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Abstract
Hughes’arrowswere shown, by Jacobs et al., to be roughly mon-
ads in the bicategoryProf of profunctors (distributors, modules).
However in their work as well as others’, the categorical nature of
thefirst operator was not pursued and its formulation remained
rather ad hoc. In this paper, we identifyfirst with strengthfor
a monad, therefore:arrows are strong monads inProf . Strong
monads have been widely used in the semantics of functional pro-
gramming after Moggi’s seminal work, therefore our observation
establishes categorical canonicity of the notion of arrow.

Categories and Subject DescriptorsF.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Denotational
semantics

General Terms Languages, Theory

Keywords arrow, strong monad, Freyd category, computational
effect, profunctor

1. Introduction
The notion ofarrow was introduced by Hughes [17, 18] for func-
tional programming languages such as Haskell. Its benefits are
claimed to be as follows. First, it provides more natural syntax for
Point-free programming; second, it allows programmers to orga-
nize a bigger variety of computational effects than the notion of
monaddoes.

This paper is about categorical semantics of arrows. There
have been roughly two approaches towards that goal. The first
one employspremonoidal categorieswith certain additional struc-
ture (calledFreyd categories) [3, 22, 26]. The other is the approach
based onprofunctors(also calleddistributorsor modules) [4, 6],
which we follow.

In the papers [15, 19], Jacobs et al. characterized an arrow as a
monoid in a monoidal category[Cop×C,Set] that is additionally
equipped with the so-calledfirst operator. The monoidal prod-
ucts in the monoidal category[Cop×C,Set] are given by certain
coends; they are in fact the same as composition of profunctors.
Then one readily sees thatan arrow is a monad—in an internal
sense—in the bicategoryProf of profunctors, equipped with a
first operator.
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In this way we have got a clean understanding of the categor-
ical nature of arrows—except for thefirst operator. It is our
main result that identifiesfirst with a strengthfor a monad in
Prof . Therefore:arrows are strong monads inProf . The notion
of strength for a monad is employed in Moggi’s seminal work [24]
in order to accommodate “context information” within computa-
tional effects—as thefirst operator does for arrows. Our main
result (Theorem 14) makes this intuitive analogy a mathematically
rigorous one.

Use of profunctors in theoretical computer science is not new:
In categorical semantics of programming languages, profunctors—
often called modules (or discrete indexed categories)—are some-
times used instead of usual categories [21, 23]. In [7, 16, 25],
profunctors are used as models in a domain theory for concur-
rency. Also potential use of profunctors can be seen in recent work:
e.g. [8, 12].

Profunctor can be viewed also as “generalized relation”: a pro-
functor is to a functor what a relation is to a function. Therefore our
result is illustrated as:

strong monad
arrow

=
functor

profunctor
=

function
relation .

We define the notions of arrow and of strong monad inProf
not only over cartesian categories but over any monoidal categories.
After identifying arrows as strong monads inProf , we define the
notion of internal strong monad in a general setting, i.e., not only in
Prof . From this, we obtain some variants of the notion of arrow.

1.1 Relation to Other Work

ist Operator

As we already mentioned, this work follows the profunctor ap-
proach that originated in [15, 19]. In these works, they introduced
what they called “internal strength”, i.e.,ist operator; then they
showed the equivalence betweenist andfirst. The formulation
of ist is pretty similar to that offirst, but has certain technical
advantage, which they exploited.

It should be noted that theirist operator’s definition is quite
different from the genuineinternal strength, i.e., the notion of
strength defined for a monad in an internal way in a bicategory.
The latter is what we call (internal)strengththroughout the present
paper.

The notion of strength is a monoidal notion: it is defined for any
monoidal object as in Section 6, and not only for a cartesian object.
On the other hand, the definition ofist operator and the proof of
the equivalence betweenist operator and strength (Theorem 16)
need the structure of cartesian products. Therefore,ist operator
is not what should be called strength. However we can proveist
operator to be equivalent to strength; the name forist was with
fortunate wisdom.



Enriched Freyd Category and Self-enrichment

In [3], Atkey investigated many variants of the notion of arrow.
Among them, he gave a categorical definition of arrow and also
defined the notion ofenriched Freyd category, and he showed that
they are equivalent.

Atkey’s definition of arrow and that given in [15, 19] are differ-
ent: the former is(self-)enriched; the latter is not. This gap between
enriched and non-enriched notions was not present for monads (in
Cat). This is because in a cartesian closed category—a common
setting for functional programming—strong monads are the same
thing as enriched monads.

In the present paper, we first give the theorem that arrows
are strong monads inProf in the non-enriched setting (in The-
orem 14), in order to concentrate on other aspects than such
self-enrichment problem. Then, in Section 6, we define a “self-
enriched” version of strong monad inProf in Definition 21, and
show that it is equivalent to Atkey’s definition of arrow in Theo-
rem 23. One technical advantage of our characterization for arrow
is that we can define it over any symmetric monoidal category;
while for Atkey’s definition, we use structures of cartesian cate-
gories (see Definition 22).

Arrows as Relative Monads

In [1], Altenkirch et al. gave a generalized notion of monad, i.e., the
notion ofrelative monad. A relative monad is defined over a (base)
functor, while a monad is defined over a (base) category. They
showed that for a categoryC, relative monads over the Yoneda
embeddingy : C −→ Ĉ bijectively correspond to (arr,>>>)-
fragments of arrows overC (in Definition 9), and hence to monads
overC in Prof (by Theorem 10).

