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Abstract In this way we have got a clean understanding of the categor-
ical nature of arrows—except for theirst operator. It is our
main result that identifie§irst with a strengthfor a monad in

¢ Prof. Thereforearrows are strong monads iRrof. The notion

of strength for a monad is employed in Moggi's seminal work [24]

in order to accommodate “context information” within computa-

tional effects—as th&irst operator does for arrows. Our main
result (Theorem 14) makes this intuitive analogy a mathematically
rigorous one.

Use of profunctors in theoretical computer science is not new:

In categorical semantics of programming languages, profunctors—

Categories and Subject DescriptorsF.3.2 [Logics and Meanings often called modules (or discrete indexed categories)—are some-

of Program§ Semantics of Programming Languages—Denotationaltimes used instead of usual categories [21, 23]. In [7, 16, 25],

Hughes’arrowswere shown, by Jacobs et al., to be roughly mon-
ads in the bicategorProf of profunctors (distributors, modules).
However in their work as well as others’, the categorical nature o
the first operator was not pursued and its formulation remained
rather ad hoc. In this paper, we identifjirst with strengthfor

a monad, thereforearrows are strong monads iProf. Strong
monads have been widely used in the semantics of functional pro-
gramming after Moggi's seminal work, therefore our observation
establishes categorical canonicity of the notion of arrow.

semantics profunctors are used as models in a domain theory for concur-
rency. Also potential use of profunctors can be seen in recent work:
General Terms Languages, Theory e.g. [8, 12].

. Profunctor can be viewed also as “generalized relation”: a pro-
Keywords arrow, strong monad, Freyd category, computational fynctor is to a functor what a relation is to a function. Therefore our
effect, profunctor result is illustrated as:

strong monad  functor function

1. Introduction = = .
arrow profunctor  relation

The notion ofarrow was introduced by Hughes [17, 18] for func-

tional programming languages such as Haskell. Its benefits are  We define the notions of arrow and of strong mona®irof

claimed to be as follows. First, it provides more natural syntax for not only over cartesian categories but over any monoidal categories.

Point-free programming; second, it allows programmers to orga- After identifying arrows as strong monadsHrof, we define the

nize a bigger variety of computational effects than the notion of notion of internal strong monad in a general setting, i.e., not only in

monaddoes. Prof. From this, we obtain some variants of the notion of arrow.
This paper is about categorical semantics of arrows. There

have been roughly two approaches towards that goal. The first

one employgpremonoidal categoriewith certain additional struc- 1.1 Relation to Other Work

ture (calledFreyd categoriel[3, 22, 26]. The other is the approach ¢ Operator

based orprofunctors(also calleddistributors or module$ [4, 6], . .
which we follow. As we already mentioned, this work follows the profunctor ap-

In the papers [15, 19], Jacobs et al. characterized an arrow as sproach that originf}ted in [15, 19]. Ip these works, they introduced
monoid in a monoidal categofif© °° xC, Set] that is additionally ~ What they called “internal strength”, i.eist operator; then they
equipped with the so-calleftirst operator. The monoidal prod- ~ Showed the equivalence betwesst andfirst. The formulation
ucts in the monoidal categofif:°® xC, Set] are given by certain ~ Of ist is pretty similar to that ofirst, but has certain technical
coends; they are in fact the same as composition of profunctors. @dvantage, which they exploited.

Then one readily sees thah arrow is a monae-in an internal It should be noted that theirst operator’s definition is quite

sense—in the bicategoProf of profunctors, equipped with a different from the genuinenternal strength i.e., the notion of

first operator. strength defined for a monad in an internal way in a bicategory.
The latter is what we call (internadfrengththroughout the present
paper.

The notion of strength is a monoidal notion: it is defined for any

monoidal object as in Section 6, and not only for a cartesian object.
Permission to make digital or hard copies of all or part of this work for personal or  On the other hand, the definition ot operator and the proof of
classroom use is granted without fee provided that copies are not made or distributedthe equivalence betwedrnst operator and strength (Theorem 16)
for profit or commercial advantage and that copies bear this notice and the full citation d th f i d Th £
on the first page. To copy otherwise, to republish, to post on servers or to redistribute _nee the structure of cartesian products. eretse, operator
to lists, requires prior specific permission and/or a fee. is not what should be called strength. However we can pigte
MSFP 2010 September 25, 2010, Baltimore, Maryland, USA. operator to be equivalent to strength; the nameifoy was with
Copyright© 2005 ACM [to be supplied]...$10.00 fortunate wisdom.



Enriched Freyd Category and Self-enrichment In Section 5, we go straight to the main result that arrows
are strong monads iProf. Also we give a direct proof of the
equivalence betweetst operator and strength for a monad in
Prof. In Section 6, we commence a more general development
in which strong monads in &ray-monoid are considered. As a
benefit of this generalization, we give some variants of the notion of
arrow: especially in Section 6.3, we give a “self-enriched” version
of strong monad iProf, which corresponds to Atkey’s definition

of arrow.

In [3], Atkey investigated many variants of the notion of arrow.
Among them, he gave a categorical definition of arrow and also
defined the notion oénriched Freyd categonand he showed that
they are equivalent.

