
Structural Recursion for Querying Ordered Graphs

Soichiro Hidaka Kazuyuki Asada ∗

Zhenjiang Hu Hiroyuki Kato
National Institute of Informatics, Japan
{hidaka,asada,hu,kato}@nii.ac.jp

Keisuke Nakano
University of Electro-Communications, Japan

ksk@cs.uec.ac.jp

Abstract
Structural recursion, in the form of, for example, folds on lists
and catamorphisms on algebraic data structures including trees,
plays an important role in functional programming, by providing
a systematic way for constructing and manipulating functional pro-
grams. It is, however, a challenge to define structural recursions for
graph data structures, the most ubiquitous sort of data in comput-
ing. This is because unlike lists and trees, graphs are essentially not
inductive and cannot be formalized as an initial algebra in general.
In this paper, we borrow from the database community the idea
of structural recursion on how to restrict recursions on infinite un-
ordered regular trees so that they preserve the finiteness property
and become terminating, which are desirable properties for query
languages. We propose a new graph transformation language called
λFG for transforming and querying ordered graphs, based on the
well-defined bisimulation relation on ordered graphs with special
ε-edges. The language λFG is a higher order graph transformation
language that extends the simply typed lambda calculus with graph
constructors and more powerful structural recursions, which is ex-
tended for transformations on the sibling dimension. It not only
gives a general framework for manipulating graphs and reasoning
about them, but also provides a solution to the open problem of how
to define a structural recursion on ordered graphs, with the help of
the bisimilarity for ordered graphs with ε-edges.

Categories and Subject Descriptors CR-number [subcate-
gory]: third-level; D.3.2 [Programming Languages]: Language
Classifications—Specialized application languages; E.1 [Data
Structures]: Graphs and networks

Keywords Structural Recursion, Ordered Graphs, Graph Query
Language, Bisimulation, Optimization

1. Introduction
Structural recursion, in the form of, for example, folds on lists and
catamorphisms (Meijer et al. 1991) on algebraic data structures in-
cluding trees, plays an important role in functional programming,
by providing a systematic way for construction and manipulation

∗ Current affiliation is The University of Tokyo.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICFP ’13, September 25–27, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2326-0/13/09.
http://dx.doi.org/10.1145/2500365.2500608

of functional programs (Bird and de Moor 1996; Gill et al. 1993;
Hu et al. 2006). It is, however, a challenge to define structural re-
cursions for graph data structures, the most ubiquitous sort of data
in computing. This is because, unlike lists and trees, graphs are
essentially not inductive and cannot be formalized as an initial al-
gebra (Gibbons 1995). Many attempts have been made to resolve
this problem by using special trees to represent graphs so that struc-
tural recursion on trees can be used to manipulate graphs. This in-
cludes the work on representing graphs by trees with specific point-
ers (Hamana 2009; Dal Zilio et al. 2004; Oliveira and Cook 2012)
and by trees with embedded functions (Fegaras and Sheard 1996).
However, these attempts have not been so successful, because of the
gap between trees (with specific pointers/embedded functions) and
graphs, and they require programmers to bridge the gap by explic-
itly programming these specific pointers and embedded functions.

Would it be possible to define a structural recursion on graphs
as if the graphs were trees (special graphs), while using it to ma-
nipulate general graphs? Yes, this has been proved to be possible
to some extent in the database community, where UnCAL (and its
user-level surface syntax UnQL) (Buneman et al. 2000) was intro-
duced to provide a powerful querying method through structural
recursion on finite graphs. The graph model of UnCAL is an un-
ordered graph (whose outgoing edges are not ordered), which can
be treated as (unordered) regular trees (Ginali 1979) given a suit-
able definition of bisimulation. The benefit of bisimulation is that
structural recursion on regular trees can be used for graphs, and
moreover, it leads to an interesting and important feature of struc-
tural recursion on graphs: bulk semantics. With bulk semantics, a
structural recursion can be evaluated by first processing all edges of
the input graph in parallel and then combining the results. Bulk se-
mantics relies on the use of ε-edges (like ε transitions in the labeled
transition system) in graphs and provides a smart way of treating
shared nodes and cycles in graphs.

Despite usefulness of structural recursion in querying unordered
graphs, there are two major limitations with UnCAL. One is that
UnCAL can treat only unordered graphs; it cannot treat other graph
models, such as the widely used ordered graphs in which the out-
going edges of a node are ordered, e.g., in EMF Ecore, MOF, and
KM3 (Jouault and Bézivin 2006). Another limitation is the lack of
expressive power of transformations in the sibling dimension. For
example, when the edges of input graphs are labeled with natural
numbers, we cannot write a transformation in UnCAL that extracts
all edges labeled with the average number on the labels of all sib-
lings.

