.c1)(cz): DB TFay: v
Figure 4. ML Language (Just unfamiliar rules are listed. We usandg as meta variables

for variables of typed.abel andDB3Y, respectively.)

H H st
andG1 Hx,y G2; however we will omit the subscript’ andY” to Figure 5. Types and Typing Rules of UnCAL

avoid clutter.
Let us see each constructor; also see how type discipline onin- the graph constructors here are described separately, divided

put and output markers works for each constructor. First, [] con- jnig aligebraic graph operatorand common graph constructars
structs a root-only graph with the default input marker and no Algebraic graph operators depend Bpwhile the seven common

output markers. For two grapf&, and (> having identical in- graph constructors are fixed independently frdmin fact, alge-

put markers and output markers; +- (> adds two branching- braic graph operators further dependsignaturesof 7', as seen in
edges from each new root to the corresponding old roots,aind Sectior® but independently from choice of such signatures, their
G2. Next, (a : G) extends(z with onea-labeled edge pointing the gxpressive power remains the same not just on closed terms but
old root from a new fresh root node; and the constructg) con- also on open terms. The boolean expresssHimpty (e) results
structs a graph with a single node marked with an output ma&ker i tr,e when the graph of the result efhas no nore edge in the

(in [Buneman et g200q, (a : G) and(&y) are denoted afu : G} accessible part.

and&y, respectively)Marker renamingzz := G associates an input

marker&z to the root node of7; () constructs a trivial graph that ~ Structural Recursion Now we explain structural recursion

has neither a node nor an edge; @d® G- constructs a disjoint ~ which is a powerful mechanism borrowed from UnCABUne!
union of G1 and G2, where their branching function8; and B- man_et all200(] to describe graph transformations. The structural
work independently. Ther;; @ G» composes two graphs sequen- recursionf = srec(A(l, g).e) is such a function that satisfies the
tially by connecting the output nodes@f, with the corresponding following equations, where we ignore output markers and consider
input nodes of7» by e-edges, andycle(G) connects the output the case whelX is singleton, for simplicity:

nodes with the input nodes ¢f to form cycles. It is worth noting £ _
that this set of constructors are powerful enough to describe any Ja) = ¢(l,9) @ f(g)
finite ordered graphs. ' _ i
flgr+g2) = flgr) + flg2)
2.2.3 Syntax ofALZ! The above equations give a definition ffas a function which

inputsfinite graphs and outputsfinite graphs, in recursive way.
However the outputs of are in fact (bisimilar tofinite graphs, and

it is made clear by thbulk semanticef f, which will be given in
Section4.2 Intuitively, in the bulk semantics, structural recursion

Our graph transformation languagg:s’ (and in general\iy
is an extension of the simply typed lambda calculus with graph
constructors and graph operations. The syntaxi6f is depicted

in Figureld] and E'("? types and typing ry{l.es are in Fighire f transforms a graph in a bulk way by keeping structure of the
The typeDBy is interpreted tdDB;y : the set ofinitegraphs, graph—as map functions for list or tree—, transforming each edge
anda are type variables, which are used just fosbl and ex- labeled! to new graph parts(l, g). Heree can refer not only the

plained later. We omit the standard explanations for lambda terms, jape|; but also its successor graplin the input graph of.
conditional, label, and equality for labels.

Example 4. The following structural recursion2d _zc replaces all
labelsa with 4 and contracts edges labeled

a2d_zc = srec(rc)
where
rc = A(l,g).if l=a then (d: (&))
else if [=c then (&)
else (I : (&)
Applying the functiona2d_zc to the graph in Fig2(a] yields the
graph in Fig2(c}) O

Example 5. Consider an ordered graph representation of books.
Since “sections” are ordered and there are some reference links in
books, we can see books as ordered graphs. The following struc-

tural recursiontoc, which is adapted fronlRobertson et @009,

Figure 6. Graphs with Stream Branching and with Dense Branch-

computes the table of contents of books in which sections can bejng

arbitrarily nested:
toc(db) = srec(A(l, g).if l=section
then (section : (get_title(g) H (&)))
else (&)) (db)
where the functiomyet _title results in the title of the section.
get_title(g) =srec(A(l1,g1).if l1=title
then (title : srec(A(l2,g2).-(I2:[1)) (¢1))

else(]) (9) .

Sibling Transformation Structural recursion functions are pow-

give a general definition of bisimilarity fdf'-graphs. Finally, we
extend the bisimilarity equivalence from graph types to higher
order function types.

We here remark that our bisimilarity for the invisible lalkel
is different fromweak bisimilarityfor the invisible label- in the
context of process algebi®Iner[1999. Our bisimilarity is char-
acterized by the-elimination (Propositiof8[2) which is familiar
in automata theory. One purpose of our use-@&dge is to post-
pone calculation of graph constructors, structural recursion and so
on, but weak bisimilarity is unsuitable with respect to properties of
such graph transformations: e.g. associativityHofails with weak

erful transformations which terminate at evaluation and preserve bisimilarity.
finiteness of graphs, but we need more expressive power: transfor-

mations on sibling dimension.

Let us consider an ordered graph and its unfolded (maybe infi-

3.1 Bisimilarity for Ordered Graph
Now we see the bisimilarity between ordered graphs: its intuition

nite) tree. The branches under the root are then a list of the subtreesgng formal definition.
Then if one wants to, e.g., reverse the order of the branches under

the root, we can not do so with the structural recursion.

To resolve this problem, we introdutzeal sibling transforma-
tions1-sbl anduniform sibling transformationsi-sbl, which en-
able such transformations. The formesbl transforms branches

only of the root node of a single-rooted graph; and by combination

with the structural recursior;sbl can transform branches of any

one node which the structural recursion function can reach. The

latteru-sbl transforms branches uniformly of all nodes in a graph.
Let us return to the Figurd List operators in the syntax are
usual ones; we can add anything that is convenient suetags
cdr, filter, andreverse etc. These list operators are used for
the two sibling transformationst-sbl(Az.e) and u-sbl(\z.e)
transform sibling as\z.e transforms lists. In the typing rule for
u-sbl, we use type variables to prepare a parametric poly-
morphic function\z.e on List(Labelxa+Y') so that\z.e and
henceu-sbl(Az.e) become “uniform” ona. The parametricity
guarantees bisimulation genericity efsbl. For the detail see

Sectiorid.3

3. Bisimilarity for ¢-edge and Ordered Graph
Sectior2.3 gives a general definition af-graph, for a monad’.

Intuition of the Bisimilarity

First let us see some examples of ordered graphs in order to have
some feeling of the bisimilarity to be defined. Consider the graphs
in Figurel@ For the graplG, first, in order to make our problem
easily understandable, let us unfold the graph to an infinite tree, i.e.,
the graph in the middle. Then intuitive-elimination” of the tree

is the graph on the right, where the branching is as a stream. Note
that for ordered graph there is ridempotencywhich unordered
graph has. The way of branching of graphs havinrgdges are
thus possibly infinite essentially. However, it is not necessarily just
a stream type, as in the next examylg. Unfolding of graph

G yields the tree in the middle, and then its-élimination” is

the graph on the right. This graph has a branch like the ordered
set{n/2meQ|n,m e N,0<n<2™}, which is a dense countable
linear ordered set. (In this paper, the tecountableincludes the
case of finite.)

In fact, for any countable linear ordered set, there is some
ordered graph having-edges such that the branches of the root
after eliminatings-edges are exactly as the given ordered set. (For
the detail, see Appendil)

To this end, we shall give the semantic equivalence for the graph Formal Definition of the Bisimilarity

model of \L;: bisimilarity betweer™-graphs.

The main point is a treatment efedge. The case of ordered
graph (List-graph) involves a big problem which does not occur
for unordered graphHs,-graph): i.e.g-elimination might induce
infinite width. In the following, we shall see the problem and
how to define bisimilarity between ordered graphs. Also we give
some effective procedure to avoid such infinite width. Then we

Now let us define bisimilarity between ordered graphs. As seen
above, thes-elimination of an ordered graph might induce count-
able width. So we shall first define a generalized notion of “ordered
graph with countable width”, and define bisimilarity for such gen-
eralized graphs. This asks us to extend the list monad

def

List(S) &5, cns™

to the countable list monad'List which can be defined as the
following:

CList(S) &'y eLS*
whereN is generalized td., the set of countable linear ordered
sets up to order isomorphism (with chosen representafiyeSee
AppendixBl for the precise definition o’List.) Thus we extend
ordered graphs t6’'List-graphs.

For B(v) € Sren(LexV+Y)E, let|B(v)| denote the count-
able linear ordered sét of B(v). Then, we calli € |B(v)| a
branch indexof a nodev, and write B(v).i € LxV+Y for the
i-th branch.

Next we prepare the notion of “transitive closure”aedges.
LetG = (V,B,I) € CList-DBy andv € V. Let us consider a
pair of ane-path fromv and a branch indek, of the last node in
thee-path:

v (: 'U()) —E)io V1 ... ih;n_l Un —>ip, (TL c N)

wherewv,, —;,, means just that, € |B(v,)|. We call thisproper
branch ofw if the i,-th branchB(vy,).i, is not ans-edge, i.e., it
is either a nore edge or an output marker. The set of all proper
branches ob in G is denoted byPb(G, v). It is easily shown that
Pb(G, v) is a countable set.

Then there is a natural linear ord€p, on Pb(G, v): for two
different proper branches

€ £
p= (’U —ig U1 --- —>in—1 Un _>in)7

;- € ’ € ’
p = (v Srip Ve D Ups s
n’—1 n

we obtain their branch indices sequenqésd::Gf (50 ey In—1,10n)
andpy & (205 -y i/ 1,10,). With the starting nodes, we can
recoverp andp’ from these indices sequences. Then, betwgen
andp’, we can consider lexicographical ord€g, then we define
def . ~
p<prp <>p<ip.
Now we define the bisimilarity.

Definition 6 (Bisimilarity). For CList-graphsG = (V, B, I),G’ =
(V',B',I') € CList-DB%, a relationR betweenV and V' is
called abisimulation relationif for any v Rv’, there is an order iso-
morphismf: (Pb(G,v), <pp) — (Pb(G’,v"), <pp) satisfying
the following property. For any proper branch
p= (v .. vn —i,) € Pb(G,v)

with

flp) =@ 5% e Upr =y) € Pb(G',),

e if B(vn).in = Edge (I,u) for somel € £,u € V, then there
existsu’ € V' such thatB’ (v),,).i,,, = Edge (I,v’) anduRuv/,

o if B(vy).in, = Outm (&y) for someky € Y, thenB’(v),,).i),, =
Outm (&y).
Two graphs& andG’ arebisimilar (denoted byG ~ G’) if there is

a bisimulation relatiorR such that for every input marker € X,
I(&x) R I'(&x). O
Note that the bisimulation relation is an equivalence relation on

CList-DB3 . Next, let us define-elimination.

Definition 7 (e-elimination) ForaCList-graphsG = (V, B, I) €
CList-DBy, e-elimination e-elim(G) of G is a CList-graph
(V,B',I) € CList-DBY¥ where|B'(v)] £ Pb(G,v) and for
p=(Sy . vn —i,)in|B)], B'@).pE Bn)in. O

Note that thes-elimination does not change sets of nodes.