Atkey’s definition of arrow and that given in [15, 19] are differ-
ent: the former igself-)enrichedthe latter is not. This gap between
enriched and non-enriched notions was not present for monads (in
Cat). This is because in a cartesian closed category—a common
setting for functional programming—strong monads are the same )
thing as enriched monads. 2. Background: the Notion of Arrow

In the present paper, we first give the theorem that arrows The following review to the notion of arrow is brief. See e.g. [19]
are strong monads iProf in the non-enriched setting (in The-  for more illustration and examples.
orem 14), in order to concentrate on other aspects than such  The notion of arrow [17, 18] was introduced as an extension

self-enrichment problem. Then, in Section 6, we define a “self- of that of monad [5, 24, 29], and is defined in Haskell as a type
enriched” version of strong monad Prof in Definition 21, and constructor class:

show that it is equivalent to Atkey’s definition of arrow in Theo-
rem 23. One technical advantage of our characterization for arrow
is that we can define it over any symmetric monoidal category; arr : (s —t) > Ast
while for Atkey’s definition, we use structures of cartesian cate-
gories (see Definition 22).

class Arrow A where

(>>>) 2 Ast— Atu— Asu
first = Ast — A(s,u) (t,u)

Arrows as Relative Monads where(s, t) is the product type of typesandt.
In [1], Altenkirch et al. gave a generalized notion of monad, i.e., the An instance ofirrow must satisfy the followingrrow laws

notion ofrelative monadA relative monad is defined over a (base) b _ b

functor, while a monad is defined over a (base) category. They (a>>b)>>c=a>> (b>>c) (assoc)
showed that for a categor, relative monads over the Yoneda arr (go f) = arr f >>arrg (comp)
embeddingy : C — C bijectively correspond toafrr,>s)- arrid S>> a = a = a >> arrid (id)

fragments of arrows ove (in Definition 9), and hence to monads

overC in Prof (by Theorem 10). firsta >> arr (id X f) = arr (id x f) >> firsta

They gave also &leisli constructionand anEilenberg-Moore (f-din)
constructionfor a relative monad, and showed that the Kleisli con- firsta >> arrm = arrm 3> a (f-m)
structi_on gives the ir_litial object _and the EiIe_nberg-Moore construc- firsta 3> arr @ — arr a 3 first (first a)
tion gives the terminal object in some suitable category. On the (f-a)
other hand, also for a monad Rrof, we have the notions of
Kleisli object and Eilenberg-Moore object Rrof, as in the pa- first (arr f) = arr (f xid) (f-n)
per [27] by Street. first (a >>b) = firsta>>> firstb (f-r0)

For a relative monad? over the Yoneda embedding of a
categoryC and the corresponding monatlin Prof, the Kleisli wherer :: (s,t) — s, o (s, (¢, u) — ((s,1) ).
category forR is isomorphic to the Kleisli object ford. They Fromfirst, we can define its dual:
are isomorphic to the Kleisli category of the corresponding Freyd second :: Ast — A(u,s) (u,t)

category (without premonoidal structures).

One different point between the relative monad approach and
our approach iProf is that the Eilenberg-Moore category f&r wherexy :: (s,t) — (t,s).
is not necessarily equivalent to the Eilenberg-Moore object4pr Arrows subsume monads: given a mofigdve obtain itKleisli
which is the same as the Kleisli object tdr(because of the duality  arrow s — T't. Similarly, a comonad induces itsoKleisli arrow
IZrof = Prof°P). (However the “right adjoint” pseudo functor ~ Ss — t. And we can further fit these together: with a distributive
(-) : Prof — CAT maps the Eilenberg-Moore object fgr to law between a monad and a comonad, we can construlilessli
the Eilenberg-Moore category fét.) arrow Ss — T't.

Uustalu, the third author of [1], extended the correspondence
between 4rr,>ss>)-fragments of arrows and relative monads to 3. Preliminaries
that between arrows (with first operators) astebng relative mon-

second a = arr 7 3> first a >> arr vy

In this section we introduce the notion of profunctor. Before that,

ads[28]. yet, we first recall some necessary notions related to profunctors.

Terminology 3.1 End, Coend and Yoneda Lemmas

In the paper we use the termrow exclusively for Hughes' notion,  Here we recall the notions of dinatural transformation, end and co-

and not for arrows between objects in categories. For the latter, We gng- the two forms of Yoneda lemma. i.e.. end form and coend

reserve the terrmorphism form; and Reversing Lemma. For further details, see [20] (espe-
. cially, Sec. 3.10).

Outline

Like homset functor€ (—, —) : C°? xC — Set or exponenti-

In Section 2, we briefly recall the notion of arrow. In Section 3, ation bifunctors on SMCCs, we sometimes come across bifunctors
we review the notions of dinatural transformation, end, coend, and with mixed variance. Dinatural transformations are between such
profunctor. In Section 4, we recall the results in [19] that a fragment contra-co-variant bifunctorg’, G : C°®? x C — D, while natural

of arrow is a monad ilProf. transformations are between functéfss : C — D.



