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1 Introduction

In [1], it is shown that all the polynomial functors—including (linearly-)initial
algebra and final coalgebra construction—in a suitable model of parametric poly-
morphic lambda calculus preserve simple Ω-products. (Simple Ω-products are
semantical counterparts of universal types ∀α.σ.) In this manuscript, we give
examples of functors that do not preserve simple Ω-products even in paramet-
ric setting. Especially, the continuation monad in Section 2 forms an example
of models that are not models of λc2η-calculus [1]. Below, see ibid. for related
notions.

2 Continuation Monad

The next example is given in a syntactic way (or, in term models).

Proposition 1 Let R be the type 1 + 1 in System F.
Then the canonical term

from
to

((∀α.α→ α+R)→ R)→ R
∀α. ((α→ α+R)→ R)→ R

is not an isomorphism (regardless of assuming parametricity). �

Proof. Let c be the canonical term from

((∀α.α→ α+R)→ R)→ R

to
∀α. ((α→ α+R)→ R)→ R.

Suppose that there is a term c–1 such that c is isomorphic up to parametricity
with c–1 as the inverse. (Note that if c is isomorphic up-to-βη then trivially is
isomorphic up to parametricity.) Then our aim is to show absurdity.

((∀α.α→ α+R)→ R)→ R ∼=?

c //

d–1

��

∀α. ((α→ α+R)→ R)→ R
c–1
oo

(−)R
��

((1 +R)→ R)→ R

∼=d

OO

f // ((R→ R+R)→ R)→ R
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By usual parametric reasoning, ∀α.α → α + R is isomorphic to 1 + R, so
there is the canonical term d and d–1 as above, and they are isomorphic up to
parametricity. Then let f be the composition ((−)R) ◦ c ◦ d.

Let 1′ be the term

Λα.λk : ((α→ α+R)→ R) .k (λx0 : α.in1 (k (λx1 : α.in0 (x0))))

in ∀α. ((α→ α+R)→ R)→ R. (On the naming of “1′”, note that we can define
the Church numeral of 1 in ((1 +R)→ R)→ R, and its image by c ◦ d is equal
to the term

Λα.λk : ((α→ α+R)→ R) .k (λx0 : α.in1 (k (λx1 : α.in0 (x1))))

and not equal-up-to-parametricity to 1′; the last fact follows from the remaining
part of the proof.)

Now f
(
d–1
(
c–1 (1′)

))
is equal to 1′R up to parametricity; hence, 1′R is in

the image of f . (Here “in image” is up to equations under parametricity.) On
the other hand, in the types ((1 +R)→ R)→ R and ((R→ R+R)→ R)→ R

there are only finite number (respectively 28 and 2(216)) of closed terms up to
parametricity, so the extensional equality in the types are decidable, and we can
compute—by programming—whether 1′R is in the image of f . Then the answer
becomes false, hence we could show contradiction. �

As above, the proof is given using computation by computer; a direct proof
should be given.

Though the example in Section 3 comes from shortage of parametricity, the
above example is a counterexample even under full-parametricity.

The above example denies the isomorphism in the term model with para-
metricity, but does not directly deny the isomorphism in other models of System
F with parametricity. If we have some parametric models for which the isomor-
phism holds, it means that the logic of parametricity is not complete for such
the models. Conversely thinking, if—as in the case of simply typed lambda cal-
culus [2]—every “non-trivial” parametric model of System F forms a (singleton)
class of models for which the logic of parametricity is complete, then the above
counterexample works also for all such non-trivial models.

3 Tensor Products

Proposition 2 The fibred endofunctor (−)⊗ (−) on PFam (AP(D)⊥) does not
preserve simple Ω-products. �

Proof. We here represent a per by the set of equivalent classes. Note that if
the domains of considered pers are finite sets, then a relation, i.e., a regular
subobject of the product of such two pers is just a relation between such two
sets of equivalent classes such that the bottom class must be related to the
bottom class.
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Let us define an object f = (fp , f r ) over the generic object 1 in PFam (AP(D)⊥)
as the following:

fp(1) :=
{
{true,⊥}, {false}

}
fp(R) :=

{
{true}, {⊥, false}

}
(for R 6= 1)

[d] f r(A) [e]
def⇐⇒ ∃x ∈ {⊥, true, false}. x ∈ [d] ∧ x ∈ [e]

(for R,S ∈ |AP(D)⊥|, and for regular subobject A� R× S in AP(D)⊥) .

Now note that the fiber over 0—where
∏
f belongs—is nothing but AP(D)⊥

(up-to-iso), and also that the per part of a tensor product is determined by only
the two per parts. Then ∏

f = {{⊥}, {true}, {false}},

and so∏
f⊗
∏
f

=
{
{〈⊥,⊥〉 , ...}, {〈true, true〉}, {〈true, false〉}, {〈false, true〉}, {〈false, false〉}

}
.

On the other hand, it can be easily checked by definition that

〈true, false〉 (
∏

(f⊗f)) 〈⊥,⊥〉 and

〈false, true〉 (
∏

(f⊗f)) 〈⊥,⊥〉 ,

hence∏
(f⊗f)

= {{〈⊥,⊥〉 , 〈true, false〉 , 〈false, true〉 , ...}, {〈true, true〉}, {〈false, false〉}}.

Thus
∏
f⊗
∏
f and

∏
(f⊗f) are not isomorphic. �

Note that the above counterexample comes from (probably inevitable) short-
age of parametricity of PFam (AP(D)⊥) in the sense that a term of a universal
quantified type in PFam (AP(D)⊥) may be ⊥ or else dependently on type in-
stantiation.
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