At first sight, it seems that the first limitation could be easily
overcome by encoding ordered graphs as unordered ones with
suitable edge labels, say by using hd and tl to represent the first
branch and the rest of the branches, respectively. However, there
is a fatal problem with this hd -tl encoding. It is unsound in the
context of UnCAL where ε-edges must be taken into account for
the graph construction and structural recursion. Figure 1 shows

1

2 3

4 5

a b

1

2 3

a b

G
1

1

4

2
tl

hd
5

3
tl

6 7

a b

hd

1

4

2
tl

hd
5

3
tl

6 8

hd

10 11

hd hd

7 9
tl tl

12 13

a b

1

2

a

1

G
2

G’
1

G’
2

G
3

Figure 1. Examples of Head-tail Encoding and Its Unsoundness

an encoding example, where the numbers on the nodes have no
particular meaning, since we consider bisimulation. As shown in
Figure 1, the ordered graphs G1 and G2, where we use dotted
arrows to represent ε-edges, are naturally bisimilar (denoted by ∼
in the figure), but the corresponding encoded graphs G′

1 and G′
2

(7→ in the figure denotes the encoding) are not bisimilar at all.
One might think that we could do the encoding after deleting

ε-edges. However, as the graph G3 in Figure 1 shows, ε-edge elim-
ination of some ordered graphs could produce infinite width graphs,
and this infinite-width problem is not trivial to solve (see Section 3).
Even if we could come up with an encoding, we would still have
to show consistency and soundness of the encoding and the corre-
sponding decoding and provide a suitable notion of bisimilarity for
ordered graphs having ε-edges, which is very subtle as well (see
Section 3). Moreover, we would need an effective way to guaran-
tee that UnCAL transformations map well-encoded graphs to well-
encoded graphs that can be successfully decoded later. All these
suggest it would be better to design a new language that treats or-
dered graph directly.

In fact, it has been an open problem for more than ten years as
to whether the definition of structural recursion in UnCAL can be
modified so that it treats ordered graphs rather than unordered ones
(the issue was first raised in the conclusion of the paper (Buneman
et al. 2000)):

... there are some important and interesting areas of re-
search that may well bear fruit. In connection with XML,
we have shown how the principles of UnQL will work on
an ordered tree. However, it is not clear how they can be
extended to an ordered graph model. ... we still lack a com-
plete picture of this topic ...

In this paper, we provide a solution to this problem; i.e., we
define a new structural recursion for ordered graphs. For this, we
define the subtle notion of bisimilarity for ordered graphs having ε-
edges, and prove bisimulation genericity (well-definedness with re-
spect to bisimilarity) of our structural recursion. Note that our (and
ref. (Buneman et al. 2000)’s) notion of bisimilarity is different from
that of weak bisimilarity used in process algebra. Weak bisimilarity
does not fit our purpose, because, for example, the graph union op-
erator (works like the list append in the case of ordered lists) would
not be associative.

We propose λFG, a powerful higher-order graph transformation
language, which is an extension of the simply typed lambda cal-
culus with graph constructors and a more powerful structural re-
cursion for manipulating ordered graphs than what is available in
UnCAL. The main contributions of this paper can be summarized
as follows.

• We propose a novel definition of bisimilarity between ordered
graphs having ε-edges, forming the semantic foundation for
λFG. Specifically, we show that the branch order is not neces-
sarily finite but of countable linear order, even for finite graphs,
and clarify that the combination of ε-edges and cycles induces
such a countable linear order on the branchings, which would
cause issues that do not occur in the unordered case. We show
that we can decide whether an ordered graph is empty and
whether we can eliminate all ε-edges for a finite ordered graph
in such a way that the finite width property of the graph is kept.

• We show that graph constructors and structural recursion on
unordered graphs can be adapted to those of ordered ones,
forming the core syntax of λFG. Specifically, we define a more
powerful structural recursion on ordered graphs, which can
describe various graph queries including those on the sibling
dimension. We also prove that (1) any graph query in λFG is
bisimulation generic in the sense that it returns bisimilar results
for bisimilar inputs, and (2) any graph query in λFG terminates,
transforming node-finite graphs to node-finite graphs.
Unlike UnCAL, we also define bisimilarity for higher order
functions and prove bisimulation genericity of our structural
recursion as a higher order function; this is the key to extending
our language to a simply typed lambda calculus, and it makes
it clear how we can extend it to rich type systems such as
polymorphic/dependent type systems. Moreover, our proof of
bisimulation genericity is clearer than the original proof given
in (Buneman et al. 2000); this should make further extensions
of structural recursion for graphs easier.