Definition 1 (Dinatural transformation) For categori€s D, and Lemma 3 For a small categoryC and functorsF, G : C°? x C —
functorsF, G : C°P? x C — D, adinatural transformationx from Set, we have the bifunctof (+,-),G(—,+)] : CP? xC —
F'to G is an indexed family of morphisms Set, where+ and — indicate respectively variant and covariant
arguments, ang—, +] is the exponentiation Bet.
ac: F(C,0) = G(C,0) (©elC) Then, denoﬁg tr]le set of all dinatural transformations frém

which isdinatural in C, i.e., for any morphisny : C — C’ the to G by Dinat (F, ), we have a canonical isomorphism
following diagrams commutes:
Dinat (F, G) = / [F(C,0),G(C,0)] .

rc) F(C,0) =% G(C,0) gop cee
— T~

F(C',C) G(c,C) Proof. Because of the following bijective correspondences:
~ 7
F(EF (C,C") 72 G (C7,C)e(re) 1= [oee [F(C,0),G(C,C)]
(by (1))
Two successive dinatural transformations do not necessarily (1—[F(C,0),G(C,C)]), dinaturalinC
compose, in which sense this notion is not that of “morphism”
between such bifunctors. Nevertheless dinatural transformations (F(C,C)— G(C,QC)), dinatural inC

are useful, as we will see many times in the paper.

Note that the notion of dinatural transformation subsume that of ~ As noted above, natural transformations are subsumed by dinat-
natural transformation: for given functofs G : C — D, natural ural transformations. Hence, for functof’5G : C — Set, we
transformations betweeR, G bijectively correspond to dinatural  have also a canonical isomorphism
transformations betweehR o ©/,G o ©’ : C°? x C — D. Also

we will see many examples of dinatural transformations where the Nat (F,G) = / [FC, GC)|
domain functors ¥ above) or the codomain functors @bove) are CecC
constant functors, as in the next definitions of end and coend. where the left hand side is the set of natural transformations from

End (resp. coend) is a kind of limit (resp. colimit) where di- [ to G. These isomorphisms are useful throughout the paper for
natural transformations are used instead of natural transformations.calculating (di)natural transformations, especially in the proof of
These notions play a very important role for profunctor theory. Theorem 14.

Definition 2 (End and Coend) For categori€sD, and a functor . By thg usual Yoneda Iemma, for gfunctﬁr: C — Set, there
F:CPxC—D ' is canonically the natural isomorphisfiC' = Nat (y (C), F').
' Replacing the right hand side with the end isomorphic to it, we
e anend of F' is an objectfceC F (C,C) in D with projection have the Yoneda lemma, end-form:

morphisms Lemma 4 (The Yoneda lemma, end-form) For a small category

C and a functorF : C — Set, we have a canonical natural
Tor ( o CF(C, C)) — F(C,C) (C"elc)) isomorphism
€
which form a dinatural transformation from tife _. F* (C, C)- FC = [C(c,C),FC'].
constant functor to the functdr. Then these are required to be c’ec

universal among such data: i.e., for any objéttin D and Above, we use the exponentiatipn, —] in Set. This is called

. ; oler
any d'”.a‘“ra' transf_ormatlo(nc/ D — F(C", ")) there alsocotensoriin enriched category theory [20], and there is its dual
is a unique morphisny : D — [ F(C,C) such that o calledtensor which is just cartesian product in the case of
mer o f = ae forall C. Set. With this we can obtain the dual version of the above Yoneda

e Dually, acoend ofF is an objectfce(C F(C,C) in D with Lemma:

injectionmorphisms Lemma 5 (The Yoneda lemma, coend-form) For a small category

L cec , C and a functorF : C — Set, we have a canonical natural
Lo F(C,C) _’/ F(C,0) (¢ elcy) isomorphism
which forms an end of"°? : (C°?)°? x C°? — D°P. O /c/e(C F(C') xC(C',C) = FC
The universality of an end and a coend can be written respec-

tively as the following bijective correspondences: Note that we can of course apply the above two lemmas also to
a contravariant functoF : C°? — Set.
f:D— [oec F(C,0) We need also the next lemma in the proof of the main theorem.
(1) As homset functors reverse colimits into limits in the negative
(D s p (c, c))c dinatural inC position, they reverse also coends into ends.
cec Lemma 6 (Reversing Lemma) For a categofy and a functor
[ f F(C,C)— D F: C°? x C — Set, we have a canonical natural isomorphism
fo . ) (2) CceC
(F(C,C) = D), dinatural inC [/ F(C, 0)7_] g/ [F(c,c),-].
ceC
The complete and cocomplete categ&wt has all ends and
coends.. . ) . 3.2 Profunctor
A typical and important example of an end is a set of dinatural

The notion ofprofunctor(also calleddistributor or modulg forms

transformations: : . .
the very basis of our analysis of arrows. The notion dates back for



quite a while, and its relevance to theoretical computer science has

been recently recognized [8, 12].

Here we recall the notion of profunctor, the bicategByof,
the embedding o€at into Prof, and tensor product iRrof.

As mentioned in the Introduction, a profunctor is to a functor
what a relation is to a function. This analogy is used repeatedly
for illustration. For further details and illustrations for profunctors,
see [4, 6].