They gave also aKleisli constructionand anEilenberg-Moore
constructionfor a relative monad, and showed that the Kleisli con-
struction gives the initial object and the Eilenberg-Moore construc-
tion gives the terminal object in some suitable category. On the
other hand, also for a monad inProf , we have the notions of
Kleisli object and Eilenberg-Moore object inProf , as in the pa-
per [27] by Street.

For a relative monadR over the Yoneda embeddingy of a
categoryC and the corresponding monadA in Prof , the Kleisli
category forR is isomorphic to the Kleisli object forA. They
are isomorphic to the Kleisli category of the corresponding Freyd
category (without premonoidal structures).

One different point between the relative monad approach and
our approach inProf is that the Eilenberg-Moore category forR
is not necessarily equivalent to the Eilenberg-Moore object forA,
which is the same as the Kleisli object forA (because of the duality
Prof ∼= Prof op). (However the “right adjoint” pseudo functor
(̂-) : Prof −→ CAT maps the Eilenberg-Moore object forA to
the Eilenberg-Moore category forR.)

Uustalu, the third author of [1], extended the correspondence
between (arr,>>>)-fragments of arrows and relative monads to
that between arrows (with first operators) andstrong relative mon-
ads[28].

Terminology

In the paper we use the termarrow exclusively for Hughes’ notion,
and not for arrows between objects in categories. For the latter, we
reserve the termmorphism.

Outline

In Section 2, we briefly recall the notion of arrow. In Section 3,
we review the notions of dinatural transformation, end, coend, and
profunctor. In Section 4, we recall the results in [19] that a fragment
of arrow is a monad inProf .

In Section 5, we go straight to the main result that arrows
are strong monads inProf . Also we give a direct proof of the
equivalence betweenist operator and strength for a monad in
Prof . In Section 6, we commence a more general development
in which strong monads in aGray-monoid are considered. As a
benefit of this generalization, we give some variants of the notion of
arrow: especially in Section 6.3, we give a “self-enriched” version
of strong monad inProf , which corresponds to Atkey’s definition
of arrow.

2. Background: the Notion of Arrow
The following review to the notion of arrow is brief. See e.g. [19]
for more illustration and examples.

The notion of arrow [17, 18] was introduced as an extension
of that of monad [5, 24, 29], and is defined in Haskell as a type
constructor class:

class Arrow A where

arr :: (s → t) → A s t(
>>>
)

:: A s t → A t u → A s u

first :: A s t → A (s, u) (t, u)

where(s, t) is the product type of typess andt.
An instance ofArrow must satisfy the followingarrow laws:(

a >>> b
)

>>> c = a >>>
(
b >>> c

)
(assoc)

arr (g ◦ f) = arr f >>> arr g (comp)

arr id >>> a = a = a >>> arr id (id)

first a >>> arr (id × f) = arr (id × f) >>> first a
(f-din)

first a >>> arr π1 = arr π1 >>> a (f-π)

first a >>> arr α = arr α >>> first (first a)
(f-α)

first (arr f) = arr (f × id) (f-η)

first
(
a >>> b

)
= first a >>> first b (f-µ)

whereπ1 :: (s, t) → s, α :: (s, (t, u)) → ((s, t) , u).
Fromfirst, we can define its dual:

second :: A s t → A (u, s) (u, t)

second a = arr γ >>> first a >>> arr γ

whereγ :: (s, t) → (t, s).
Arrows subsume monads: given a monadT , we obtain itsKleisli

arrow s → Tt. Similarly, a comonadS induces itscoKleisli arrow
Ss → t. And we can further fit these together: with a distributive
law between a monad and a comonad, we can construct thebiKleisli
arrow Ss → Tt.

3. Preliminaries
In this section we introduce the notion of profunctor. Before that,
yet, we first recall some necessary notions related to profunctors.

3.1 End, Coend and Yoneda Lemmas

Here we recall the notions of dinatural transformation, end and co-
end; the two forms of Yoneda lemma, i.e., end form and coend
form; and Reversing Lemma. For further details, see [20] (espe-
cially, Sec. 3.10).

Like homset functorsC (−,−) : Cop×C→ Set or exponenti-
ation bifunctors on SMCCs, we sometimes come across bifunctors
with mixed variance. Dinatural transformations are between such
contra-co-variant bifunctorsF, G : Cop × C → D, while natural
transformations are between functorsF, G : C→ D.



Definition 1 (Dinatural transformation) For categoriesC,D, and
functorsF, G : Cop × C→ D, adinatural transformationα from
F to G is an indexed family of morphisms

αC : F (C, C) → G (C, C) (C ∈ |C|)

which is dinatural in C, i.e., for any morphismf : C → C′ the
following diagrams commutes:

F (C, C)
αC // G (C, C) G(C,f)

++VVVV

F (C′, C)

F (f,C) 33hhhh

F(C′,f)
++VVV G (C, C′)

F (C′, C′)
αC′

// G (C′, C′)G(f,C′)

44hhh

Two successive dinatural transformations do not necessarily
compose, in which sense this notion is not that of “morphism”
between such bifunctors. Nevertheless dinatural transformations
are useful, as we will see many times in the paper.

Note that the notion of dinatural transformation subsume that of
natural transformation: for given functorsF, G : C → D, natural
transformations betweenF, G bijectively correspond to dinatural
transformations betweenF ◦ π′, G ◦ π′ : Cop × C → D. Also
we will see many examples of dinatural transformations where the
domain functors (F above) or the codomain functors (G above) are
constant functors, as in the next definitions of end and coend.

End (resp. coend) is a kind of limit (resp. colimit) where di-
natural transformations are used instead of natural transformations.
These notions play a very important role for profunctor theory.