• We have implemented an interpreter for λFG that is available
at http://www.biglab.org/src/lambdaFG/, and
we have tested all the examples in this paper. In addition, we
demonstrate (but have not implemented) that structural recur-
sions are suitable for query reasoning and query optimization
such as fusion and tupling transformations. This shows that
our embedding of structural recursions into lambda calculus
would be a good foundation to overcome the known impedance
mismatch problem that is often raised from a gap between two
languages when a query language is used in a general-purpose
one for developing a practical application.

Note that in this paper, the “ordered” in “ordered graph” refers
to the order on the branchings (rather than, say, the order on the
nodes), and “graphs” generally refers to “ordered graphs” that can
have ε-edges.

Organization of the Paper We shall start with an overview of
λFG, a new graph transformation language for querying ordered
graphs in Section 2. In Section 3, we discuss the first key technical
contribution of this paper, defining ordered graphs, bisimilarity for
ordered graphs having ε-edges, and ε-elimination. In Section 4, we
give the semantics of our structural recursion and λFG and prove
its bisimulation genericity. We demonstrate how to reason about
graph transformations and discuss the expressive power of λFG

in Section 5. Finally, we discuss related work in Section 6 and
conclude the paper in Section 7.

http://www.biglab.org/src/lambdaFG/

(a) A Simple
Graph: G

(b) An Equivalent
Graph: G′

(c) Result of a2d xc on
(a)

Figure 2. Examples of Graphs

2. Overview of λFG

We start with an overview of our transformation language λFG for
transforming (querying) ordered graphs. We introduce our graph
model to which closed terms of graph types in λFG are interpreted.
Then we present the syntax and typing rules of λFG and explain
how to represent graphs and write transformations for graphs in
λFG.

2.1 Ordered Graphs
Graphs treated in λFG are multi-rooted, directed, and edge-labeled.
The graph model in λFG has three prominent features: ε-edges,
markers, and graph concatenation. An ε-edge represents a short-
cut between the two nodes and behaves like the ε-transition in
automata. Nodes may be marked with input and output markers.
These markers are used as an interface to other graphs through
ε-edges. Graph concatenation sequentially aligns two graphs in a
given order.

Formally, we define an ordered graph as follows. We write L
for a set of labels and Lε for L ∪ {ε}. Let X and Y be finite sets
of input and output markers, respectively; we add the prefix & for
markers like &x . Accordingly, an ordered graph G (or just graph)
is defined by a triple (V, B, I), where

• V is a set of nodes,
• B : V → List(Lε×V +Y) is a branch function mapping a

node to a list of branches: a branch in Lε×V +Y is either a
labeled edge Edge(l, v) or an output marker Outm(&y), and

• I : X → V is a function which determines the input nodes (also
called roots) of the graph.

Note that in the terminology of coalgebra theory, an ordered
graph is a coalgebra (V, B) of the endofunctor List(Lε×(-)+Y)
equipped with a number |X| of initial states I .

Example 1 (Ordered Graph). The ordered graph in Figure 2(a),
where the branches are ordered for each node, is represented as
(V, B, I), where

V = {1, 2, 3, 4}
B = {1 7→ [Edge(d, 2), Edge(a, 4)], 2 7→ [Edge(c, 3)],

3 7→ [Edge(d, 2)], 4 7→ [Edge(b, 3), Outm(&y)]}
I(&) = 1.

In our graph model, every node in the range of function I is
called a root. In Example 1, node 1 is the root node. Even though it
is called a “root”, it may have incoming edges. However, we can
convert any graph having such edges incoming to the root into
graphs bisimilar to the original one but having no such incoming
edges.

We shall write GX
Y for the set of ordered graphs with the input

marker set X and the output marker set Y . We say that a graph is
finite if V is a finite set and write GfX

Y for the set of finite ordered

σ ::= σ → σ | σ + σ | σ × σ { function, coproduct, product types }
| List(σ) |Bool { list and boolean types }
| Label |GX

Y { label and graph types }
e ::= x | λx.e | e e | case e of inl(x)→ e or inr(y)→ e

| inl e | inr e | (e, e) | prle | prre { terms of lambda calculus }
| nil | cons(e, e) | foldr(e, e) | ... { functions for lists }
| if e then e else e { conditional }
| a | e = e { labels (a ∈ L) and label equality }
| [] | e ++ e | [e : e] | [&y] | &x := e | () | e⊕ e
| e @ e | cycle(e) { graph constructors }
| isEmpty(e) { graph emptiness checking }
| srec(e, e) { structural recursion functions }

Figure 3. λFG Language

graphs. When we say just “finite”, it always means finiteness on the
set of nodes. We allow a graph to have multiple roots, as a multi-
rooted graph is to a forest what a single-rooted graph is to a tree. For
single-rooted graphs, we often use the default marker & to indicate
the root and use GY to denote G{&}Y .