Definition 7 (Profunctor) Let C and D be small categories. A
profunctorfrom C to D is a functorD°? x C — Set. We denote
such a profunctor by¥ : C —+ D, i.e.,

F:C — D, aprofunctor

®)

F :D°? x C — Set, afunctor

For successive profunctors : C + D andG : D —+ E,
their compositiong o F : C —+ E is defined—under the corre-
spondence (3)—as the following functor:

GoF
E°® x C ——— > Set

4
(E,.C)——> [P G (E, D) x F (D, C)
Its action on morphisms is the obvious one.
For a category{C, we define thedentity profunctor
Idf:C 4= C by C(—,—):C®xC — Set. (5)

Given two parallel profunctorst, ' : C -+ D, a 2-cell
between profunctors : F — F' is just a natural transformation
o : F = F' whereF andF’ are regarded as the functors from
D°P x Cto Set. O

Now, let us illustrate the definition above using the analogy with
relations. A relationR between set$ andT is a subset of the
product sefS x T', in other words, a function frorf x T to the two
points se{0, 1}. Thus, a profunctor=F : D°® x C — Set—is a
Set-many valued relation, while a relation is two valued. Next let
us recall how the relational compositicho R is defined:
(SoR)(cie) €&  3d. R(c,d)AS(d,e)

Then there are obvious similarity between composition for pro-
functors (4) and that for relations: coe[fd) corresponds t@d.,
andx to A. Also, 2-cellso between profunctorg and.F, i.e., nat-
ural transformation§op,c : 7 (D,C) — F'(D,C))p o cOI-
respond to the inclusion order between relations: ’

R <R &% ved. (R(c,d) = R (c,d))
This analogy between profunctor and relation will be helpful to
understand many notions for profunctor.

The notion of 2-category is now used in many different contexts;
in a 2-category, there is a notion of 2-cell, which is “morphism
between morphisms.” A typical example is the 2-categOet of
categories, functors, and natural transformations.

One might imagine that the notions of category, profunctor
between categories, and 2-cell between profunctors form a 2-
category. However, the composition for profunctors is not strictly

We denote byProf the bicategory consisting of small cat-
egories as its 0O-cells (objects), profunctors as its 1-cells (mor-
phisms), and 2-cells between profunctor as its 2-cells.

Next we introduce an embedding @fat into Prof. This is
identity on 0-cells (small categories), maps a fundorC — D
to the following profunctorF, : C — D calleddirect image of
F,

F.(—+) ¥ D(-,F4) : D®xC— Set (6)
and maps a natural transformatien ' =—> F’ : C — D to the
natural transformatio® (id, o) : F» = F’, : C —+ D.

This embedding forms pseudofunctof6] from the 2-category
Cat to the bicategoryProf, i.e. preserve composition and identi-
ties for 1-cells up to iso-2-cells. This embedding corresponds—via
the foregoing analogy—to the embedding of the cate@eryinto
the categonRel of sets and relations, which maps a function to its
graph relation.

As cartesian products iSet lift to tensor products inRel,
cartesian products ilCat lift to tensor productsn Prof. For
profunctors¥ : C —+ C’andG : D —+ D', we defineF x G :

C xD — C' x D' by the following:
def

(Fxg)(¢',D',C,D) = F(C',C)xG(D',D) (7)

Itis obvious that the operator acts also on natural transformations
between profunctors.

4. Monad in Prof

In this short section, we review the result by Jacobs et al. [15, 19]
that monads iProf are equivalent to theagr,ss>)-fragment of
arrows. This forms also a preliminary step toward our main result,
Theorem 14.

4.1 Monads inProf as Bases of Arrows

Many notions in category theory consist of functors and natural
transformations, subject to some commutative diagrams. For ex-
ample, aradjunctionis a tuple(F, G, n, €) of two functors and two
natural transformations, subject to the two triangular laws [6, The-
orem 3.1.5]. Once one takes a 2-categorical view on this—functors
and natural transformations are 1-cells and 2-cell€ut—it is
straightforward to define aadjunctionin an arbitrary 2-category,

or in a bicategory, in an “internal” way [27]. The notion of (inter-
nal) monad is also one of such.

Definition 8 (Monad) Let &7 be a bicategory, an@ be a 0-cell in

Z. A monad overC in & is a triple (A, n, 1) of an endo-1-cell
A:C— Cin 2 and 2-cellg) : Idc = Aandy: A2 = A

in & satisfying the usual commutative diagrams of associativity
and unitality. O

It should be noted that this internal definition coincides with the
usual one if#? = Cat.