Proposition 8. 1. For all CList-graphs G € CList-DB3y,
e-elim(G) has noc-edge, andG and e-elim(G) are bisim-
ilar.

2. For CList-graphsG, G’ € CList-DBx , G andG’ are bisimi-
lar if and only ife-elim(G) ande-elim(G’) are bisimilar. O

Here we first gave the definition of bisimilarity for graphs hav-
ing e-edges and then gave that efelimination and the above
proposition. However, we can define the bisimilarity for graphs
havinge-edges by the equivalence stated in ProposBEi@with the
e-elimination and with the bisimilarity for graphs having si@dge;
the latter can be easily derived from general coalgebraic definition
of bisimilarity [Rutteni200(. Then we see that such definition is
not just equivalent to but almost the same as that in Definflon
Thus we find that the key here is the definitionssélimination.

In the following we give a general definition of bisimilarity fa@i-
graphs bye-elimination.

3.2 Decidability for Finite Width Graphs

Before going to the general setting with mondswe give one
important decidability result fo€List-graphs.

Let FGf be the set of finitelist-graphs which are bisimilar to
some finite List-graphs having na-edge. There is a procedure
which answers, for a finitdist-graphG, if G is in FG# or not.

If G is in FG#, we can effectively eliminate-edges; otherwise, it

is impossible to eliminate-edges, keeping finite width. This pro-
cedure is as the following. First note that for each node accessible
from a root, we can check if there is arcycle—a cyclic path con-
sisting only ofe-edges—on the node. Then if, for every accessible
node withe-cycle, there is no proper branch, then the input graph
is in FG¢; otherwise, not in F@.

This is enough for run-time use of the query languagé,
because, though we neeedge for implementation—for structural
recursion and for efficiency of graph calculation—practical graphs
in the real world has ne-edge. If a user of the language writes
such a practical query, then the result should return a graphén FG
if it is an incorrect query not intended by the user, and then if the
result has inevitable-edges, the procedure above can check it and
can warn the user.

Note that, in the class Ffsince we can eliminate-edges, we
can obtain familiar effective procedures for bisimilarity-checking
and for obtaining the minimum graphs in a similar way to un-
ordered graph. Also note that @ is not in FG, thenG is not
empty, hencésEmpty is decidable.

3.3 Generic Definition of Bisimilarity

Now we define the notion of bisimilarity in general fékgraphs.
We define this bisimilarity for any monabl whose Kleisli category
Setr has a uniform iteration operator.

For a monadl’ on Set, the Kleisli categorySetr of T is
defined as below: objects 8etr are sets, and morphisnss— S’
are functionsS — T'(S"). The identity morphisnid on S is

id & return: § — T(S),

and the compositiog o f of f: S — T(S") andg: S" — T(S")
is defined as

gof Elift(g)o f: 8 — T(S").

A Kleisli category has coproducts: the coproductsfand S- is
justS1+S2, and the injections are

ing %t eturn o ing: S1— T(S1+S52)

iny © return o ing: Sy — T(S1+52).

Copairing of a pair of functiong;: S1 — T'(S’) and fa: S2 —
T(S’) is the same as the copairing$et, i.e.,

[f1, f2]: S1452 = T(S").

We write V: S+S — T(S) and + for the codiagonal and the
coproduct on morphisms Betr, respectively.

Next we recall the notion of iteration operatétdghverd200Q
Kakutanil200Z, which is the dual notion of fixed point opera-
tor [Simpson and PIotk|200(; also, iteration operator is to while

operator as coproduct type is to the boolean type. Though iteration

Before that, let us recall the notion of bisimulation relation for
general endofunctoF’ on Set. First we recallF-lift of relations:
for (the inclusion function of) a relatiom: R — VxV’, let

rm Epr,oR:R— Vandr, ®pr o R: R — V';so
(F(r1),F(r2)) : F(R) — F(V)xF(V").
ThenF(R) is defined as the image
(F(r1), F(r2)) (F(R)) € F(V)xF(V").

operator can be defined for any category with finite coproducts, we For a functorF’ on Set, and twocoalgebrasof F, i.e., two func-

here define directly on the Kleisli categd®et of a monadl’ on
Set. Aniteration operatoriter on Setr is a function which maps
a function

f:S—=T(S+A)
to
iter(f): S — T(A)
such that the mapping satisfies the following axioms:
e (naturality:) forf: S — T(S+A) andg: A — T(A’),
goiter(f) = iter((ids+g)o f): S — T(A"),
e (dinaturality:) forf: S — T'(S'+A) andg: S" — T(S+A),
liter ([f, inr] 0 9), id 4] o f = iter([g, ins] o f): S — T'(A)
e (unfolding:) for f: S — T'(S+A),
iter f = [iterf,id] o f: S — T(A),
e (codiagonal:) forf: S — T'(S+S+A),
iter(iter f) = iter((V+id) o f): S — T(A).
Further, iter is calleduniform if for functions f: S — T(S'),
g: 8" = T(S'+A) andh: S — T(S+A),
iter(g)o f = iter(h): S — T(A)
whenever
gof=(f+id,)oh: S — T(S'+A).

The axiom of uniformity is used for logical relation for iteration
operator[Hasegawi@007. We use uniformity to show that strong
bisimilarity implies bisimilarity.

The following characterization ef-elimination as iteration op-
erator is due tdffasud@2013; Jacobi20104.

Definition 9 (s-elimination) LetT be a monad anéter be an iter-
ation operator irSetr. For anT-graphG = (V, B, I) € T-DBy,
its e-elimination e-elim(G) € T-DBy is (V,B’,I) where
B % embed o iter(iso o B); here embed is the embedding
T(LxV+Y) — T(LxV4Y), andiso is the composition of

T(LXVAY) X T((L+1)XVHY) X T(V+(LxV+Y)).
O

Conversely,e-elimination induces an iteration operator; let
us consider d-graph (V, B, I) in the case wherL =0. Then
B:V — T({e}xV+Y), and if we applye-elimination, the re-
sulting branch function i3’: V' — T(0xV+Y). That is, we get
an operator which maps a functidh — 7'(V+Y) to a function
V — T(Y). This is just the same as the structure of an iteration
operator in the Kleisli category (if we allo” to be arbitrary
sets); and we find that it is natural to adopt the axioms of iteration
operator also as axioms efelimination.

Now we give a general definition of bisimilarity far-graphs,
using the above-elimination.

tonsB: V — F(V)andB': V' — F(V'), abisimulation re-
lation R betweenB and B’ is a relationR C V xV' such that
(BxB')(R) C F(R).

Definition 10 (Strong Bisimilarity and Bisimilarity) Let 7' be
a monad, and? = (V,B,I) andG’' = (V',B',I') be T-
graphs inT-DB5 . ThenG and G’ are strong bisimilarif there
is a bisimulation relatiorR w.r.t. the endofunctof’ (L x (-)+Y)
betweenB and B’ such that for angz € X, I(&z) R I’ (&z).
Now let iter be a uniform iteration operator ifetr. Then
G and G’ are bisimilar (written asG ~ G’) if e-elim(G) and
e-elim(G’) are strong bisimilar. O

Note that the notions of-elimination and bisimilarity depend
on a given iteration operator, but in this paper we do not refer the
dependency in the terminology.

We assume that all monads8 in the paper preserve weak-
pullbacks, which is just a mild assumption often used in coalgebra
theory [Rutteri2000 [Sokolové200Y. Especially, theri” preserves
injections and finite intersections. Using this assumption, it is eas-
ily checked that the strong bisimilarity relation is an equivalence
relation onT-DB3 .

It is immediately shown that strong bisimilarity implies bisim-
ilarity from the uniformity of an iteration operator. We use this
property in some proofs in the papers. (In fact we can weaken the
assumption of uniformity to that afniformity with respect to mor-
phisms inSet [Simpson and Plotk|200Q Definition 2.7].)

Thus we gave the definition of bisimilarity, but it is not neces-
sary that every monad has an iteration operator in the Kleisli cat-
egory. However, as the case bfst with CList, there is the case
that a monad” is presentable in programming languages, does not
have iteration operator, and has an extengiowhich might not be
presentable in languages but has a uniform iteration operator. We
say thatl’ has an extensioi” for e-eliminationif there is a monad
T’, an injective monad morphism: 7" < T, and a uniform iter-
ation operator in the Kleisli category @f . Heremonad morphism
is a natural transformation which is compatible wittturn’'s, and
with lift's (see Benton et al200(, for the detalil).

By this, we generalize the definition of bisimilarity:

Definition 11 (Bisimilarity Generalized on Size)Let T be a
monad which has an extensidi for e-elimination. Then there
is the embedding-DBY: T-DBy < T’-DBy which maps
(V,B,I) to (V,uz.xv+y)oB,I). For G andG’ in T-DBy, G
and G’ are bisimilarif .-DB< (G) and«-DB3 (G”) are bisimilar
in the sense of Definitidfid

By the assumption that has injective components and
T preserves weak pullback-DB3 reflects strong bisimilar-
ity [[Sokolové2005 Theorem 4.3.6], and hence férgraphs hav-
ing no e-edges, strong bisimilarity and the above bisimilarity are
equivalent.

Example 12. It is easy to see that the original bisimilarity for
unordered graphs is equivalent to the general definition of bisim-
ilarity with T = Pg, andT’ = Peyt: countable powerset. For

f: 8 — Pent(S+S57),
def

wter(f)(s) = U (fao (f1)™)(s)),

neN
where
fi def lidg, constgy]o f: S — Pent(S)

fa dor [const(y,idg]o f: S — Pent(S)
and then-times compositior{ f1)" is that inSetp,,, .
Similarly, finite multiset monad\/s,, has an extension fos-
elimination, i.e. countable multiset monati/,,;:

Mene(S) £'{¢: S = NU{oo} | ¢~ 1(N—{0}) is countablg.
The iteration operator folM., is given with the same formula as
that for Pent.

Also finite probability distribution monads,, has an extension

for e-elimination, i.e.countable subprobability distribution monad

SubDent: SubDeny (S) &'

{¢: 8 = [0,1] | $"((0,1]) is countableX, p(z) < 1}.

Note that here the summation of probabilitiese(z) is not neces-
sarily 1; this is because the probability-X.¢(x) is reserved for
that of the abort of the iteration operator. The definition of the it-
eration operator foSubD.. iS also similar to those foP..; and
Ment, seelJacob®?010f] for the detail.

For List with CList, conversely rather we can give the iteration
operator inSet ¢+ With the e-elimination in Definitior[Z in the
way described after Definitidel O

3.4 Bisimilarity for Higher Order Functions

So far we have given the semantics for base types, i.e., bisimilarity

for graph typedDBs}, and give just equality relations for the other

base types. Here we extend such equivalence relations for base

types to higher order function types.
It is well known that if we want to lift equivalence relation to

function types then we need to switch from the notion of equiva-

lence relation to that gbartial equivalence relation.e., an equiv-

alence relation on some subset of an original set. This is because,

now not all functions onDB¢3¢ are bisimulation generic, so we
have to cut out theubsetconsisting of bisimulation generic func-
tions.

Now let us see the formal definition. Letbe a type of\Lg.
We define binary logical relation-, from the above equivalence
relations on the base types. Let us recall the logical relation
only on the essential case, i.e., function type= o1 — o02. By
induction hypothesis, we already defined a binary relatign on
[o:]- Then we define a binary relation, on [o] & [o1] = [o2]
as

[r~o f, g;’ VCL‘7$U/ € [o1]. (x ~o, ' = (@) ~o, f’(l‘,))
= Va € [~ | (@) ~oy f(2).