Definition 2 (End and Coend) For categoriesC,D, and a functor
F : Cop × C→ D,

• an end ofF is an object
∫

C∈C F (C, C) in D with projection
morphisms

πC′ :

(∫
C∈C

F (C, C)

)
→ F

(
C′, C′) (

C′ ∈ |C|
)

which form a dinatural transformation from the
∫

C∈C F (C, C)-
constant functor to the functorF . Then these are required to be
universal among such data: i.e., for any objectD in D and
any dinatural transformation(αC′ : D → F (C′, C′))C′ ,there
is a unique morphismf : D →

∫
C∈C F (C, C) such that

πC′ ◦ f = αC′ for all C′.
• Dually, a coend ofF is an object

∫ C∈C
F (C, C) in D with

injectionmorphisms

ιC′ : F
(
C′, C′)→ ∫ C∈C

F (C, C)
(
C′ ∈ |C|

)
which forms an end ofF op : (Cop)op × Cop → Dop. �

The universality of an end and a coend can be written respec-
tively as the following bijective correspondences:

f : D →
∫

C∈C F (C, C)(
D

fC→ F (C, C)
)

C
dinatural inC

(1)

f :
∫ C∈C

F (C, C) → D(
F (C, C)

fC→ D
)

C
dinatural inC

(2)

The complete and cocomplete categorySet has all ends and
coends.

A typical and important example of an end is a set of dinatural
transformations:

Lemma 3 For a small categoryC and functorsF, G : Cop ×C→
Set, we have the bifunctor[F (+,−) , G (−, +)] : Cop × C →
Set, where+ and− indicate respectively variant and covariant
arguments, and[−, +] is the exponentiation ofSet.

Then, denoting the set of all dinatural transformations fromF
to G byDinat (F, G), we have a canonical isomorphism

Dinat (F, G) ∼=
∫

C∈C

[
F (C, C) , G (C, C)

]
.

Proof. Because of the following bijective correspondences:

1 →
∫

C∈C

[
F
(
C, C

)
, G (C, C)

]
(
1 →

[
F (C, C) , G (C, C)

])
C

dinatural inC

(F (C, C) → G (C, C))C dinatural inC

(by (1))

As noted above, natural transformations are subsumed by dinat-
ural transformations. Hence, for functorsF, G : C → Set, we
have also a canonical isomorphism

Nat (F, G) ∼=
∫

C∈C
[FC, GC]

where the left hand side is the set of natural transformations from
F to G. These isomorphisms are useful throughout the paper for
calculating (di)natural transformations, especially in the proof of
Theorem 14.

By the usual Yoneda lemma, for a functorF : C → Set, there
is canonically the natural isomorphismFC ∼= Nat (y (C) , F ).
Replacing the right hand side with the end isomorphic to it, we
have the Yoneda lemma, end-form:

Lemma 4 (The Yoneda lemma, end-form) For a small category
C and a functorF : C → Set, we have a canonical natural
isomorphism

FC ∼=
∫

C′∈C

[
C
(
C, C′) , FC′] .

Above, we use the exponentiation[−,−] in Set. This is called
alsocotensorin enriched category theory [20], and there is its dual
notion calledtensor, which is just cartesian product in the case of
Set. With this we can obtain the dual version of the above Yoneda
Lemma:

Lemma 5 (The Yoneda lemma, coend-form) For a small category
C and a functorF : C → Set, we have a canonical natural
isomorphism∫ C′∈C

F
(
C′)× C (C′, C

) ∼= FC .

Note that we can of course apply the above two lemmas also to
a contravariant functorF : Cop → Set.

We need also the next lemma in the proof of the main theorem.
As homset functors reverse colimits into limits in the negative
position, they reverse also coends into ends.

Lemma 6 (Reversing Lemma) For a categoryC and a functor
F : Cop × C→ Set, we have a canonical natural isomorphism[∫ C∈C

F (C, C) ,−
]
∼=
∫

C∈C

[
F (C, C) ,−

]
.

3.2 Profunctor

The notion ofprofunctor(also calleddistributor or module) forms
the very basis of our analysis of arrows. The notion dates back for



quite a while, and its relevance to theoretical computer science has
been recently recognized [8, 12].

Here we recall the notion of profunctor, the bicategoryProf ,
the embedding ofCat into Prof , and tensor product inProf .

As mentioned in the Introduction, a profunctor is to a functor
what a relation is to a function. This analogy is used repeatedly
for illustration. For further details and illustrations for profunctors,
see [4, 6].

Definition 7 (Profunctor) Let C and D be small categories. A
profunctorfromC toD is a functorDop ×C −→ Set. We denote
such a profunctor byF : C −→+ D, i.e.,

F : C −→+ D, a profunctor

F : Dop × C −→ Set, a functor
(3)

For successive profunctorsF : C −→+ D andG : D −→+ E,
their compositionG ◦ F : C −→+ E is defined—under the corre-
spondence (3)—as the following functor:

Eop × C
G◦F // Set

(E, C)
� // ∫ D∈D G (E, D) ×F (D, C)

(4)

Its action on morphisms is the obvious one.
For a categoryC, we define theidentityprofunctor

Id+
C : C −→+ C by C (−,−) : Cop × C −→ Set . (5)

Given two parallel profunctorsF ,F ′ : C −→+ D, a 2-cell
between profunctorsσ : F =⇒ F ′ is just a natural transformation
σ : F =⇒ F ′ whereF andF ′ are regarded as the functors from
Dop × C to Set. �

Now, let us illustrate the definition above using the analogy with
relations. A relationR between setsS and T is a subset of the
product setS×T , in other words, a function fromS×T to the two
points set{0, 1}. Thus, a profunctor—F : Dop×C −→ Set—is a
Set-many valued relation, while a relation is two valued. Next let
us recall how the relational compositionS ◦ R is defined:

(S ◦ R) (c, e)
def⇐⇒ ∃d. R (c, d) ∧ S (d, e)

Then there are obvious similarity between composition for pro-
functors (4) and that for relations: coend

∫ D corresponds to∃d.,
and× to∧. Also, 2-cellsσ between profunctorsF andF ′, i.e., nat-
ural transformations(σD,C : F (D, C) −→ F ′ (D, C))D,C cor-
respond to the inclusion order between relations:

R ≤ R′ def⇐⇒ ∀c.d.
(
R (c, d) ⇒ R′ (c, d)

)
.

This analogy between profunctor and relation will be helpful to
understand many notions for profunctor.

The notion of 2-category is now used in many different contexts;
in a 2-category, there is a notion of 2-cell, which is “morphism
between morphisms.” A typical example is the 2-categoryCat of
categories, functors, and natural transformations.

One might imagine that the notions of category, profunctor
between categories, and 2-cell between profunctors form a 2-
category. However, the composition for profunctors is not strictly
associative, because of the coends and products in the definition.
Likewise, identity profunctors are not strictly unital. Nevertheless,
they hold up to canonical iso-2-cells; e.g., the iso-2-cells for the
unitality can be gotten by the Yoneda lemma, coend-form. Such
notion which is similar to that of 2-category, but whose associativ-
ity and unitality of the composition of 1-cells are required just up
to iso-2-cells, is calledbicategory[6].

We denote byProf the bicategory consisting of small cat-
egories as its 0-cells (objects), profunctors as its 1-cells (mor-
phisms), and 2-cells between profunctor as its 2-cells.

Next we introduce an embedding ofCat into Prof . This is
identity on 0-cells (small categories), maps a functorF : C −→ D
to the following profunctorF∗ : C −→+ D calleddirect image of
F ,

F∗ (−, +)
def
= D (−, F+) : Dop × C −→ Set (6)

and maps a natural transformationσ : F =⇒ F ′ : C −→ D to the
natural transformationD (id, σ) : F∗ =⇒ F ′

∗ : C −→+ D.
This embedding forms apseudofunctor[6] from the 2-category

Cat to the bicategoryProf , i.e. preserve composition and identi-
ties for 1-cells up to iso-2-cells. This embedding corresponds—via
the foregoing analogy—to the embedding of the categorySet into
the categoryRel of sets and relations, which maps a function to its
graph relation.

As cartesian products inSet lift to tensor products inRel,
cartesian products inCat lift to tensor productsin Prof . For
profunctorsF : C −→+ C′ andG : D −→+ D′, we defineF × G :
C× D −→+ C′ × D′ by the following:

(F × G)
(
C′, D′, C, D

) def
= F

(
C′, C

)
× G
(
D′, D

)
(7)

It is obvious that the operator× acts also on natural transformations
between profunctors.

4. Monad in Prof
In this short section, we review the result by Jacobs et al. [15, 19]
that monads inProf are equivalent to the (arr,>>>)-fragment of
arrows. This forms also a preliminary step toward our main result,
Theorem 14.

4.1 Monads inProf as Bases of Arrows

Many notions in category theory consist of functors and natural
transformations, subject to some commutative diagrams. For ex-
ample, anadjunctionis a tuple(F, G, η, ϵ) of two functors and two
natural transformations, subject to the two triangular laws [6, The-
orem 3.1.5]. Once one takes a 2-categorical view on this—functors
and natural transformations are 1-cells and 2-cells inCat—it is
straightforward to define anadjunctionin an arbitrary 2-category,
or in a bicategory, in an “internal” way [27]. The notion of (inter-
nal) monad is also one of such.

Definition 8 (Monad) Let P be a bicategory, andC be a 0-cell in
P. A monad overC in P is a triple(A, η, µ) of an endo-1-cell
A : C −→ C in P and 2-cellsη : IdC =⇒ A andµ : A2 =⇒ A
in P satisfying the usual commutative diagrams of associativity
and unitality. �

It should be noted that this internal definition coincides with the
usual one ifP = Cat.

Definition 9 ((arr,>>>)-Fragment of Arrow) For a categoryC,
an (arr,>>>)-fragment of arrowover C consists of a mapping
Ar : |C| × |C| −→ |Set| and two families of mappings:

arrAB : C (A, B) −→ Ar (A, B)

>>>ABC : Ar (A, B) × Ar (B, C) −→ Ar (A, C)

These must satisfy Axioms (assoc), (comp), and (id) in Section 2,
where we use variablesf, g for morphisms inC, and usea, b, c for
elements in(Ar (A, B))A,B . �

The mapAr above is a mapping to|Set| rather than|C|. This is
unnatural if we use the above definition of arrows to model arrows
as type constructors in Section 2. This involves a subtle size issue,



and we solve it in Section 6.3, till then we shall separate such a size
issue. Here and in the next section, we focus on the correspondence
between arrows and strong monads inProf .