Definition 9 ((arr,>>>)-Fragment of Arrow) For a categoryC,
an (arr,>s>)-fragment of arrowover C consists of a mapping
Ar : |C| x |C| — |Set| and two families of mappings:

arrap : C(A,B) — Ar (A, B)

3> apc: Ar(A,B) x Ar (B, C) — Ar (A,C)

associative, because of the coends and products in the definition.These must satisfy Axioms (assoc), (comp), and (id) in Section 2,

Likewise, identity profunctors are not strictly unital. Nevertheless,

they hold up to canonical iso-2-cells; e.g., the iso-2-cells for the
unitality can be gotten by the Yoneda lemma, coend-form. Such
notion which is similar to that of 2-category, but whose associativ-
ity and unitality of the composition of 1-cells are required just up

to iso-2-cells, is callethicategory{6].

where we use variable g for morphisms inC, and usex, b, ¢ for
elements iAr (A, B)) 4 5- d

The mapAr above is a mapping t®et| rather tharjC|. This is
unnatural if we use the above definition of arrows to model arrows
as type constructors in Section 2. This involves a subtle size issue,



and we solve it in Section 6.3, till then we shall separate such a size5.2 first Operator for Monoidal Categories

issue. Here and in the next section, we focus on the correspondenc

between arrows and strong monad®irof.

Theorem 10[15, 19] For a small categoryC, the notion of monad
over C in Prof is equivalent to that of&rr,>s>)-fragment of
arrow overC.

Proof. (Sketch) Given a monagl4,n, 1) in Prof over a small
categoryC, A is a functor fromC°? x C to Set; this corresponds
to the mappingAr of a fragment of arrow, where the functoriality
of A is recovered witharr and>s>. The natural transformations
has componentg, s : C (A, B) — A (A, B) sinceC(—, —) is
an identity 1-cell inProf. This corresponds tarr. Finally, p is,
by (4), a natural transformation with components

fac: (/BA(A,B) X A(B,C)) — A(A,0) ,

which corresponds ts> by the universality (2) of the coend.[]

In the remaining sections, we user, >> andn, u interchange-
ably, especially in Definition 12.

5. Arrows as Strong Monads in Prof

In this section, we present our main result (Theorem 14) that arrows

are strong monads iProf. We give this theorem not only for
cartesian categories, but for any monoidal categories.

In order to show the main result, we first need to define the
notion of strength inProf. Then we generalize the definition
of first operator, from that for cartesian categories to that for

%o give the main theorem for any monoidal categories, here we
generalize the definition dfirst operators from that for cartesian
categories to that for monoidal categories. (This modification is
used in the proof of the main result. It is not an indirect way but
a natural way even for cartesian categories; a cartesian category
seen inProf is not a “cartesian object” but a monoidal object (see
Section 6) inProf'.)

In order to give a categorical definition eirst operators for
monads inProf over monoidal categories, we need to modify
Axiom (f-7r) (described in Section 2), since a monoidal category
does not necessarily have projections For this, we usep :
A®RI — A instead ofr:

Definition 12 [first Operators for Monoidal Categories] For a
monoidal categoryC, ®,1, a, A, p) and a monad.A, n, u) overC

in Prof, afirst operatoris a family of morphism€irsta s,c :
A(A,B) — A(A®C, B®C) natural inA, B € C, dinatural in
C € C, and satisfying Axioms (f¥), (f-n), and (fu) in Section 2
and (f-p):

firsta >> arrp = arrp >>a (f-p)

Note that the naturality inA and B above are redundant:
they are derived from Axioms () and (f1). Also note that Ax-
iom (f-din) in Section 2 is equivalent to the dinaturality above.

The propriety of the above definition is justified by the next
proposition:

monoidal categories. Finally we show that these notions of strength Proposition 13 In the situation of Definition 12, if the monoidal

andfirst are equivalent.

5.1 Strength inProf

First let us review strength i€at. A strength for a monad over a
monoidal categoryC, ®,1) is a natural transformatiostr 4 s :
TA®B — T (A®B) satisfying certain axioms. This 2-cell in
Cat can be also described as the following:

TxIdc

CxC——CxC

®l |str l@
C——C

In a similar way, we define the notion of strengthhof.

Definition 11 (Strength) Let (C, ®, 1, o, A, p) be a monoidal cat-
egory, and A, n, 1) be a monad ove€ in Prof.

A strengthfor the monadA in Prof is a 2-cellstr in Prof
in the following diagram such that it satisfies the usual four axioms
with «, p, n, 1 (for these axioms, see Definition 20).

Ax1dF
CxC—+—CxC

C————C

We call a monad irProf equipped with a strength iProf a
strong monad ifProf. O

This is a key notion in the paper. It should be noted that since
the two vertical 1-cells in the above diagram areBwof, we
use the embedding (6) dfat into Prof, so that the functor
® : C x C — Cisreplaced with its direct image...

categoryC is a cartesian category, then Axioffap) is equivalent
to Axiom(f-). (]

Proof. The direction from (fr) to (f-p) is trivial. For the converse,
Axiom (f-7) is gotten from (fp) as the following:

A(AXC,Bx!¢c)
B —

A(AxC,BxC(C) AAXC,Bx1)

(dinaturality)

first A(AX!c,Bx1)

first

A (A, B) A(Ax1,Bx1) A(AXC,p)
A<pN (f-p) %1,,7) (functoriality)
A(Ax1,B) A(Ax C,B)

A(AX!c,B)

In the above!c : C — 1 is the unique map front' to the
terminal, hencg o Axlc : AxC — Ax1— Aisequal
to the projectiont; : A x C — A. The upper path of the above
diagram is the left hand side of {f}, and the lower path is the right
hand side. ]

5.3 Arrows as Strong Monads inProf
Now we show the main result.

Theorem 14 For a monoidal small categoryC, ®, I, «, A, p) and
a monad(A,n, u) on C in Prof, there is a bijective correspon-
dence betweeriirst operators and strengths fof.A,n, ) in
Prof.