Then for any typer, ~, becomes a partial equivalence relation
on [o], i.e., an equivalence relation on the subset

def
[~ol E{z € [o] | 2 ~o 2}

We call a functionf: [o1] — [o2] (higher order) bisimulation
genericif fisin|~s, oyl i.€.,

Va2’ € [o1]. (z ~oy @' = f(2) ~oy f(2)).

Then by the Basic Lemma of logical relation, interpretations

of all the terms are bisimulation generic if interpretations of

all the constants are bisimulation generic; and then we obtain a

model of \L in the cartesian closed categdByt, see the text-
book [Mitchell[199€] for the detail. Note that the above lifting to
function types is possible for any equivalence relations such as
strong bisimilarity.

In the next section we show the bisimulation genericity for all
constants.

4. UnCAL Generalized with Monad

In this section we give interpretations of terms)df; and show
their bisimulation genericity. As explained in the last of the previ-
ous section, it is enough to consider only constants; we will see
graph constructors, structural recursion, and sibling transforma-
tions. In the last place, we see how to define syntaxef.

4.1 Graph Constructors

UnCAL and\EE! respectively have nine graph constructors, as in
SectionZ.2.2 by which we can represent all finite graphs. Here
we define such graph constructors forgraphs by which we can
represent all finitd-graphs.

Among the nine graph constructors bst, [and +- are in-
herent in the list monad:st, and the other seven constructors are
common for all monadd.ist(.S) is free monoid (generated by a set
S), which has nullary and binary operations: unit and multiplica-
tion. The nullary graph constructor [] and binary graph constructor
-+ correspond to the unit and the multiplication, respectively.

First we define the seven common graph constructors/for
graphs.

Definition 13 (Common Graph Constructors)
e ForG = (V,B,I) € DBy,

(1:G) L (VU {v : fresh}, B', {&— wo}) € DBy

B' €' B U {vo > return (Edge (1, (%)))}

e ForG = (V,B,I) € DBy,

def

(&x = G) € (V, B, {&x — 1(%)}) € DBI*"},

e For&y €Y,
(&y) & ({&}, {&— return(Outm (&y))}, id(s}) € DBy.
o ()0, 0, idy) € DBY.
e ForG = (V,B,I) € DB¥ andG’ = (V',B',I') € DB’
such thatX N X’ = 0,

G@G/ def (V+V’, B//,]+[/) c DB))SUX’
B" ©T(Lex(in)+Y) o B, T(Lex (ing)+Y) o B]
VAV = T(Lx(VHV)+Y).

e ForG = (V,B,I) € DBy andG’ = (V',B’,I') € DBY,
GeG ¥ (V+Vv', B”, injoI) € DBY where
def

B (imi(v)) = () (B(v))
fi LXVAY — T(Lex(VAV)+2)
Edge (I, v) — return(Edge (I, ini(v)))
Outm (&y) +— (T(Lex (in,)+2))(B' (I'(&)))
B (in.(¢v')) £ (T(Lex (in:)+2))(B'(v)).
e For a graphG = (V,B,I) € DB%_y whereX NY =),

cycle(G) & (V, B',I) € DB where

B'(v) £ T(f)(B()).
FiLeXVH(XUY) = LXV4Y
Edge (I, v) — Edge (I,v)
Outm (&z) — Edge (e, I(&z))
Outm (&y) — Outm (&y)

O

In the definition ofB” (in,(v)) in the definition of@, by replac-
ing lift(f)(B(v)) with T(f")(B(v)) where

[l LeX VY = L (VHV)+Z
Edge (I,v) — Edge (I, in;(v))
Outm (&y) — Edge (¢, I' (&y))

we obtain@’ operator, which is bisimilar t@ operator. With@
operator, we find that we do not nee@dge for graph constructors
except forcycle, but @' is useful to postpone extra calculation of
@, which is in effect equivalent to one stepsselimination.

We note that the multi-rootedness is semantically the same as
power of sets of graphs (or tuple of graphB)B;3 2 (DBiy)~ .
The functionDBsy — (X — DBiy) is G — (& — (&) @ G),
and the inverse is

[(&= f(&x1)) B ... B (&xn = f(&xn))

when X = {&xzy,...,&z,}. Still multi-rootedness is useful for
efficient implementation, i.e., to share bisimilar nodes and to save
the size of graphs as small as possible.

Now we define the other graph constructors which depend on
each monad’. For Propositioffd and so on, we finally assume
that a monadl” is finitary; though we can postpone the definition
of finitary monad till Propositiod9, we first explain finitary monad
so that the reader has more concrete intuition in the following
definitions and propositions.

A finitary monadon Set is a monadT on Set such that
the functorT preserves all directed colimits Bet. We use this
property only in the following form (and an equivalent condition
explained soon): for any sef, and anyxz € T(S), there is a
finite subsetS’ C S such thatr € T(S’). The monadsPsy,
List, Msn, and Dg, are all finitary monads; for example, for
[4,1,6,4,6,4] € List(N), we have a finite subsét, 1,6} C N
and |4,1,6,4,6,4] € List({4,1,6}).

Next we recall one equivalent condition of finitary mor&ad
shortly speakind[” is generated by finite arity algebraic operations.

For a monadl” on Set, an elementf € T'(A) can be seen
as an|Al-ary algebraic operation ofi(S) for any S € Set: for
geT(9)",

Flg) € lift(9)(f) € T(S).
For example, whefl = Psy,, for f = {0,1} € Psa({0,1}) and
90,91 € Pan(S),

~

f(go,g1) = Lft(0 = go,1 — g1)({0,1}) = go U g1,

ie,{0,1} =u.
For a monadT’, let us take a family of set&(n) C T'(n)
(n € N), where we regard as the sef0, ...,n—1}. Let us define

TE(S) C T(S) (S € Set) by induction oni € N as below:
TO(S) L return(S) C T(S)

T(8) E{flg) € T(S) [meN, ge (THAS)™ f € X(m)}.

Then a monad is finitary if and only if there is & such that

7(s) = |J18s),

i€N

and in this case, we call su&ha family of signature sets df” and
we call elements it (n) signatures

Example 14. The three monad®s,, Msn, and List correspond

to (upper) semilattice, commutative monoid, and monoid, respec-
tively; then their zero ary operations and binary operations corre-
spond to signatures as below.

For Pgn,
2(0) € {{}} C Ppa(0)
2(2) €{{0,1}} C Pau(2)
¥(n) £ (for othern).

—

For{} € £(0), {} = {} € Pan(S), and as seen above,
{0,1} = U: Paa(8)* = Pau(S).

Then any element iP5, (S) can be represented as a composition
of these operators and singletons, i.e., elementstimrn(S): e.g.
{a,b,c} = ({a} U{b}) U{c}.

For Mz, similarly,

£(0) £ {{}} C Mz (0)
2(2) €{{0,1}} C Mzn(2)
S(n) €0 (for othern).

Here{} and{0, 1} are regarded as multisets.
For List, similarly again,

$0)E{)} C List(0)
£(2) £{[0,1]} C List(2)
S(n) o (for othern).

For Dgy,,

2(2) € {sig,: 2 — [0,1] | r € [0,1]}

¥(n))

(for othern)

wheresig,. is defined asig,.(0) &' and sig,.(1) ®'1—r. Then
for ¢1,¢2: S — [0,1] in Dan(S), sig,(do,d1) € Dan(S) is
sig, (¢o, ¢1): S — [0, 1] such that

sig, (¢0, d1)(8) =7 - do(s) + (1=7) - du(s).

Now recall that “singletons” iDs, (.S), i.e., elements imeturn (S)

are given as the Dirac delta functiofisas in Exampl@ Then it

is easy to see that the above family becomes a family of signature
sets; for examplep: N — [0, 1] in Dgn (N) such that

1 1 1
¢(n) =0 (forothern),
can be represented by signatures and “singletons” as
1 1 1
o= 550 + 651 + 552
1

1.1 2

= sig1(do, sig1 (01,02)). o
The above family of signature sets b, has infinitely many

signatures. Still, when implementing-g in a programming lan-

guage, one can represent it as the image of a function. For exam-

ple, first let us interpreDs, (S) asFinSet (S xFloat) (or with fi-

nite multiset instead of finite set). Here a distributipre Dgy (S)

is regarded as a relation rather than a function, then a probability In the former there are extrd-copy of X, i.e.,X;c 4 (X) than the
f(s) € [0,1] can be regarded as the sum of the multi values of latter; but with@ (rather than@’) in Definition[I5 the nodes in
f(s). Then the family of signature selsfor Ds, is presented as X;c4(X) in the former are not reachable from the roots in the
sig: Float — Dgn(Nat) defined as below: former graph, so can be ignored.
let sig r = {(0,1), (1,1-1)} The se_co_r_ld and third _points_are immediate from _the first point
e ’ by the definition of a family of signature sets of a finitary monad.
Now we define a graph constructor forgraphs for each alge- O
braic operator of’, i.e., for each element ifi(A). Before this, note
that in the definitions of graph and common graph constructors, we Thjs proposition also implies th&t-algebraic graph construc-
can eaSi|y extend set Of marker fl’0m f|n|te to arbitrary&eﬂind@ tors Obey the same axioms as those Of a|gebra‘_0F0r exam-
from binary operator to-ary operator®: (DB)4 = DB, ple, finite powersets are free algebras of upper semilattice, hence
These are used in the following definition, but the reader who is the graph constructors; and(-) U (-) satisfy all axioms of upper
interested only in finited's—which are enough for implementable semilattice: i.e., associativity, unitality, commutativity, and idem-

language—may apply the following simply to the cate= n = potency.

{0, o _n_l}') Proposition 18 (Bisimulation Genericity of Graph Constructars)
Definition 15 (T-Algebraic Graph Constructors)Let 7' be a All the graph constructors (includin@’) are strong-bisimulation
monad orSet. For f € T'(A) (A € Set), and a finite seX, let generic and also are bisimulation generic.

¥ £ (X, B,id) € DBX, x where
def Proof. Itis obvious that they are strong-bisimulation generic. Then,
B(&z) = T(g9)(f) € T(LxX+AxX), for a graph constructolf, prove thate-elim(f(G1, ..., Gr)) is
. bisimilar toe-elim(f (e-elim(G1), ..., e-elim(Gr))). (For the case
g: A= LxX+(AxX) of cycle, use unfolding axiom of iteration operator.) This implies
&a — Outm ((&a, &z)) . that strong-bisimulation genericity implies bisimulation genericity.
Then we define &-algebraic graph constructof : (DBy)# — O
DB . For(Gi)ica € (DB, F((G:):) & G¥ Gi)i)).
Y (Gi)iea _(LOREICRD 5 @(@(G)) The next proposition is the most important property of the graph
We call T-algebraic graph constructors and the common graph constructors, for which we requif to be finitary.

constructorgraph constructors » . -

) . Proposition 19 (Full-Representability) Let 7" be a finitary monad
Example 16. WhenT" = List, let us consideff = [0,1] € X(2) on Set which has an extension far-elimination. Any finiteT-
in Exampldl4 Let us see the picture 61, + G in Figurel This graphs can be constructed by the graph constructors.
is the@' version of[0, 1](G1, G2). The topm-roots areG|o,1; and
thec-edges are those [§y'; and one can find that the juxtaposition prgof. The proof is basically the same as that for UnC/BLhe}

of two graphsGi and G2 in G1 + G2 are the same as that in manet al200(. See AppendifDlfor the detail. O
G1 ® G2 in the same figure.