Theorem 10 [15, 19] For a small categoryC, the notion of monad
over C in Prof is equivalent to that of (arr,>>>)-fragment of
arrow overC. �
Proof. (Sketch) Given a monad(A, η, µ) in Prof over a small
categoryC, A is a functor fromCop × C to Set; this corresponds
to the mappingAr of a fragment of arrow, where the functoriality
of A is recovered witharr and>>>. The natural transformationsη
has componentsηA,B : C (A, B) −→ A (A, B) sinceC(−,−) is
an identity 1-cell inProf . This corresponds toarr. Finally, µ is,
by (4), a natural transformation with components

µA,C :
(∫ B

A (A, B) ×A (B, C)
)
−→ A (A, C) ,

which corresponds to>>> by the universality (2) of the coend.�
In the remaining sections, we usearr, >>> andη, µ interchange-
ably, especially in Definition 12.

5. Arrows as Strong Monads in Prof
In this section, we present our main result (Theorem 14) that arrows
are strong monads inProf . We give this theorem not only for
cartesian categories, but for any monoidal categories.

In order to show the main result, we first need to define the
notion of strength inProf . Then we generalize the definition
of first operator, from that for cartesian categories to that for
monoidal categories. Finally we show that these notions of strength
andfirst are equivalent.

5.1 Strength inProf

First let us review strength inCat. A strength for a monad over a
monoidal category(C,⊗, I) is a natural transformationstrA,B :
TA⊗B −→ T (A⊗B) satisfying certain axioms. This 2-cell in
Cat can be also described as the following:

C× C
T×IdC //

⊗

��

⇐ str

C× C

⊗

��
C

T
// C

In a similar way, we define the notion of strength inProf .

Definition 11 (Strength) Let (C,⊗, I, α, λ, ρ) be a monoidal cat-
egory, and(A, η, µ) be a monad overC in Prof .

A strengthfor the monadA in Prof is a 2-cellstr in Prof
in the following diagram such that it satisfies the usual four axioms
with α, ρ, η, µ (for these axioms, see Definition 20).

C× C �A×Id+
C //

_⊗∗

��

⇐ str

C× C

_⊗∗

��
C �

A
// C

We call a monad inProf equipped with a strength inProf a
strong monad inProf . �

This is a key notion in the paper. It should be noted that since
the two vertical 1-cells in the above diagram are inProf , we
use the embedding (6) ofCat into Prof , so that the functor
⊗ : C× C −→ C is replaced with its direct image⊗∗.

5.2 first Operator for Monoidal Categories

To give the main theorem for any monoidal categories, here we
generalize the definition offirst operators from that for cartesian
categories to that for monoidal categories. (This modification is
used in the proof of the main result. It is not an indirect way but
a natural way even for cartesian categories; a cartesian category
seen inProf is not a “cartesian object” but a monoidal object (see
Section 6) inProf .)

In order to give a categorical definition offirst operators for
monads inProf over monoidal categories, we need to modify
Axiom (f-π) (described in Section 2), since a monoidal category
does not necessarily have projectionsπ. For this, we useρ :
A⊗I −→ A instead ofπ:

Definition 12 [first Operators for Monoidal Categories] For a
monoidal category(C,⊗, I, α, λ, ρ) and a monad(A, η, µ) overC
in Prof , afirst operatoris a family of morphismsfirstA,B,C :
A (A, B) −→ A (A⊗C, B⊗C) natural inA, B ∈ C, dinatural in
C ∈ C, and satisfying Axioms (f-α), (f-η), and (f-µ) in Section 2
and (f-ρ):

first a >>> arr ρ = arr ρ >>> a (f-ρ)

Note that the naturality inA and B above are redundant:
they are derived from Axioms (f-η) and (f-µ). Also note that Ax-
iom (f-din) in Section 2 is equivalent to the dinaturality above.

The propriety of the above definition is justified by the next
proposition:

Proposition 13 In the situation of Definition 12, if the monoidal
categoryC is a cartesian category, then Axiom(f-ρ) is equivalent
to Axiom(f-π). �

Proof. The direction from (f-π) to (f-ρ) is trivial. For the converse,
Axiom (f-π) is gotten from (f-ρ) as the following:

A (A × C, B × C)
A(A×C,B×!C) //

(dinaturality)

A (A × C, B × 1)

A(A×C,ρ)

��

A (A, B)

first

=={{{{{{{{{{
first //

A(ρ,B)

!!CC
CC

CC
CC

CC
A (A × 1, B × 1)

A(A×!C ,B×1)

::ttttttttttt

A(A×1,ρ)

yyttttttttttt

(functoriality)

A (A × 1, B)
A(A×!C ,B)

//

(f-ρ)

A (A × C, B)

In the above,!C : C −→ 1 is the unique map fromC to the
terminal, henceρ ◦ A×!C : A × C −→ A × 1 −→ A is equal
to the projectionπ1 : A × C −→ A. The upper path of the above
diagram is the left hand side of (f-π), and the lower path is the right
hand side. �

5.3 Arrows as Strong Monads inProf

Now we show the main result.

Theorem 14 For a monoidal small category(C,⊗, I, α, λ, ρ) and
a monad(A, η, µ) on C in Prof , there is a bijective correspon-
dence betweenfirst operators and strengths for(A, η, µ) in
Prof .