Proof. The following calculation of ends and coends shows the B € C, dinatural inA € C, and satisfying the following axioms:
correspondence between strength (in LHS) &kt (in RHS): ) .
ist (arr f) = arr (f,id)

Nat((®*) o (AxIdf), Ao (®*))

ista > arrm = a
i~ (by Lemma 3) ist (a>>b) =
[(®* ° (Axldé)) (07 (1473))7 (.A ° ®*) (07 (1473))] ista >> ist (arr T S>> b) >> arr (idxmg)
A4.B,C ist (ist a) = ista >> arr (id, m2)
= ( by Definition 7-(4) )
A’ B’
Theorem 16 For a cartesian small categoryC, and a monad
/ (®*(C» (A/’B/))) X ((Axldg)((A/,B’), (A,B))> ’ (A,n, 1) on C in Prof, there is a bijective correspondence be-
A,B,C tweenist operators and strengths fdr4, n, 1) in Prof. O
C/
/A(C, C’) X (®* (C’, (A, B))) Proof. Here we concentrate only on the correspondence between
(Qi)natural transformations akt operators (in RHS) and strengths
= (by the definitions of—), (6), tensorx (7), andld} (5)) (in LHS):

Nat( o (AxT1d}), Ao(x*))

2 ( by Lemma 3 and definitions, as in the proof of Theorem 14)

A’ B’
/ [/ C(C,A'xB') x A(A', A) xC (B', B),
A,B,C

A’ B’
/ [/ C(C, AB') x A (A, A) xC (B', B).
A,B,C

C/
/ A(C,C") xC (C', A®B)

o (by Lemma 5 onB’,C")
) xC (C', AxB)

A/
[/ C(C,A®B) xA(A',A), A(C,A®B)
,B,C

1%

y the adjointness of the cartesian proddtk B’ )
(' by Lemma 6, then Currying )

/.

/ [c(c.aeB), [A(4',4), A(C,AeB)]]
A,B,C,A’

/,

\..

/
[/ A)xC(C, B)x A (A, A)xC (B', B)
[ 4

(by Lemma 4 orC') C') xC (C', AxB)

(by Lemma5o0md’, B, C")

(by Lemma 3) [A(C, A) xC (C, B),A(C, AxB)]

R S~ IR

. 12 ’ ,B,C
Nat s/, 4 Dinatp (A (4, 4), A(A'@B, A2B) ) (by Currying)
The remaining is to prove the equivalences between the ax- / [(C (C,B),[A(C, A) ,A(C,AXB)]]
ioms for strength and those fetrst: the four axioms for strength A,B,C
with «, p, n, and . correspond respectively to (), (f-p), (f-n), = (by Lemma 4 onB)
and (f1:). The proofs of these equivalences are tedious but straight-
forward. 0 /A . [A(C,A), A(C, AXC)]
In this way we can characterize simply the notion of arrow =2 (by Lemma 3)

only with basic structures of the bicategdPyrof. This simplicity .
and rich structures oProf make it easy to calculate, iRrof, Dinata,c (A (C,4), A(C’AXC))
properties and structures on arrows, as in the paper [2]. Besides,
this characterization provides a better justification of the axioms of

. . . The steps are almost the same as in the proof of Theorem 14,
arrows, and provides us clean understanding of the notion of arrow.

except that we used adjointness of cartesian products for the second

5.4 Onist Operators isomorphism. O

On a cartesian category as a base of an arrow, there is an alternative
to afirst operator, i.e., aast operator [15, 19]. 6. Generalizing Arrow
Applying the theorem in the previous subsection to cartesian
small categories, we see that strengths are equivaleftiiet
operators, hence also i&t operators. However, we give a direct
proof of correspondences between strength®irof and ist
operators. The proof shows how the notioriet operator depends
on cartesian products.

In this section, we generalize the definition of strong monad by
enlarging a class of ambient bicategories in which internal strong
monad is defined. So far in the paper, such an ambient bicategory is
Cat or Prof. We see first which kind of bicategories can be used
for such purpose; then we define the notion of strength in there.

By this generalization we obtain some variants of the notion
Definition 15 (ist Operator) For a cartesian categor and a of arrow. Especially in the last, we give a definition of “self-
monad (A, n, u) over C in Prof, an ist operatoris a family enriched” version of arrow, which is shown to be equivalent to
of morphismsista s : A(A,B) — A(A, BxA) natural in Atkey’s definition of arrow.



6.1 Gray Monoid

Monads inCat are defined over any category, while strong monads
in Cat are defined only over monoidal categories. Hence when
we define strong monads in bicategories, we first have to define
monoidal objectén bicategories.