Proposition 17. Let T be a monad orSet with an extension for 4.1.1 Remark on Representability of Monads
e-elimination. Forf € T'(A) (A € Set), and f; € T(A;) (i €

We give an important remark on “representability” of monads in
A, A; € Set), let g P p y

languages, which explains why we need care to infinite width for

MieA‘fi: A TTeal) = T(;en A) é/ri;zgr?raphs, and why we do not need such special care’figr
be the coproduct of the morphisnfis 1 — T'(4;) in the Kleisli For T with an extension foe-elimination T”, we definede-
categorySetr. Then elimination for anyT-graphs, but in fact it is enough to define

F(Fi(Viea): TI.. . (DBX)Ai — DBX e-elimination for finiteT-graphs, since our languages target only
o H{iO)iea): Thiea(DBY) Y finite graphs. IfT" is finitary, in order to define-elimination only
is bisimilar to for finite T-graphs, without loss of generality we can replace the

liﬂ(ﬂieAfi)(f): (DB Miea4i _, pR¥ extensiorl” with its finitary part 7" |gn:
via the isomorphism T |an(S) (j:ersferAS) T'(5).
[T;ca(DBY)A = (DB)Hica A, (See Appendiffor the detail why generality is not lost.)

Hence, ifl is further a finitary monad with a family of signature Then, (Pent)|an is equal toPg,, hence we do not neeftns

e Pgin) .
setsY, the graph constructof of any f € T'(A) is a composition 07 Ap” anymore. On the other handList|s.(S5) consists of
of the graph constructors of a finite number of some signatures in countable list such that the number of elementsSiwhich occur

% in one! are finite. For examplel0,1,0,1,...] € CList|an(N),

At the same time, when we add graph constructors of all the sig- but [0, 17 2 3,..] & CL“”ﬁ'}(N)' Thus CList|in 1S far different
natures in one family of signature sets to a calculus, then expressive{TOm List; we can not avoid the use of the notion of countable
power on graph constructors are the same independently from the linear ordered set. (However the authors do not know if for arbitrary

choice of families of signature sets. countable linear ordered sktthere is arfinite List-graphG whose
e-elimination involvesl; though we found suct asinfinite List-
Proof. ForG®, = (Vii, BL,, I.) (i € A,i' € Ay), graphs as in Append[&l As in Figure, it is certain that a dense
— = ; countable linear ordered set (and more countable linear ordered sets
F((fi((Gi)ir))i).V = X4Bica(X+Buea, Vi) concatenated further) occur.)
and For the other two examples,
Lft(LL, ., f) (D (Gi)in)-V = X460 elL e 4 40Vt (Ment)|in (S) = {¢: S—=NU{oo} | ¢~ (N—{0}) is finite},

10

and (SubDcns) |an IS thefinite subprobability distribution monad
SubDﬁn:

def

SubDn(S) £ [S—[0,1]| ¢~ ((0, 1)) is finite, S p(z) < 1}.

Here(Mcnt)|an and(SubDent)|an are representable in a language
for implementing\%L. in a similar way to that after Exampled
while it seems difficult to represent whole 6ist|an, because of
the notion of countable linear ordered set.

Note the difference between being finitary and being “rep-

resentable”, and also note the difference between being “repre- &y

sentable” ofT" and that of7”. (On the other hand, recall that as
above if T is finitary thenT” can be finitary.) As above, it is not
clear that being finitary of a monad implies that the monad is
“representable” in a language; and being finitaryZofs used to
prove the property that every term M. preserves finiteness (of
nodes) of graphs, while “representability” 8fis needed for syn-

tax of graph constructors and implementation of the graph model

B:V — T(L:xV4Y). On the other hand, “representability” of
T’ is needed for representation of graphs withewtdges, which

is important if, in an application, graphs observable from users of

Ak should bes-edge free; in order to resolve this problem, we
gave the effective procedure in Sect®@ for the case of.ist with
ClList.

4.2 Structural Recursion

Now we give a general definition of the structural recursion, which
is the most important transformation method\@t; . In [Buneman
et all[200(, there are two semantics for the structural recursion:

bulk semantics and memoized recursive semantics. Here we gener-

alize the bulk semantics.

A picture of the bulk semantics for ordered graphs is given
in Figure[@l As seen in the picture, with bulk semantics first we
calculate the application of a given input functignto a pair of

each edge and its following subgraph of an input graph. Then we
connect the results in keeping with the shape of the original graph,

usinge-edges.
Recall the record notatio =
in the following.

(G.V,G.B, G.I), whichis used

Definition 20 (Bulk Semantics of Structural Recursion)et T" be
a monad orSet. For a functiore: £x DBy — DBZ, astructural
recursion functionsrec(e): DBy — DB7}+y is defined as the
following.

ForG = (V,B,I) € DB, srec(e)(G) =
DBZ% where

v, B.T) €

oV’ d:ef (ZXV) + (E(l,v/)eﬁxve(l, G‘v/)V)

(Here, an element&z,v) in the left setZxV—Z-copy of
nodes ofG—is a “hub” of the new graph, for this case we
use the labeHub(&z,v) below. While, on the right of ++”
and further in the case ¢t,v') of the direct sum ¥£", a node
w in e(l,G|,/).V is “a piece of bulk”; eachi-labeled edge to
v’ in G is replaced with this subgrapt(l, G|,/).V, which is
represented by a dotted box in FiglfieFor this case, we use
the IabeIBulk(l,,,/)(u).)

B’ (ZXV)+(E(l U/)e(l G|U)) —

T(Eex (ZXV) + (S ell, Glo).V)) + (ny))

Hub(&z,v) — T(g)(lift(Az.(&z,))(B(v)))

11

&z1 &72 &z1 &72
6(b,,): U
&zl &z
&
srec(e) (&71.8) (&22&)
— :

2

&2 (input marker)

&x (output marker)

@@

Figure 7. Bulk Semantics of Structural Recursion

9: ZX(LXV4Y) —
Lx((ZxV)+
(&2, Edge (1,v")) —
(if l=¢) Edge (&, Hub(&z, v'))
(if 1 #£¢) Edge (g, Bulkq,w(e
(&2, Outm (&y)) +— Outm ((&z, &y)
Bulk,vy(u) — T(h)((e(l,G|v).B)(w))
h: Lex(e(l,Gly) N)+Z —
Lx((ZxV)+ (B el,Glo).V
Edge (l',u/) — Edge (l',Bqu(l,U/)(u/))
Outm (&2) — Edge (g, Hub(&z,v"))

ZIxX — (ZXV)+(Z(lm/)€(l,G|v/).V)
(&z,&z) — Hub(&z,I(&z))

(2(1,1,/) e(l, le/)V)) + (ZXY)

lv G|v’)I)(&Z)))

N

)) +(ZxY)

o]
O

Next we see how structural recursion preserves finiteness of
graphs.

Proposition 21. Let T be a finitary monad. Structural recursion
function maps finite graphs to finite graphs; more precisely, for
e: LxDBgy — DB:Z and a finiteT-graph G, the accessible part
of srec(e)(G) is finite.

Proof. SinceT is finitary, for each element € V, there is a finite
subset, C L.xV suchthatB(v) € T(E,+Y). Let

EE U,y Eo) N (LXV) C LxV,

then sinceV is finite, so isE, and B is decomposed through
T(E+4Y) C T(L:xV+Y). Then the accessible partafec(e)(G)
is included in the finite set

V" E(ZXV) + (Saanerel, Gly).
e, I'(ZxX)CV"andB' (V") C V",

V)ycv,
O

Now recall the notion of bisimilarity for higher order functions.
The following is stronger result than that provedBuheman et &l.
200(] even wherll’ = Ps,,, because here bisimulation genericity is
proved also on the first argumentwhile in [Buneman et d200(

itis proved only on the second argumeéhntThis is the key why we
can extend from UnCAL to the higher order calculjgi".

Theorem 22. LetT be a finitary monad having an extension fer
eliminationT”. Structural recursiorsrec is bisimulation generic,
i.e.,if
e1 ~ es: LXxT-DBsy — T-DB¢%, and
Gy ~Gy € T'DBH)S,
then

srec(e1)(G1) ~ srec(e2)(G2) € T'DBéi?

Proof. Basically the proof is similar to that of Propositii@l but a
bit subtle, because-elim embedl-DB; into T"-DB, while higher
order function types make inclusion relations between types oppo-
site. So, first we show that the structural recursion is defined “uni-
form” on size of graphs: i.e., let

i € (1-DBY)|g-pg, : T-DBi¥¥ — T'"-DBy,

then for
e: LxT-DBgy — T-DB:2,
¢': LxT'-DBy — T'-DB3,
G € T-DBsy,
if ¢’ o (Lxi) =1io0ethen
srec” (¢)(i(Q)) = i(srec” (¢)(G)).
This reduces the setting of the theorem to the case whén—
T’ is the identity and also the case of infinite grahI{B rather
thanT-DBr), because for any
e1 ~ ea: LxT-DByy — T-DB¢Z,
there are
¢y ~ eh: LXT'-DBy — T'-DB
such that) o (Lxi) =i o e;.

Now, in this reduced setting, we can prove commutativity of
srec with e-elim:

e-elim?*Y (e-elim™t.v") e(L.Gly)-V (srec(e)(@)))

~s srec(e-elim o e)(e-elim(G)).

Here, whilee-elim eliminatess-edges invg = v1... = vp — u
and addsiy > u, e-elim"’ does so only ifvg, ..., v, are in\.
Then it is sufficient in order to conclude the proof to prove that
if
e1 ~s e2: LXT-DBy — T-DBZ, and
G1 ~s G2 € T-DBY,
then

srec(e1)(G1) ~s srec(es)(G2) € T-DBZLy.

[(317

@,

Figure 8. 1-sbl(swap-hd-t) (= uf™* o swap-hd-tlo uf)

The two functiond-sbl(f) andu-sbl(f) can be applied only
to graphs without-edge. Hence we takeelimination of G before
evaluatingl-sbl(f)(G) or u-sbl(f)(G). For T such that its ex-
tensionT” is not presentable in a programming language (such as
List with CList), we check if thes-elimination of a given graph
results in ar'-graph—Dby the procedure in SectiB@ for ordered
graphs—and if it is impossible, put an errorlf is presentable in
alanguage such as multiset, then we considef thas an instance
of T in the following. Thus below we consider a finitary monad
T andT-graphs without-edges. (In ExamplE3 we see why we
avoide-edges.)

4.3.1 Local Sibling Transformation
Local sibling transformation

1-sbl(f): DByy — DBty
for

f: T(LXxDByy+Y) — T(LXDBsy+Y)

manipulates branches of the root node of an input graph in sibling
direction. Before appl¥-sbl, we take 1-step unfolding of the input
graph, which we now define, so we do not have to mind cycles
which the root might belong to.