Proof. The following calculation of ends and coends shows the
correspondence between strength (in LHS) andfirst (in RHS):

Nat
(
(⊗∗) ◦

(
A× Id+

C
)
, A ◦ (⊗∗)

)
∼= ( by Lemma 3 )∫

A,B,C

[(
⊗∗ ◦

(
A×Id+

C
))(

C, (A, B)
)
,
(
A ◦ ⊗∗

)(
C, (A, B)

)]
= ( by Definition 7 - (4) )∫

A,B,C

[A′,B′∫ (
⊗∗

(
C,
(
A′,B′)))×((A×Id+

C

)((
A′,B′), (A,B

)))
,

C′∫
A
(
C, C′

)
×
(
⊗∗

(
C′,
(
A, B

))) ]
= ( by the definitions of(−)∗ (6), tensor× (7), andId+

C (5) )∫
A,B,C

[ ∫ A′,B′

C
(
C, A′⊗B′)×A

(
A′, A

)
×C
(
B′, B

)
,∫ C′

A
(
C, C′)×C (C′, A⊗B

) ]
∼= ( by Lemma 5 onB′, C′ )∫

A,B,C

[∫ A′

C
(
C, A′⊗B

)
×A
(
A′, A

)
, A (C, A⊗B)

]
∼= ( by Lemma 6, then Currying )∫

A,B,C,A′

[
C
(
C, A′⊗B

)
,
[
A
(
A′, A

)
, A (C, A⊗B)

]]
∼= ( by Lemma 4 onC )∫

A,B,A′

[
A
(
A′, A

)
, A
(
A′⊗B, A⊗B

)]
∼= ( by Lemma 3 )

NatA′,ADinatB

(
A
(
A′, A

)
, A
(
A′⊗B, A⊗B

))
The remaining is to prove the equivalences between the ax-

ioms for strength and those forfirst: the four axioms for strength
with α, ρ, η, andµ correspond respectively to (f-α), (f-ρ), (f-η),
and (f-µ). The proofs of these equivalences are tedious but straight-
forward. �

In this way we can characterize simply the notion of arrow
only with basic structures of the bicategoryProf . This simplicity
and rich structures ofProf make it easy to calculate, inProf ,
properties and structures on arrows, as in the paper [2]. Besides,
this characterization provides a better justification of the axioms of
arrows, and provides us clean understanding of the notion of arrow.

5.4 Onist Operators

On a cartesian category as a base of an arrow, there is an alternative
to afirst operator, i.e., anist operator [15, 19].

Applying the theorem in the previous subsection to cartesian
small categories, we see that strengths are equivalent tofirst
operators, hence also toist operators. However, we give a direct
proof of correspondences between strengths inProf and ist
operators. The proof shows how the notion ofist operator depends
on cartesian products.

Definition 15 (ist Operator) For a cartesian categoryC and a
monad (A, η, µ) over C in Prof , an ist operator is a family
of morphismsistA,B : A (A, B) −→ A (A, B×A) natural in

B ∈ C, dinatural inA ∈ C, and satisfying the following axioms:

ist (arr f) = arr ⟨f, id⟩
ist a >>> arr π1 = a

ist
(
a >>> b

)
=

ist a >>> ist
(
arr π1 >>> b

)
>>> arr (id×π2)

ist (ist a) = ist a >>> arr ⟨id, π2⟩

Theorem 16 For a cartesian small categoryC, and a monad
(A, η, µ) on C in Prof , there is a bijective correspondence be-
tweenist operators and strengths for(A, η, µ) in Prof . �

Proof. Here we concentrate only on the correspondence between
(di)natural transformations ofist operators (in RHS) and strengths
(in LHS):

Nat
(
(×∗) ◦

(
A× Id+

C
)
, A ◦ (×∗)

)
∼= ( by Lemma 3 and definitions, as in the proof of Theorem 14 )∫

A,B,C

[ ∫ A′,B′

C
(
C, A′×B′)×A

(
A′, A

)
×C
(
B′, B

)
,∫ C′

A
(
C, C′)×C (C′, A×B

) ]
∼= ( by the adjointness of the cartesian productA′×B′ )∫

A,B,C

[ ∫ A′,B′

C
(
C, A′)×C(C, B′)×A

(
A′, A

)
×C
(
B′, B

)
,∫ C′

A
(
C, C′)×C (C′, A×B

) ]
∼= ( by Lemma 5 onA′, B′, C′ )∫

A,B,C

[
A(C, A)×C (C, B) ,A(C, A×B)

]
∼= ( by Currying )∫

A,B,C

[
C (C, B) ,

[
A(C, A) ,A(C, A×B)

]]
∼= ( by Lemma 4 onB )∫

A,C

[
A(C, A) ,A(C, A×C)

]
∼= ( by Lemma 3 )

DinatA,C

(
A (C, A) , A (C, A×C)

)
The steps are almost the same as in the proof of Theorem 14,

except that we used adjointness of cartesian products for the second
isomorphism. �

6. Generalizing Arrow
In this section, we generalize the definition of strong monad by
enlarging a class of ambient bicategories in which internal strong
monad is defined. So far in the paper, such an ambient bicategory is
Cat or Prof . We see first which kind of bicategories can be used
for such purpose; then we define the notion of strength in there.

By this generalization we obtain some variants of the notion
of arrow. Especially in the last, we give a definition of “self-
enriched” version of arrow, which is shown to be equivalent to
Atkey’s definition of arrow.



6.1 Gray Monoid

Monads inCat are defined over any category, while strong monads
in Cat are defined only over monoidal categories. Hence when
we define strong monads in bicategories, we first have to define
monoidal objectsin bicategories.

Much like we need monoidal categories as ambient categories
in which we define monoid objects, we needmonoidal bicate-
gories [13] as ambient bicategories in which we define monoidal
objects. (These phenomena of occurrences of similar kinds of in-
ner and outer structures are called “the microcosm principles”, ad-
vocated by Baez and Dolan [14].)

We can in fact use monoidal bicategories to define monoidal
objects. However, the structural isomorphisms of a monoidal
bicategory—up to which the composition of 1-cells and also the
monoidal product are associative and unital—are cumbersome and
make the essence blurred. Therefore we here use the notion of
Gray monoid, which is, roughly, “strictified monoidal bicate-
gory”.