Much like we need monoidal categories as ambient categories
in which we define monoid objects, we neatbnoidal bicate-
gories[13] as ambient bicategories in which we define monoida
objects. (These phenomena of occurrences of similar kinds of in-
ner and outer structures are called “the microcosm principles”, ad-
vocated by Baez and Dolan [14].)

We can in fact use monoidal bicategories to define monoidal
objects. However, the structural isomorphisms of a monoidal
bicategory—up to which the composition of 1-cells and also the
monoidal product are associative and unital—are cumbersome and _ .
make the essence blurred. Therefore we here use the notion of6-2 Monoidal Object and Strong Monad

Example 18 LetV be a cocomplete SMCC. Then, there is a notion
of V-profunctor, also calle¥-module [20].

For V-categoriesC andD, aV-profunctor F from C to D is a
V-functorF : D°? X C — V, and for paralleV-profunctors#
and 7', a 2-cell betweerV-profunctorsF and F’ is a V-natural
transformation frony- to 7.

Then, as the monoidal bicatego®rof, we can define a
| Mmonoidal bicategory/-Prof of smallV-categoriesy-profunctors,
and 2-cells betweerV-profunctors. The monoidal product in
V-Prof is the same as the tensor productWrCat, which we
denote byX. In the case that = Set, Set-Prof is Prof. [

This V-Prof plays an important role in Section 6.3.

Gray monoid, which is, roughly, “strictified monoidal bicate-
gory”.

Definition 17 (Gray monoid) A Gray monoidZ? is a 2-category
with the following structures:

e a 0-celll,

e for each 0-cellC in 22, two 2-functors%c, %c : ¥ — P
satisfying the following conditions
Ze (D) = % (C)
L =% = ldo,
ZLerp = L b, Horp = Fvc,
for all O-cellsC, D, and

e for each 1-cellsF : C — C',G : D — DI, an invertible
2-cell

def

(and defineC KD = % (D)),

FpLe = LeHp,

“c(9)
CYXD——CXD

Py (F) 79 Ry (F)
! I /
C' XD 229 C' XD

satisfying certain coherence axioms suchcag 1a, = idcwp,
see [11] for details. O

In what follows, we denoter by CX (—) andZc by (—)XC.
Note that for 1-cellsF : C — C' andG : D — D/,
CXG; FXD' andFXD; C'XG are not necessarily the same, so we
cannot denote them simply X G. However they are isomorphic

with the iso-2-celkr,g, and we can always interchange them.

In the definition ofGray-monoid, all structural isomorphisms
of monoidal bicategory are replaced with identities, excepicfor
Even associativity and unitality—both of the composition of 1-
cells and of monoidal product—are strict. By this simplicity, we
can keep definitions of monoidal object and strength accessible.

First we recall the notion of monoidal object itGaray monoid [11].

Definition 19 (Monoidal Object) Let (<2, K, I) be aGray monoid.

A monoidal objector pseudomonoidin (£7,X,1) is a 0-cell
Cin & together with 1-cellx : CKC — Candl: I — C
in & and invertible 2-cells, A\, andp below such that they satisfy
coherence axioms quite similar to those for monoidal categories.
(See [11], for further detail.)

®KNC
(CS - s (C2

tCIZl@l Ja L@

2 S
C P C

Monoidal objects ilCat are monoidal categories.

Monoidal objects iProf are callecdoromonoidal categorief®,
10]. In Section 5.1, we considered only the promonoidal categories
induced from monoidal categories via the direct image embedding.
(The direct image embedding is monoidal pseudofunctor, hence
maps monoidal objects €at to those inProf.)

Now we define strong monads (Bray-monoids:

Definition 20 (Strong Monad in Gray-Monoid) Let (27,X,T)
be a Gray-monoid, (C,®,1,a, A, p) be a monoidal object in
(2,K,I), and(A,n, 1) be a monad ovet in Z.

A strengthfor the monadA in (£2,K,1) is a 2-cell str
in 2 in the following diagram such that it satisfies the ax-
ioms (s«), (s-p), (s9), and (sy) below.

AKC
CZ—— 2

All Gray monoids form monoidal bicategories, and conversely

C———C

by the strictification theorem [13], all monoidal bicategories are A
monoidally equivalent to soméray monoids. (It is not true
that all monoidal bicategories are monoidally equivalent to some
monoiqlal 2-categorie{_;13].) Hence we identify monoidal bicate- c? ARC? c? CH® c? c? ARC? c? CH® c?
gory with Gray monoid. -
The 2-categoryCat forms a monoidal 2-category with carte- \ de ®C i® ~

. - - . CR® ARC strl Jat
sian products. The bicategoBrof forms a monoidal bicategory QRC 2 ® = @RC 2 ® (s)
with the tensor produck, as the categorRel forms a monoidal o e AKRC ®
category with the tensor produgt Yo ®l v / US“\

We can generalizProf with enriched category theory: C? = C = C Cc?——C — C

®



CHC&I C? LS C? (CLEI)C2LEC> 2
N)\L(@ Ustr \L@ = Nc_l CK i/@ (S'P)
A Up
t—~¢ —
/-—\CQ N\
./“W Ust&{ _ L e 7w\ (1)
”2 AXC - C C A C 7
C ?(C?(C
(CQ AXC (j/Q AKC (C2 (CQ AXC (C2 AKXC (CQ
® W
® Ustr ¢ Jstr o = o o o (572
A x Jot
u‘u( str
- >
— C ) C

We call a monad inZ? equipped with a strength 167, X, ) a
strong monadn (£, X, ).