We define the 1-step unfolding

uf: DBry — T(Lx DBsy+Y),

We can define a needed bisimulation relation just as we defined thewhere note that has noe since we consider graph having ne

set of nodes ofrec(e)(G) in the bulk semantics. O

4.3 Sibling Transformation
So far we generalized all of UnCAL, parameterizing with monads.

However, when we take a monad other than powerset monad, say,
the list monad for ordered graph, we need more expressive power

than what we got so far: i.e., graph transformations on sibling
dimension.

Here we introduce two term constructors for sibling transforma-
tion: first local sibling transformatiorl-sbl(f) and thenuniform
sibling transformatioru-sbl(f).

12

edges. First, foragrapi = (V, B, I) € DBy ,andanode € V,
we define

Gl £ (V,B,{&— v}) € DBy.

(V, B,I) € DByy,
uf (G) E'T(Lx f+Y)(B(I(%)))

Now for G =

where f def G|(y:V — DByy. A picture of uf can be seen in
Figurel@

This coalgebraif is calledfinal locally finite coalgebraand by
the resultsiidamek et al2006 Theorem 3.3] with[Milius![2010Q

Corollary 111.15], we can show that for any finitary mondd this
uf is isomorphic up to bisimilarity and bisimulation generic. For
example, whefl" = List,

uf * = foldr(+4+,[1) o List([(-: -, ().

See AppendifDifor the detail ofuf™.
Thenl-sbl is defined as below: for

f: T(LXxDBgy+Y) — T(LX DBgy+Y)
andG € DBgy,

1sbl(f)(G) £ (uf) (f (uf (G))).

A picture of an example of local sibling transformation is given
in Figurel8, where swap-hd-tl is the list function which swaps the
head and tail and maps nil to nil.

Since we take-elimination of G before applyind-sbl(f) to
G, and sinceuf is bisimulation generic, it is obvious th&tsbl
is (higher order) bisimulation generic. On the other hand, if we
applyl-sbl(f) to G havinge-edges, bisimulation genericity does
not necessarily hold:

def

Example 23. Let us considekar defined ascar([]) [] and
car(a :: as) = [a]. Then if we applyl-sbl(car) to the two
bisimilar graphs below left, then the results below right are not

bisimilar.
0] 0l
b a
2|

af @K‘E) Ea il]

We remark that, when taking-elimination of G before the
applicationl-sbl(f)(G), it is enough to eliminate only-edges
from the root node ofs—by which all branches of the root node
become nore edges or output markers—rather than the #ull
elimination.

lI-sbl(car)
—

Example 24. One can also transform branches of any nodes in an
input graph, by the combination dfsbl with traversing the input
graph by the structural recursion, or by multiple usd-sbl. For
example, the following apply transformatiento branches of all
nodes pointed by-labeled edges.

apply_-lct_a(e)(db) = srec(\(l, g).if I=a
then ([: 1-sbl(e)(g)) @ () else (I : (&)))(db)
The following applies a transformatidrsbl(e) to branches of the
first branch of the root.

apply-let_first_branch(e)(db) = 1-sbl(\bs.cons(
case car(bs) of Edge(l, g)— Edge(l,1-sbl(e)(g))
ory - Y
cdr(bs)
))(db)

4.3.2 Uniform Sibling Transformation

While 1-sbl(f) transforms branches only of one node (root node),
u-sbl(f) transform branches uniformly of all nodes in a given
graph, as in Figuriél

Let us see the definition. Let

¢: T(LX(-)+Y) = T(Lx(-)+Y)

be a natural transformation. For&graph G
DBy,

(V,B,I) €

u-sbl(¢)(G) £ (V, ¢ 0B, I).

13

Figure 9. u-sbl(swap-hd-t}

The naturality of¢ implies thatu-sbl(¢) is bisimulation generic.
In the languagaL, the naturality is realized by parametricity.
The term

Az.e: T(Labelxa+Y) — T(Labelxa+Y)

in u-sbl(A\z.e) should be written as a parametric term. Then the
interpretation of\z.e becomes a natural transformation, by the free
theorem.

Functions u-sbl(¢) are used for transforming (a list of)
branches for each node. For example, using the list reverse function
reverse, the transformatiom-sbl(reverse) reverses the orders
of branches for all nodes in an input graph.

The introduction ofu-sbl also enhances the expressive power
of structural recursion. The structural recursion law

G+ G) = f(G)+ f(G)

with f = srec(e) is too restrictive in the sense that the function
f cannot change the order of branches of any nodes. Under this
restriction, we cannot write a transformatigrwhich satisfies

f(GH G = f(G) + [(G).

To circumvent the restriction, we can use thesbl construct

to rearrange the order of branches during structural recur-
sion; for example, we can write the transformation above by
srec(e)(u-sbl(reverse)(Q)).

The counterexample in ExamdB] is also a counterexample
for the fact that if we applyu-sbl(¢) to graphs having-edges
thenu-sbl(¢) is not necessarily bisimulation generic.

If ¢: T(-) — T'(-) is not just a natural transformation but also
a monad morphism such that the lifted endofundgr

F¢: SetT — SetT
(f: 8= T(S") = (¢s 0 f: S = T(S"))

preserves a given iteration operator, then we do not need to calcu-
late e-elimination before application ofi-sbl. For example, the
reverse operatoreverse is such¢. We can add sucimon e-
eliminating uniform sibling transformation-sbl’(¢) for ¢ satis-
fying the above condition, whose proof are subject to users. Or an
implementer can add-sbl’(¢) as primitive functions, after prov-

ing the condition forp.

4.4 Syntax ofAbg

Finally let us see how to define the syntax){f, for generalT,
modifying that ofAL%!, i.e., Figurefland3in Sectiori2.2.3

First we choose a convenient family of signature S8ts=
(3(n))nen of T, and we replace algebraic graph constructors []
ande + e with constantp, (s € X), then we give the following
typing rules.

I'te;: DBY (i €n)
7en):DBff

Also we replace the type constructbist with that of the cur-
rent monadl’. Then we replace list operators with any convenient

I'+op,(e1, ... (s € 2(n))

srec(re, foldr(+,[]))

Figure 10. Bulk Semantics of Structural Recursion: An Examplenéc(rc, foldr(+-,[]))

operators on the monddl; according to adding operators @dn
1-sbl andu-sbl become more powerful.

5. Structural Recursion with Sibling
Transformation

operator to list operator; for a binary operator (with unit) we can
construct a list operator by foldr (or foldl), where we do not need to
require them to be a monoid. We explain production-consumption
compatibility after giving bulk semantics of thisec.

Before giving the formal definition of bulk semantics of

srec(e,d), we illustrate the bulk computation behavior using

In Sectiorfd.3 we gave two kinds of sibling transformations. Here 54 ;. % srec(rc, foldr(++,[])) (see Exampl@for rc). It con-
we show one attempt to extend the structural recursion so that by sjsts of two steps of bulk computations followed by a grouping
it we can transform graphs both in depth-direction and in sibling- step, starting with the input graph (a) in Fig{@

direction at the same time. In this section we concentrate on the

case wherll" = List.

First we show our idea briefly. The original structural recursion

function f = srec(e) is characterized with the following equa-
tions:

J({1 2 g1) H oo H-(ln : gn))
= e(lhgl) @f(gl) +H ..o H e(l"hgn) @f(gn)

We generalize abovet+ with arbitrary operators satisfying
certain axioms, i.e., as the following

({1 g1) H oA (o2 gn))
=e(l1,91) @ f(91) © . © e(ln, gn) @ f(gn)
so that we can transform graphs in sibling direction with

Now let us see the typing rule for the extended structural recur-

sion function:

I'+ e;: LabelxDBy — DB%
'+ ep: List(DBZ) — DBZ
e1 andey are production-consumption compatible
I F srec(e1,e2): DBy — DBZJY

In the typing rule,es is a parametric polymorphic term on
the sets of output markers. We generalizeabove from binary

14

1. Applying Map Computation on Edges with

Apply function r¢ (which renames edges labeledto those
labeledd and contracts edges labelexdto every edge labeled
[and the graply following to the edge, and yields a graph in
DB%. We call these graphs computed b= rc) e-graphs
graph (b) shows-graphs.

2. Applying Map Computation on Nodes with

For every node of the original graph, use binary operatoto
combine all branching-graphs. We call these graphs computed
by d(= foldr(+,[])) d-graphs graph (c) shows the result.
The noded and4 have more than one branches which need to
be merged using+.

Before applyingd = foldr(+-,[]) on a node of the original
graph, for eachith branch of the node, we add the indeto
the output markers of thah e-graph, which will be used in the
next “grouping” step.

. Grouping Subgraphs with-Edges

Group alld-graphs computed in Step 2: for eadkgraph, its
output marker produced kywith an index: is connected via an
e-edge to the root of thé-graph on the node which the original
ith edge points to. We do not need anymore the original nodes,
and also delete indicesof the remaining output markers (e.g.,

2 of (2, &y) in the graph (c)). The root of new graph is the root

of thed-graph on the original root node. With these, we can get
Graph (d) from Graph (c).

Graph (e) is the graph obtained byelimination for Graph (d).

(We can further minimize Graph (e) if necessary; then nodes

2,3,5 are identified, since they are bisimilar.) We remark a

difference between the two bulk semantics: the result graph (e)

of a2d_zc &' srec(rc, foldr(+,[])) is not isomorphic to the

result graph (c) in Figur@ of a2d_zc gef srec(rc); but on the
other hand, in generakec(e) andsrec(e, foldr(+,[])) are
bisimilar.

Now let us give a formal definition of bulk semantics of the
structural recursion For a functioh X — Y, we definemarker-
renaming graph f | &' @g.c x &z == (f(&2)) € DB
Definition 25. Fore: £ x DBy — DB%, d: List(DBZ) —
DBZ,andG = (V,B,I) € DBy,

srec(e,d)(G) £ (V',B',T') € DBZ ¥

is defined as below.

We assumé: has nos-edges since we can takeelimination;
if e-elim(G) has infinite width, we put an error.

We first extenct to the following dependent type function

e: LxV +Y — DB,

x = Edge (I,v) — e(l,G|v) (Z» = Z)

z = Outm (&y) — Bg.cz&2z = (&2, &y)) (Zo = ZXY),
and then to the following dependent type function
erist: List(LXV +Y) — List(DBgvl)

L= (L)ien — (e(ls) @ |in;|)ien (Wi =

Next, for eactv € V, we defined-graph onv as

dy € d(ei(B(v))) € DBfn_ 4

wheren = |B(v)| and

Hien le)

7 _ Z (if B(v).iis an edgg
" 1 ZxY (if B(v).iis an output marker
Then,
° V/ dZEf HvEV dy.V

o B': [1,dv.V = List(Lx (][, dv.V) + ZxY)
(v,0) — List(g)((du-B)(w))
(dv.B)(u) € List(Lx(dv.V)+ 11}, Zi)
g: Lx(du. V) + 11, Zs — LXx(1], dv.V) + ZXY
Edge ({,u") — Edge (1, (v,u))
Outm ((7, &2)) — let B(v).i = Edge (1,v") in
Edge (e, (v', (d 1)(22)))
Outm ((7, (&2, &y))) — Outm ((&z, &y))
o [": ZxX —1],dv.V
(&z,&z) — (I(&), (dr@e)-1)(&2)) O

Now we explain the assumption in the above typing rule. Terms
e1 and ez are calledproduction-consumption compatiblé the
interpretation& = [[61]] andd = [ez] satisfy the following. Let
G; € DBZ .G. € DB (z = 1,...,n) be graphs such that for
eachi, either

e (3; is an application ot and soZ; = Z, or

15

* G; = By.czbz = ((&z,&y)) for somegy € Y, Z; = Z, =
ZxY,andGj = |id].