Definition 17 (Gray monoid) A Gray monoidP is a 2-category
with the following structures:

• a 0-cellI,
• for each 0-cellC in P, two 2-functorsLC, RC : P −→ P

satisfying the following conditions

LC (D) = RD (C) (and defineC� D def
= LC (D)),

LI = RI = IdP,

LC�D = LCLD, RC�D = RDRC, RDLC = LCRD,

for all 0-cellsC, D, and
• for each 1-cellsF : C −→ C′,G : D −→ D′, an invertible

2-cell

C� D
LC(G) //

RD(F)

��

C� D′

RD′ (F)

��

cF,G
⇒

C′ � D
LC′ (G)

// C′ � D′

satisfying certain coherence axioms such ascIdC,IdD = idC�D,
see [11] for details. �

In what follows, we denoteLC byC�(−) andRC by (−)�C.
Note that for 1-cellsF : C −→ C′ and G : D −→ D′,

C�G;F�D′ andF�D;C′�G are not necessarily the same, so we
cannot denote them simply byF�G. However they are isomorphic
with the iso-2-cellcF,G , and we can always interchange them.

In the definition ofGray-monoid, all structural isomorphisms
of monoidal bicategory are replaced with identities, except forc.
Even associativity and unitality—both of the composition of 1-
cells and of monoidal product—are strict. By this simplicity, we
can keep definitions of monoidal object and strength accessible.

All Gray monoids form monoidal bicategories, and conversely
by the strictification theorem [13], all monoidal bicategories are
monoidally equivalent to someGray monoids. (It is not true
that all monoidal bicategories are monoidally equivalent to some
monoidal 2-categories[13].) Hence we identify monoidal bicate-
gory withGray monoid.

The 2-categoryCat forms a monoidal 2-category with carte-
sian products. The bicategoryProf forms a monoidal bicategory
with the tensor product×, as the categoryRel forms a monoidal
category with the tensor product×.

We can generalizeProf with enriched category theory:

Example 18 LetV be a cocomplete SMCC. Then, there is a notion
of V-profunctor, also calledV-module [20].

ForV-categoriesC andD, aV-profunctorF from C to D is a
V-functorF : Dop � C −→ V, and for parallelV-profunctorsF
andF ′, a 2-cell betweenV-profunctorsF andF ′ is aV-natural
transformation fromF toF ′.

Then, as the monoidal bicategoryProf , we can define a
monoidal bicategoryV-Prof of smallV-categories,V-profunctors,
and 2-cells betweenV-profunctors. The monoidal product in
V-Prof is the same as the tensor product inV-Cat, which we
denote by�. In the case thatV = Set, Set-Prof is Prof . �

ThisV-Prof plays an important role in Section 6.3.

6.2 Monoidal Object and Strong Monad

First we recall the notion of monoidal object in aGray monoid [11].

Definition 19 (Monoidal Object) Let (P,�, I) be aGray monoid.
A monoidal object(or pseudomonoid) in (P,�, I) is a 0-cell

C in P together with 1-cells⊗ : C � C −→ C andI : I −→ C
in P and invertible 2-cellsα, λ, andρ below such that they satisfy
coherence axioms quite similar to those for monoidal categories.
(See [11], for further detail.)

C3
⊗�C //

C�⊗

��
⇐ α

C2

⊗

��
C2

⊗
// C

C I�C //

@@
@@

@@
@@

@

@@
@@

@@
@@

@

⇐ λ

C2

⊗

��

CC�Ioo

~~
~~

~~
~~

~

~~
~~

~~
~~

~

⇐ ρ

C

Monoidal objects inCat are monoidal categories.
Monoidal objects inProf are calledpromonoidal categories[9,

10]. In Section 5.1, we considered only the promonoidal categories
induced from monoidal categories via the direct image embedding.
(The direct image embedding is monoidal pseudofunctor, hence
maps monoidal objects inCat to those inProf .)

Now we define strong monads inGray-monoids:

Definition 20 (Strong Monad in Gray-Monoid) Let (P,�, I)
be a Gray-monoid, (C,⊗, I, α, λ, ρ) be a monoidal object in
(P,�, I), and(A, η, µ) be a monad overC in P.

A strength for the monadA in (P,�, I) is a 2-cell str
in P in the following diagram such that it satisfies the ax-
ioms (s-α), (s-ρ), (s-η), and (s-µ) below.

C2
A�C //

⊗

��

⇐ str

C2

⊗

��
C A

// C

C3
A�C2 //

##FF
FF

FF

C�⊗

��

⊗�C

C3
C�⊗ //

⇐c

C2

��

⊗C2

;;xxxxxxA�C

��
⊗⇐α

–1

⇐str

C2
⊗

// C A
// C

=

C3
A�C2 //

��

⊗�C

C3
C�⊗ //

��
⊗�C

⇐str�C ⇐α
–1

C2

��

⊗C2

##FFFFFF
⊗

⇐str

C2

;;xxxxxx
A�C

⊗
// C A

// C

(s-α)



C C�I //

EEEEEE

EEEEEE
⇐ρ

C2
A�C //

⊗
�� ⇐str

C2

⊗
��

C A
// C

=
C C�I //

A ""EEEEEE C2
A�C //

⇐c
–1

⇐ρ

C2

⊗
��

C

;;wwwwww
C�I

C

(s-ρ)

C2

""EE
EE

EE ⊗

⇐str

C2

;;xxxxxxA�C

⇐η�C

⊗
// C A

// C
= C2

⊗ // C A

⇐η // C (s-η)

C2
A�C //

��

⊗

C2
A�C //

��
⊗

⇐str ⇐str

C2

��

⊗C
A

##HHH
HHH

H

⇐µ

C

A
;;wwwwwww
A

// C

=

C2
A�C //

��

⊗

AA

A�C

C2
A�C //

⇐str

⇐µ�C
C2

��

⊗

C A
// C

(s-µ)

We call a monad inP equipped with a strength in(P,�, I) a
strong monadin (P,�, I). �

By this definition withP = Prof , we can in fact define arrows
not only over monoidal categories as in Section 5 but also over
any promonoidal categories; on the other hand, we have no similar
theorem to Theorem 14, becausefirst-operators are defined only
for monoidal categories.