By this definition with? = Prof, we can in fact define arrows

not only over monoidal categories as in Section 5 but also over
any promonoidal categories; on the other hand, we have no similar

theorem to Theorem 14, becauSerst-operators are defined only
for monoidal categories.

6.3 Self-enrichment of Arrow

In the last place, we consider a solution for the following problem
pointed out in the paper [3]: For a CCQC let us identify types and
terms in Haskell with objects and morphismglnrespectively. An
arrow A in Haskell is a type constructor, hence maps two types to
a type; i.e., A is not a functorC°®» x C — Set but a functor
CP?PxC—C.

In order to replac&et with C, a naive way is to consider strong
monads inC-Prof in Example 18. However the@ is required to

be small cocomplete and small at the same time, which implies that
C must be a preorder. The use of the synthetic domain theory, which

admits non-trivial internal small cocomplete categories, is not nat-
ural just for this purpose; for it unnecessarily restricts models.

The solution that we give for this is use of cocompletion and to
distinguish “small” ones from “large” ones.

Now letV be an SMCYV’ be a sufficiently cocomplete SMCC,
andJ : V — V’ be a symmetric strong monoidal fully faith-
ful functor, whose leading example is the Yoneda embedding

y : V — V. ThenV can be aV’-category with hom-objects

homy (A, B) def JA—oy, JB. The underlying category of this

V’-categoryV is isomorphic to the category itself; also.J can
be V’-functor whose underlying functor is again

For aV’-profunctor : C - D, we call ¥ V-smallif the
V’-functor F : D°? X C — V' is factorized along th&’-functor
J:V—V:

DPRC—2 >V

|

A\

Such factors ofF are unique up to naturdl’-isomorphism, and we
denote théV’-functor fromD°P X C to V by F°. (Note that when
J is the Yoneda embedding, which is injectiv€; is uniquely
determined.)

Definition 21 For an SMCV and an embedding : V — V'
as above, amall strong monad oveY in V'-Prof (with respect

to J)is a strong monad ové¥ in V’'-Prof whose underlyingy’-
endoprofunctor i&/-small. ]

We show that the above definition gives a generalization of
Atkey’s definition of arrow, from that over a cartesian category to
that over a monoidal category.

In the definition below, we use the coKleisli category of the
comonadD x (—) for each objectD in a cartesian categor.
Note that if a base category is cartesian, so is its coKleisli category.

Definition 22 [3] An arrow on a cartesian categor§ consists
of a mapping of objectsAr : |C| x |C|] — |C| and three
transformations all natural ifv,

arrpap : C(D x A,B) — C (D, Ar (A, B))
>»papc : C(D,Ar (A, B)) x C(D,Ar (B,())
— C(D,Ar (A,0))
firstpapc : C(D,Ar(A,B)) — C(D,Ar (Ax C,B x (C))

These transformations must satisfy the eight laws (assocy}H(f-
Section 2 where the equations are interpreted as equations between
C morphisms generated by the above transformations. In those
equations, we use variablgsg for morphisms inC (D x A, B)

anda, b, ¢ for morphisms inC (D, Ar (A, B)); and the composi-

tion o, identity id, productx and projectionr; are all those in the
coKleisli category noted above. O

Theorem 23 For a cartesian categor{, the notion of arrow over

C defined in Definition 22 is equivalent to that of small strong
monad overC in C-Prof with respect to the Yoneda embedding
y:C— C. ]

Proof. Basically, this proof is almost the same as Proof 10 and 14.

Since a small strong monad is decomposed ag o A° by
definition, it is obvious that this correspondsAe of an arrow of
Definition 22:

def

A°(A, B) ¥ Ar (4, B) )

The unity of a small strong monad! over C is a naturaiC-
transformation from the identit{-profunctorId{ to A4, i.e., a
family of morphisms

na.s : (YA—gyB) — y (A°(A, B))

in C natural inA, B € C. Here the presheafA—zyB is iso-
morphic to the presheaf (— x A, B), by Yoneda lemma. On
the other hand, by the correspondence (@}],A°(A, B))
C(—,Ar (A, B)). As this,n corresponds tarr.

A correspondence betwegnand s> is readily obtained as in
Proof 10.

Finally, we can easily prove thaitr corresponds tfirst,
with the full-faithfulness ofy, and as in Proof 14, where we use
C-enriched version of Lemma 3, 4, 5, and 6 (see [20, Sec. 310]).

Example 24 Besides Yoneda embeddinfs — C, we can also
use the inclusiorSet — Ens, the codomain of which is the
category of classes. Then we have the notion of small strong monad
overSet in Ens-Prof: A : Set°® x Set — Set.

In the paper [2], such notion is used, to obtain semeédunctors
over Set—rather than functors frorSet to Ens—for which we
can consider coalgebras. |
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