Then the following must be satisfied

d((G1 @G @ |in1]), ..., (Gn @G, @ |in,]))
=d(G1 @ |in1],...,Gn @ |ins]) @ (G +...4+G)

(€ DBZ;1 4z;)

whereGi+G5 < (G} @ Lin1]) @ (G5 @ |ina]) € DB 2.

This condition means that “consumes” only the information
of the graphs “produced” by.

By this assumption, we can show that the bulk semantics agrees
with therecursive semantics.e., the structural recursion function
f = srec(e, d) in Definition[25 satisfies (and is characterized by)
the following equation

(s gr) H oA (o 2 gn))
=d(e (h,g1)@f(91) s€(ln, gn) @ f(gn))-

If d = foldr(®,:e) for some® and ¢c, then the following
characterizing equations are also available

£ o)
F({1:g1) H9) (e(li,q1) @ f(g1)) © f(g)-

Further, if (®, .o) is @ monoid, then we obtain also the following
simpler characterizing equations

£ = e
fW{l:g) = el,g) @f(g)
[l Hg2) = flg1) © f(g2)-

Above we considered the case wh¥ris a singleton and omit-
ted the case when a branch might be an output markefor the
general case, first note that

srec(e,d): DBy — DBL
is bisimilar to the singleton case to thé&h power
- (DngY)X

srec(e,d)™: (DBy)™

with the isomorphisms

@: (DBy)¥ 2 DBY, @: (DB%.y)™ = DBZLY,

hence the case of general is reduced to the case whef is a
singleton. On the matter that a branch might be an output marker,
we replace

e(l,g) @ f(g) for (I:g)

with

Puzcz &z = ((&z,&y)) for (&y).

For example, the above second characterizing equations dvhen
foldr(®, 1) becomes

D) _
F{h g g = (b.g)@f(g) o f(g)
Flag) o g) 2 s = (k) O F(0).

Example 26. The following left_a_path cut down the left side
of the leftmost path consisting only eflabeled edges, as in Fig-

Figure 11. left_a_path

ure[Idl We explain the detail after the definition.

left_a_path: DBy — DBy

left-a_path(g) = (&) @ f(g) @ [pr.| (pr.: {&&}xY =)
where
f:DBy - DB

f = srec(e, foldr(o, 1))

:(ifh:a

@e(lz, g2) @ in2]))
@e(l2, g2) @ inz)) & &=
@e(l,q1) @ |in1])+H
@e(l2, g2) @ linz2]))
g2)

The&z-root graph off (¢) is the original graply; in fact, by the
recursive semantics, we can check titat) @ f(g) @ |pr,.] = g
as below:

(&) @ f([) =
(&2) @ f({l1 : g1) H 9)

= (&) @o(e(lr, 1) @ f(91), f(9))
= if is_a_under_root_of ((&z) @e(l1,91) @ f(g1))

e: LabelxDBy — DBy g;

then (&) @e(l1,91) @ f(g1) + ((&2) @ f(g))

e(l,g) = (I: (&) @& —((&2)) else (&2) @e(l1,91) @ f(g1) + ((&2) @ f(9))
aimdooo.of: DBy o Boct -) @l @500 () @10)
srec(\(l,g).if I=a then (a: []) else [1)(g))) = (l: ((&) @ f(g1))) + ((&) @ f(9))

o: DB{***) xDB***) _, DB{***)

o(g1, g2) = if is_a_under_root_of ((&z) @ g1)
then (((& @ g1) H ((&2) @ g2)) ®

&z = (((&2) @ g1) + ((&2) @ g2))

else ((&) @ g2) ® &z := (((&2z) @ g1) +

(The above is paramorphism of structural recursion by tupling,
regarding multi-rootedness as tuple.)
Then let us seéft_a_path(g), i.e., thek-root graph off (g):

((#2) @ g2)) @®a@fl)=®&ai=10,

z;z]ja?,gz:}:zn & @ f({ly:91) H g)

= (&) @o(e(l1, 1) @ f(g1), f(9))

First, it is easily checked that the abowend foldr (o, i) are = if is-a-under_root-of ((&z) @e(l1, 1) @ f(91))
production-consumption compatible. In fact, then ((&) @e(li,91) @ f(g1)) H ((&) @ f(9))
, ') ‘ else ((& @ f(9))
o(e(l1,g1) @gy @ |in1],e(l2,92) @ gy @ |in2]) = if is_a_under_root_of ({l1 : ({&) @ f(g1))))
= if is_a_under_root_of ((&z) @ e(l1,g1) @ g1 @ |in1]) then (I, : ((& @ f(g1))) H ((&=) @ f(g))
then ... else ... / else ((& @ f(9))
= if is_a_under_root_of ({I1 : ((&2) @ g1 @ |in1]))) = if is_a_under_root_of ({l1 : g1))
.then ...else ... then (I1 : ((& @ f(g1))) H g
=ifli =a else ((& @ f(g)).
then (((&) @e(l1,91) @g1 @ Lsz + Now it is clear that the functiodeft_a_path(= (&) @ f(-))
) @ &= works as in Figur@1l g

By the bulk semantics, it is clear that the above structural re-
cursion function preserves finiteness of graphs. Also, similarly to
Theorem2Z, we can show that the above structural recursion is
bisimulation generic.

{

{)

(&z) @e(l1,91) @g1 @ |ina])+

(&) @e(la, g2) @ g5 @ |ina))) ()
) @e(l2,92) @ga @ |in2]) @ &zi=
e(li,91) @ g1 @ |in1 |)+

@
@e(l2,92) @gh @ |inz]))

Comparison of Sibling Transformations

The structural recursion extended above is similar to the combina-
tion of u-sbl and the original structural recursion in Sec in

fact, whene: Lx DBy — DB g, is “identity” i(l, g) f {: g,
srec(i, d) is similar tou-sbl(f), though herel andf have a bit
different types. The main difference between the extended struc-
tural recursion and the combinationwfsbl and the original struc-
tural recursion is the following. In generalrec(e, d) transforms

and on the other hand,

o(e(li,q1) @ [in1],

e(l2,92) @ |inz2]) @ (g1 + g2)

16

graphs in sibling direction by traversing graphs produced. fis
sibling transformation can not be simulatedigbl(f) used after

the originalsrec; in the latterf traverses just one step of children,
while in the formerd can traverse more deep descendants as long
as production-consumption compatibility holds.

The extended structural recursion includes also the feature of

1-sbl in the following sense. Let
f: List(LabelxDBy+0) — List(LabelxDBy+-0)
be a function such that there is
f': List(DB{**}) _, DB,
satisfying
I o List(pair) = uf " o f
(= foldr(++,[1) o List([(-: =), (-)]) o f)
where

pair: LabelxDBg — DBé&’&Z}

pair(l,g) € (1:) & &z =g.
Thenl-sbl(f) can be represented Byec as the following:
I-sbl(f) = (& @ srec(e,d)
where

e: LabelxDBy — DB
def

e(lL,g) SN @ez=(g@]!))
d: List(DB%*)) — DB##}

AN E) oez=].

(Here again we used tupling technique §oec:) This is because,
srec(e,d)((l1 : g1) H ... H (ln : gn))

=d(e(l1,91) @srec(e,d)(g1),...,e(ln, gn) @srec(e,d)(gn))

= d(pair(lh gl)? RS pa/ir(lnv gn))

{&,&=}
{&.&=}

(1:0 — {&&2})

hence,

(&) @srec(e,d)({l1: g1) H ... H {In:gn))
= f'(pair(l1,g1), ---, pair (Ln, gn))

(f" o List(pair))((l1, 1), -, (In, gn))

= (uf" o f)(uf (I : g1) + oo+ (ln 2 gn)))
=1-sbl(f)({l1 : 1) H ... H {n : gn))-

6. Modularized Extension of UnCAL

In Sectiorfd, we saw how we can generalize (and extend) UnCAL
to obtain AL, with monadsT” which satisfy certain assumptions:
i.e.,

¢ T has an extension farelimination,

e T preserves weak-pullbacks, and

e T'is a finitary monad.

Also we saw four examples of such monaés;,, List, Man, and

Dsn. Here we see how we can compose moriBds obtain\ k.
Since monad was introduced for the notion of computational

effects Moggi/[1989, there has been much study about how to

compose monads from smaller monads: i.e., monad transformersT

In [Benton et al200(] many examples of unary monad transform-
ers are listed. InHyland et all200€], the authors studied binary

monad transformers and show also how they can be used to pro-

duce unary monad transformers such as those in the former paper.

17

In the following, as a demonstration of our modular approach,
we take up one simple binary monad transformer—the product

TxT' of monads—, and see the languadg;” .

6.1 Product of Monads

For a pair of monadq; and7:; on Set, we define their product
T1 xTs just as

(TyxTo)(X) ' Ty (X)x Ta(X)

for a setX and

(T xTo)(f) E T (f)xTa(f)

for a functionf. Then

return T < T2 & <7"eturnT1 , return ™ >: X = (T xT2)(X),

and fOff: X —1T (Y) XTQ(Y),

Lt T2 (f) EUft™ (pry o f) x lift"? (pr, o f).

From now we check that taking the product of monads preserves
the above three assumptions.

It is easy to check that if two monads and7> have uniform
iteration operators in their Kleisli categories, so does the product
Ty xTs: for f: X =T (X+Y) XTQ(X+Y),

iter TV > T2)
(iter™ (pry o f),iter™ (pr, o f)): X — Ty(Y)xTa(Y).

If monadsT; andT; preserve weak pullbacks, so ddBs< 75,
since the product functox preserve them.

Also it is clear on finitarity since the product functor is finitary,
but let us see concretely what family of signature sets for the prod-
uct monadl; xT> we can get from families of signature sets Tar
andT; since it is needed to define syntax and for implementation.

Let 3; and X, be families of signature sets far;, and 7%,
respectively. Thelix1®X:)(n) is defined as the following:

{(f1, f2) € Ti(n)xT2(n) | mi,m2 € N, n=max(mi, ms),
fr € X1(m1)(C Ti(ma) € Ti(n)),
f2 € Za(m2)(C To(ms) C To(n)) }
+ {(f1, return(n—1)) € T1(n)xT2(n) |

n>0, fi € ¥1(n—1)(C Ti(n—-1))}
+ {(return(n—1), f2) € Ti(n)xTz2(n) |

n >0, fo € 3¥2(n—1)(C Ta(n—-1))}
+{(0,1) e i (n)xT2(n) | n=2}

where recall that we regard a natural numberas the set

{0,...,n—1}. Then one can check that this; ®%, becomes a
family of signature sets fdf; x 75 by induction.

def

def

Example 27. Let us consider the case whén
T2 = List.

Now we have two signature§} and {0, 1}—which corre-
spond to the syntaX} and U, respectively—forPs,, and also
two signatures]] and [0, 1]—which correspond to the syntax
[| and +, respectively—forList, hence we should have nine
(= 2x2+42+241) signatures forPgs, x List. However some of
them can be represented as compositions of the other ones and
common graph constructors, then after all signatures we need
or PsnxList are: ({},[]) (nullary), ({0,1},[0,1]) (binary),
({}, return(0)) (unary), andreturn(0), []) (unary).