6.3 Self-enrichment of Arrow

In the last place, we consider a solution for the following problem
pointed out in the paper [3]: For a CCCC, let us identify types and
terms in Haskell with objects and morphisms inC, respectively. An
arrowA in Haskell is a type constructor, hence maps two types to
a type; i.e.,A is not a functorCop × C −→ Set but a functor
Cop × C −→ C.

In order to replaceSet withC, a naive way is to consider strong
monads inC-Prof in Example 18. However thenC is required to
be small cocomplete and small at the same time, which implies that
Cmust be a preorder. The use of the synthetic domain theory, which
admits non-trivial internal small cocomplete categories, is not nat-
ural just for this purpose; for it unnecessarily restricts models.

The solution that we give for this is use of cocompletion and to
distinguish “small” ones from “large” ones.

Now letV be an SMC,V′ be a sufficiently cocomplete SMCC,
andJ : V −→ V′ be a symmetric strong monoidal fully faith-
ful functor, whose leading example is the Yoneda embedding
y : V −→ V̂. ThenV can be aV′-category with hom-objects

homV (A, B)
def
= JA(V′JB. The underlying category of this

V′-categoryV is isomorphic to the categoryV itself; alsoJ can
beV′-functor whose underlying functor is againJ .

For aV′-profunctorF : C −→+ D, we callF V-small if the
V′-functorF : Dop �C −→ V′ is factorized along theV′-functor
J : V −→ V′:

Dop � C F //

F◦

((QQQQQQQQQQQQQQ V′

V

J

OO

Such factors ofF are unique up to naturalV′-isomorphism, and we
denote theV′-functor fromDop � C toV by F◦. (Note that when
J is the Yoneda embedding, which is injective,F◦ is uniquely
determined.)

Definition 21 For an SMCV and an embeddingJ : V −→ V′

as above, asmall strong monad overV in V′-Prof (with respect

to J) is a strong monad overV in V′-Prof whose underlyingV′-
endoprofunctor isV-small. �

We show that the above definition gives a generalization of
Atkey’s definition of arrow, from that over a cartesian category to
that over a monoidal category.

In the definition below, we use the coKleisli category of the
comonadD × (−) for each objectD in a cartesian categoryC.
Note that if a base category is cartesian, so is its coKleisli category.

Definition 22 [3] An arrow on a cartesian categoryC consists
of a mapping of objectsAr : |C| × |C| −→ |C| and three
transformations all natural inD,

arrDAB : C (D × A, B) −→ C (D, Ar (A, B))

>>>DABC : C (D, Ar (A, B)) × C (D, Ar (B, C))

firstDABC :

−→ C (D, Ar (A, C))

C (D, Ar (A, B)) −→ C (D, Ar (A×C, B ×C))

These transformations must satisfy the eight laws (assoc) – (f-µ) in
Section 2 where the equations are interpreted as equations between
C morphisms generated by the above transformations. In those
equations, we use variablesf, g for morphisms inC (D × A, B)
anda, b, c for morphisms inC (D, Ar (A, B)); and the composi-
tion ◦, identity id, product× and projectionπ1 are all those in the
coKleisli category noted above. �

Theorem 23 For a cartesian categoryC, the notion of arrow over
C defined in Definition 22 is equivalent to that of small strong
monad overC in Ĉ-Prof with respect to the Yoneda embedding
y : C −→ Ĉ. �

Proof. Basically, this proof is almost the same as Proof 10 and 14.
Since a small strong monadA is decomposed asy ◦ A◦ by

definition, it is obvious that this corresponds toAr of an arrow of
Definition 22:

A◦(A, B)
def
= Ar (A, B) (8)

The unitη of a small strong monadA overC is a naturalĈ-
transformation from the identitŷC-profunctor Id+

C to A, i.e., a
family of morphisms

ηA,B :
(
yA→ĈyB

)
−→ y (A◦(A, B))

in Ĉ natural inA, B ∈ C. Here the presheafyA→ĈyB is iso-
morphic to the presheafC (−× A, B), by Yoneda lemma. On
the other hand, by the correspondence (8),y (A◦(A, B)) =
C (−, Ar (A, B)). As this,η corresponds toarr.

A correspondence betweenµ and>>> is readily obtained as in
Proof 10.

Finally, we can easily prove thatstr corresponds tofirst,
with the full-faithfulness ofy, and as in Proof 14, where we use
Ĉ-enriched version of Lemma 3, 4, 5, and 6 (see [20, Sec. 3.10]).�

Example 24 Besides Yoneda embeddingsC −→ Ĉ, we can also
use the inclusionSet ↪→ Ens, the codomain of which is the
category of classes. Then we have the notion of small strong monad
overSet in Ens-Prof : A : Setop × Set −→ Set.

In the paper [2], such notion is used, to obtain someendofunctors
overSet—rather than functors fromSet to Ens—for which we
can consider coalgebras. �
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