Let the syntax corresponding to these four signatures be

({}, 1) | e(U, ++)e | del-unorder(e) | del-order(e)

Pg, and

and replace the paftlgebraic graph operatgref syntax of A&

in Figure4with these four. Also replace all the occurrences of type
List(...) with Set(...)xList(...) both in the BNF type definition
of Af&" and in the typing rules. The resulting syntax is the core
syntax ofApfin *F45t,

The nullary operato({}, []) produces single node graph with
no branches. The binary operatot, -+) takes union of unordered

graphs|Erwig[2001], but that inductive view is indirect in that the
graph view is dynamically maintained.

In coalgebra theory, which studies infinitary/cyclic structure,
some work focused also on finiteness of graphs, as in the current
paper.

In the work Bonsangue et dR009, for every Kripke polyno-
mial endofunctof’, a systematic way for giving a syntax fully rep-

branches of the roots of the two argument graphs, and at the sameesenting all finiteF’-coalgebras and a sound and complete equa-
time, takes append of ordered branches of the roots of the two tional theory for bisimilarity was given. The differences between

argument graphs. The unary operad@l-unorder(e) deletes all

this work and our work are (i) the two classes of endofunctors—

unordered branches only of the roots of an argument graph, soKripke polynomial ones and ours with monads—are incomparable,
e.g. unordered branches of ordered branches of the root remain(ii) the work does not treat-edge, and is not a study for transfor-

Similarly, the unary operatatel-unorder(e) deletes all ordered
branches only of the roots of an argument graph.

As we can add any list operator suchfa¥dr or filter, we can
add any operator foPg,, x List to the core syntax okp.fi» *“*".

For example, we can add the functit®s which maps lists to
finite sets by forgetting the orders of lists, then we can define the

term
x: Set(b)xList(b) - (n'(z) U12s(x" (), []): Set(b)x List(b)

and applyu-sbl to this to get a function which transform all
ordered branches to unordered ones.

7. Related Work

Structural recursion for graphs, which we generalized, is much
related to research on algebras of programmiBigd[and de Moar
1996 [Gibbon$2002 [Hu et alll2006 Meijer et alll199]], where

mation (iii) in our work the equational theory is restrictive, and (iv)
the approaches to give each syntax are different.

In the work [Adamek et al2006 Miliusl201d, the authors stud-
ied categorical properties of the set of finite coalgebras, and char-
acterized it as thénal locally finite coalgebraThe class of endo-
functors for coalgebra in this work is wider than ours; some of the
results are applied or influence to our work. In this work, there is
no consideration for finiteness-preserving structural recursion. The
finality among locally finite coalgebras is a kind of corecursion,
and has the similar problem to that of corecursion; i.e., to assure
finiteness-preservation, we have to check locally finiteness of infi-
nite graphs, automation of which seems difficult.

A study of general framework for bisimilarity involvingedge
was implicitly started in the papeddcob20104. They gave some
sufficient condition for a monad to have an iteration operator in
the Kleisli category. However, the theory can not be applied to the
case ofCList, which does not satisfy the sufficient condition. So
the current paper gave a new example of iteration operator in a

structural recursion such as folds and catamorphisms are used td</eisli category and of suchs*elimination as iteration operator”
structure programs and to systematically manipulate programs. InPerspective.

particular, our approach is influenced by many attempts of defining

structural recursion for various kinds of specific graphs, such as 8. Conclusions and Future Work

directed acyclic graphsdibbon$[1999, graphs represented by
trees with specific pointeral Zilio et alll2004 [Haman&2009,

and graphs represented by trees with embedded funck@usafas
and Sheald99€. However, all these attempts are not easy to be
applied in practice, due to lack of expressive power or difficulty in
guaranteeing finite representation of well-formed graphs with no
dangling pointers.

As described in the introduction, it is the structural recursion in
UnCAL [Buneman et @R00(that is more practical for manipulat-
ing unordered graphs. This forms the basis of our work. &y
is parameterized with mondH, and the cas& = Pay, i.e.,A’F)fg;“
is comparable with UnCAL. The following is the comparison be-
tween UnCAL andxgg". The two graph models are equivalent up
to each bisimilarity, which for UnCAL is called value equivalence
in [Buneman et dR00(. Also the graph constructors and structural

In this paper, we present the first solution to the open problem
of how to modify the graph model and structural recursion from
unordered graphs to ordered ones, based on which we define a
new graph transformation languaggis’. The key technical con-
tributions here is the definition of bisimulation relation on ordered
graphs having-edges. We also extend expressive power on sibling
dimension with two new operators: local sibling transformation and
uniform sibling transformation.

Furthermore, we generalize these results for ordered graphs
with monads with suitable assumptions, and propose a more gen-
eral graph languagest which are parameterized by monals
This abstraction by mondH enables us to compose a language tar-
geting bigger graph model from smaller graph models by monad
transformers. We demonstrate it with the product monad trans-
former.

recursion are the same. Then we extended expressive power intwo There are many interesting and important future extensions.

points. One is the extension on sibling transformations: ehl
andu-sbl. The other is the extension of type system; UnCAL is

first order calculus, while\gg" is a simply typed lambda calculus

First, we have discussed little about analysis of structural recursion.
One interesting analysis is when a structural recursion function is
productive. A graph function is said to be productive, if it produces

(extended with graph types). This extension of type system is not a finite ordered graph withoutedges for any input ordered graph

for free, as we noted before Theor2#

A lot of work has been devoted to efficient implementation of
graph algorithms in lazy functional languag@ufton and Yang
1990 [Erwig (1997 [Johnssaiifl99§ [King and Launchbura994.

The emphasis there is placed on the importance of achieving ef-

ficient implementation of general graph algorithms through the
monadic model for including actions on the state in the non-strict
context. In contrast, we focus on inductive traversals of ordered
graphs and aim to provide an efficient way to deal with a specific
class of important graph algorithms — graph querying. Erwig shows

that active patterns can be used to implement an inductive view of

18

without e-edge. Second, following our previous work of bidirec-
tionalizing UnCAL [Hidaka et al201(, we are very interested in
a systematic way to bidirectionali2g.,, which is indeed the first
motivation of this work.

Acknowledgments Thanks are due to Ichiro Hasuo and Naohiko
Hoshino for helpful discussions.

References

J. Adamek, S. Milius, and J. Velebil. Iterative algebras at wavtathemat-
ical. Structures in Comp. S¢il6(6):1085-1131, Dec. 2006.

N. Benton, J. Hughes, and E. Moggi. Monads and effecttN iINTERNA-
TIONAL SUMMER SCHOOL ON APPLIED SEMANTICS APPSEM
200Q pages 42-122. Springer-Verlag, 2000.

R. Bird and O. de MoorAlgebras of ProgrammingPrentice Hall, 1996.

M. Bonsangue, J. Rutten, and A. Silva. Algebras for kripke polynomial
coalgebras. ILICS IEEE, Computer Science Press, pages 49-58, 2009.

P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: a query language andE

algebra for semistructured data based on structural recursithDB
Journal: Very Large Data Base8(1):76—110, 2000.

F. W. Burton and H.-K. Yang. Manipulating multilinked data structures
in a pure functional language.Softw. Pract. Exper.20:1167-1185,
November 1990.

S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A logic you can count
on. InProceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languageBOPL'04, pages 135-146, New
York, NY, USA, 2004. ACM.

M. Erwig. Functional programming with graphs. Pmoceedings of the sec-

ond ACM SIGPLAN international conference on Functional program-
ming ICFP '97, pages 52—-65, New York, NY, USA, 1997. ACM.

M. Erwig. Inductive graphs and functional graph algorithms. Funct.
Program, 11:467-492, September 2001. ISSN 0956-7968.

-

embedded functions. IRroc. ACM symposium on principles of pro-
gramming languagesst. Petersburg Beach, Florida, Jan. 1996.

J. Gibbons. An initial-algebra approach to directed acyclic grapHdalh-
ematics of Program ConstructipfMPC '95, pages 282—-303, London,
UK, 1995. Springer-Verlag.

J. Gibbons. Calculating functional programspages 149-201. Springer-
Verlag New York, Inc., New York, NY, USA, 2002.

A. Gill, J. Launchbury, and S. P. Jones. A short cut to deforestation. In
Proc. Conference on Functional Programming Languages and Com-
puter Architecturepages 223-232, Copenhagen, June 1993.

S. Ginali. Regular trees and the free iterative thedryfComput. Syst. S¢i.
18(3):228-242, 1979.

E. HaghverdiA Categorical Approach to Linear Logic, Geometry of Proofs
and Full Completenes$hD thesis, University of Ottawa, 2000.

M. Hamana. Initial algebra semantics for cyclic sharing structureBrdn
ceedings of the 9th International Conference on Typed Lambda Calculi
and ApplicationsTLCA '09, pages 127-141, Berlin, Heidelberg, 2009.
Springer-Verlag.

M. Hasegawa. The uniformity principle on traced monoidal categories.
Electr. Notes Theor. Comput. S&9:137-155, 2002.

I. Hasuo, 2011. personal communication.

S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano. Bidi-
rectionalizing graph transformations. ACM SIGPLAN International
Conference on Functional Programmingpges 205-216. ACM, 2010.

Z. Hu, T. Yokoyama, and M. Takeichi. Program optimizations and trans-
formations in calculational form. I8ummer School on Generative and
Transformational Techniques in Software Engineeripages 139-164,
Braga, Portugal, 2006. Springer, LNCS 4043.

M. Hyland, G. Plotkin, and J. Power. Combining effects: sum and tensor.
Theor. Comput. S¢i357(1):70-99, July 2006. ISSN 0304-3975.

B. Jacobs. From coalgebraic to monoidal traceslectronic Notes in
Theoretical Computer Scienc264(2):125 — 140, 2010a. Proceedings
of the Tenth Workshop on Coalgebraic Methods in Computer Science
(CMCS 2010).

B. Jacobs. From coalgebraic to monoidal trac&fectron. Notes Theor.
Comput. Scj.264:125-140, August 2010b. ISSN 1571-0661.

T. Johnsson. Efficient graph algorithms using lazy monolithic arrays.
Funct. Program, 8:323-333, July 1998.

F. Jouault and J. &ivin. KM3: A DSL for metamodel specification.
In Formal Methods for Open Object-Based Distributed Systqrages
171-185. LNCS 4037, Springer, 2006.

Y. Kakutani. Duality between call-by-name recursion and call-by-value
iteration. In J. C. Bradfield, editogSL, volume 2471 of ecture Notes in

19

. Fegaras and T. Sheard. Reuvisiting catamorphisms over datatypes withJ.

Computer Scieng@ages 506—521. Springer, 2002. ISBN 3-540-44240-
5.

. J. King and J. Launchbury. Structuring depth-first search algorithms in

haskell. InProceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languageBOPL '95, pages 344-354,
New York, NY, USA, 1995. ACM.

Meijer, M. Fokkinga, and R. Paterson. Functional programming with
bananas, lenses, envelopes and barbed wirePrdro. Conference on
Functional Programming Languages and Computer ArchitediuNCS
523), pages 124-144, Cambridge, Massachuetts, Aug. 1991.

S. Milius. A sound and complete calculus for finite stream circuitsgic

in Computer Science, Symposium 01421-430, 2010.

. Milner. Communicating and Mobile Systems: thealculus Cambridge

University Press, 1999.

. C. Mitchell. Foundations for programming language$-oundation of

computing series. MIT Press, 1996.

. Moggi. Computational lambda-calculus and monadsLI®S, pages

14-23. IEEE Computer Society, 1989.

. L. Robertson, L. V. Saxton, D. V. Gucht, and S. Vansummeren. Structural

recursion as a query language on lists and ordered tr@é=ory of
Computing System44(4):590-619, 2009.

Rutten. Universal coalgebra: a theory of systefiteoretical Computer
Science249(1):3 — 80, 2000.

. K. Simpson and G. D. Plotkin. Complete axioms for categorical fixed-

point operators. ILICS pages 30-41, 2000.

. Sokolova. Coalgebraic Analysis of Probabilistic SystenBhD thesis,

TU Eindhoven, 2005.

[0]
S 2

Jlad
a

Figure 12. Branch with Any Countable Linear Order

A. Ordered Graphs for Any Countable Linear
Ordered Sets

that!’ o f = . The above correspondence is given as the following:
for (L,1) € CList(S),

(R(L), [lonL]e) € Bren(S” /=),
and for(L, [I]) € Zren(S*/~),

R(L,1) € CList(S),

which is well-defined, i.e., if L, 1) and(L, ") are isomorphic, then
R(L,1) andR(L, ") are equal by the uniqueness in the definition
of R. Itis easily checked that this correspondence is bijective.

In the body text, we omit the taking quotient in the right hand
side of the above isomorphism for simplicity.

We see here that, for any countable linear ordered set, there is an

infinite ordered graph havingedges such that the branches of the
root after eliminating-edges are exactly as the given ordered set.
Now let L be an infinite countable linear ordered set, so there

exist a bijective functionf: N 5 L. Then we construct a graph
“representingL” as below. Let us consider the kind of ternary tree
G, as the left tree in Figuid2 We call a leaf in a tree-leaf if

the path from the root to the leaf consists of justdges. First,
corresponding tgf(0) € L, we take a frest;. Next, we again
take a frestGy, and if f(1) < f(0), then we put together the root
of the newG, and the left-leaf of the former graph, as the middle
graph in Figurdld Otherwise iff(0) < f(1), we put similarly

to the righte-leaf (03 in the example). Next, now there are theee
leaves (12, 13, 03 in the example) with the obvious linear order, i.e.,
12 < 13 < 03. Then according to the three possible positions of
f(2) inthe linear ordered s€tf (0), f(1), f(2)}, we again put new
freshG, to the corresponding position efleaf. The right graph in
FigurelI2is the example of the case wh¢iil) < f(2) < f(0).
Iterating as this, we have an infinite tree with finite (in fact just
three) width. Then it is obvious that the countable linear ordered
set occurring in the result graph efelimination applied to this
tree is order isomorphic th.

B. Countable List

Here we give a detail explanation about the countable list monad
CList.

First we give a formal (and abstract) definitiafiList(.S) is the
object-set of the skeleton category of the comma cate@dry S)
whereU : CLO — Set is the forgetful functor from the category
CLO of countable linear ordered sets and monotone functions.

Now let us unfold this definition. An object of the comma
category(U | S) is a pair(L,) of a countable linear ordered set
L and afunctiori: L — S. A morphismf from (L,1) to (L',1') is
a monotone functiorf: . — L’ such that’ o f = . Then we can
take the object-se€'List(S) of a skeletoncategory of(U | S),
i.e., we have a subsétList(S) of the object-set ofU | S) such
that for any objectL,!) in (U | S), there is the uniqu&(L, 1) €
CList(S) such that(L,!) and R(L,) are isomorphic iU | S),
and then also there is a chosen isomorphigm,: (L,1) —
R(L,1).

There is another equivalent form 6List(S). Let L be the
object-set of a skeleton category @O, i.e., we have a subset
L of the object-set of 2L O such that for any object in CLO,
there is the uniqu&(L) € L such thatL andR(L) are isomorphic
in CLO, and then also there is a chosen isomorphismL —
R(L).

Then, we give the following isomorphism

CList(S) = Srer(S" /=)

where thex in the right hand side, is the restriction of the iso-
morphism equivalence of(U | S)| to its subsetS”; i.e., for
LU:L — S,1 =1 if there is an isomorphisnf: L — L such

20

C. Finitary Monad Extension for e-elimination

Let T be a monad andter be an uniform iteration operator in
Setr. We defines-elimination for finiteT'|s.-graphs, as the result
graph is equal to one defined by Definit@n

Let G = (V, B, I) be a finiteT|s,-graphs inT-DB3s. Since
V is finite andT |sx is finitary by definition, there exists a finite
subsetl’ C L. and a functionB’ such that the following diagram
commute.

V =2 Tlan (L XVAY) — > T|an(V+H(LXV+Y))

iy

Tlﬁn(V"’([,l XV“’Y))

Now V+(L'xV+Y) is afinite set, henc®| s, (V+(L'xV+Y)) =
T(V+(L' xV+Y)). We therefore can apply the iteration operator
iter to B’. We defineB” as the composition of the below

V TED Pl (L XV AY) < Tlan (Lex VAY)
and then define-elim(G) &' (V, B”, I).

For a finiteT'|an-graph G, by the inclusionT'|g, — T, we
can regardG also as ar'-graph. Then it can be easily checked
that the above-elim(G) is exactly equal ta-elim(G) defined in
Definition@ for the T-graphdG.

D. Proof of Full Representability by the Graph
Constructors

Here we give two proofs of Propositi@® full representability of
finite graphs by the graph constructors. The first one is simpler and
highly depends on the notion of marker, while the second one is in
a naive way, which less depends on the notion of markers. The sec-
ond proof shows that the notion of marker is—very convenient as in
the first proof but—not essential for the fact of full representability.

First let us see the notion of 1-step unfoldimg,, which is
almost the same as that of defined in Sectiof.3.1 Here we
consider graphs havingedges, while in Sectidf.3.3we consider
graphs having ne-edge. However the two are essentially the same
notion since here we first consider strong bisimilarity for properties
of uf_ itself, and then we move to the level of bisimilarity by the
fact that strong bisimilarity implies bisimilarity.

Now we define the 1-step unfolding

uf.: DBy — T(Lex DBgy+Y).

First, for a graphG = (V, B,I) € DB, and a hode € V, we
define

Gl £ (V,B,{&— v}) € DBy.

Then forG = (V, B,I) € DBy,
uf (G) ET(Lx f+Y)(B(1(%)))

where f d:‘st|(_): V — DByy.

By the resultsiAidamek et al2006 Theorem 3.3] with[Milius
201Q Corollary 111.15], we can show that for any finitary monad
this uf . is isomorphic up to strong bisimilarity.

Furthermoreyf_ is constructed just by graph constructors:

uf . =toT([s,s)
where

t: T(DBsy) — DBty
is defined with th&-algebraic graph constructors using the finitar-
ity T(S) = U,y T9(S), and

s £ ((4):(-)): Lex DBey — DBsy

s)Y — DBy
For example, whefl” = List,
t = foldr(+,[]): List(DBsy) — DBty
On the above, precisely;s(e, G) = (e : G) is not a representation
by graph constructors, because an expresgiare) is not allowed
in AL whena = ¢. For the case, in the above definition, replace

such(e : e) with e, which is bisimilar to(e : ¢e).
Now let us see the first proof.

Proof. Let G = (V, B,I) be a finite graph inDB¢3. First we
prepare a marketv for each nodev, then we writeg V' for the
set of the markers, and defiffe V' — &V asf(v) = &v. Then for
eachv,

def
Gy =

uf ! (T(cex«-) o f)+Y) (B(v))) € DBuvsy
can be represented by graph constructors. Then
|fol|@cycle(@veviw:=G,) € DBy

is bisimilar to the original graph-.
For example, for the grapf in Exampld2,

Gr=(d: (&2)) + (a: (&4))
G = <C : &3>>

Gs3 = (d (&2>>

Ga= (b: (&3)) +H (&),

thend is bisimilar to
(&1) @cycle ((&1 =G1) D (82:=G2) ® (83:=G3) ® (&4 ::G4)).
O

Now we see the second proof. First we define “node in cycle”.
For a finite graph(V, B,I) andv € V we defineP, as the
minimum subset? C V such thatB(v) € T(L.x P+Y); this
is the set of all the nodes which are targets of edges f#rofrhen

we defineP? &' {v} and P+ £y P,/ by induction on

v/ P

n. Now we defineP; &' U,en P andPf def Unso P05 Py is
the set of the nodes which are accessible franand P," is the
set of the nodes which are accessible frorthrough at least one
transition. We call a node such that € P, acyclic node

Now let us see the second proof.

Proof. Let G = (V, B,I) be a finite graph inDBs3 . We can
assume thak = 1(= {&}), recovering other cases by the graph
constructorg) and$. Now we show the statement by induction on
the natural number

G| &' [V |+2x| Ve

whereV¥* is the set of cyclic nodes.

21

If the root (&) is cyclic, we define a graph

&' & (VU{wo}, B',I) € DBty iaye)

wherev, and&y, are fresh ones, ang’ is defined as below.
B": VU{vo} = T(Lex (VU{vo})+(YU{&y0o}))
vo — return(Outm (&yo))
v T(g)(B(v))
g: LXV4Y = Lox(VU{vo})+H(YU{&yo})
Edge (I, I(%)) — Edge (I, vo)
the other case : embedding

Then
G = (&yo) @ cycle(&yo := G'), and
IG'l < |G,
since, whileG’ has just one extra node, at least the root becomes
non-cyclic.

When the rooff (&) is not cyclic, considerf_(G); then as seen
above,G is (strong bisimilar, hence) bisimilar taf . (uf . (G)),
where recall thatf ! is a composition of graph constructors. On
the other hand, let us consider gragk{soccurring in

uf (G) € T(LexDBsy+Y),
i.e., agraptG’ in the minimum—then finite sincg is finitary—set
P C DBgy such that
uf (G) € T(LxP+Y).

EachG’ in P is a subgraph of7, and the root ofZ’ is a node in
P of G. Sincel (&) is not cyclic, the accessible part 6f does
not includel (&), henceG’| < |G|. O

	Introduction
	Overview of FGT
	Graph Model of FGT
	Overview of FGList
	Graph Equivalence
	Graph Constructors
	Syntax of FGList

	Bisimilarity for -edge and Ordered Graph
	Bisimilarity for Ordered Graph
	Decidability for Finite Width Graphs
	Generic Definition of Bisimilarity
	Bisimilarity for Higher Order Functions

	UnCAL Generalized with Monad
	Graph Constructors
	Remark on Representability of Monads

	Structural Recursion
	Sibling Transformation
	Local Sibling Transformation
	Uniform Sibling Transformation

	Syntax of FGT

	Structural Recursion with Sibling Transformation
	Modularized Extension of UnCAL
	Product of Monads

	Related Work
	Conclusions and Future Work
	Ordered Graphs for Any Countable Linear Ordered Sets
	Countable List
	Finitary Monad Extension for -elimination
	Proof of Full Representability by the Graph Constructors