2.1.1 Graph Equivalence
λFG uses bisimilarity (also called value-equivalence) as the graph
equivalence for ordered graphs. For instance, the graphs G and
G′ in Figures 2(a) and 2(b) are equivalent. In G′, nodes 3 and
3′ are bisimilar because both nodes only have one outgoing edge
labeled d to node 2. Also in G′, there is an ε-edge (denoted by
the dotted line) from node 1 to node 3, which can be eliminated
while maintaining bisimilarity by replacing the ε-edge with an
outgoing edge labeled d from node 1 to node 2. The parts that are
unreachable from the roots are disregarded. The formal definition
of bisimilarity for ordered graphs having ε-edges, which is one of
the important results in this paper, is described in Section 3.

Note that the notion of equivalence based on bisimilarity influ-
ences the expressiveness of our query language. For example, since
we do not distinguish bisimilar graphs like in Figures 2(a) and 2(b)
—they have different numbers of nodes—, we cannot count the
number of nodes of a graph.

2.2 Syntax of λFG

The syntax of λFG is given in Figure 3, and its typing rules are
given in Figure 4, though we have omitted some standard typing
rules. From here onwards, we will explain the syntax, but will omit
the standard explanations for lambda terms and conditionals. We
will explain graph constructors and structural recursion in detail
in Sections 2.2.1 and 2.2.2 and give their formal semantics in
Sections 3.4 and 4. We use the underlined syntax to distinguish
certain graph constructors from ordinary list constructors.

List(σ) is the usual list type whose elements belong to σ; nil,
cons(e, e), and foldr(e, e) are standard list functions, and we can
add any convenient list functions. These are used for specifying d
in srec(e, d).

Note that we do not include the label ε in the syntax; ε-edges
are only used in the semantics. Equality only applies to labels.

We have prepared a set of markers Marker ; the metavariables
X , Y , and so on denote finite subsets of Marker . Note that we
assume type annotations for bound variables, graph constructors,
and structural recursions: e.g., λxσ.e, []Y , and srecX,Y,Z(e, d);
but we will omit them in this presentation for simplicity. We have
a type inference procedure to omit marker set annotations in a way
similar to our previous work for UnCAL (Hidaka et al. 2012).

The set of markers α in the type of d is an “abstract” set of
markers, which can be viewed as being similar to a type variable in

(a ∈ L)

` a: Label

` e1 : Label ` e2 : Label

e1 = e2 : Bool

` [] : GY

` e1 : GX
Y

` e2 : GX
Y

` e1 ++ e2 : GX
Y

` e1 : Label
` e2 : GY

` [e1: e2] : GY

(&y ∈ Y)

` [&y]: GY

` e: GY

` &x := e: G
{&x}
Y

` (): G∅
Y

` e1 : GX1
Y ` e2 : GX2

Y
(X1 ∩X2 = ∅)
` e1 ⊕ e2 : GX1∪X2

Y

` e1 : GX
Y

` e2 : GY
Z

` e1 @ e2 : GX
Z

` e: GX
X∪Y (X ∩ Y = ∅)
` cycle(e): GX

Y

` e: GX
Y

` isEmpty(e): Bool

` e: Label×GY → GZ
Z

` d: List(GZ
Z×α+GZ

Z×Y)→ GZ
Z×α+Z×Y

` srec(e, d): GX
Y → GZ×X

Z×Y

(Note that we have omitted the typing environments Γ in each rule.)

Figure 4. Typing Rules for Graph-Related Expressions in λFG

[] [a : G]

G

a

G

&x := G

&x

()

&x1 ... &xk

&y1 ... &yn

&x’1 ... &x’m

&y1 ... &yn

G1 G2

G1 G2 G1@G2

&x1 ... &xk

&y1 ... &ym

G1

&z1 ... &zn

&y1 ... &ym

G2

ε ε

cycle (G)

&x1 ... &xm

&x1 ... &xm

ε ε

G

[&y]

&y

G1 ++ G2

G1 G2

&x1 ... &xm

&y1 ... &yn

Figure 5. Graph Constructors

polymorphic lambda calculi. This polymorphism in the semantics
of our structural recursion is explained in Section 4.

The graph type GX
Y is interpreted as a set GfX

Y of finite graphs.
Similarly to the notation given in Section 2.1 for sets of graphs, we
use GY to denote G

{&}
Y . The predicate isEmpty(e) is true if the

graph obtained by e has no non-ε-edges in the accessible part.

2.2.1 Graph Construction
λFG provides useful graph constructors to build arbitrary finite
ordered graphs. Figure 5 summarizes the constructors; let us see
how type discipline on the input and output markers works for
each constructor. First, [] constructs a root-only graph with the
default input marker and no output markers. For two graphs G1 and
G2 having identical input markers and output markers, G1 ++ G2

concatenates them by adding two branching ε-edges from each new
root to the corresponding old roots of G1 and G2. Next, [a : G]
extends G with a new fresh root node pointing to the old root of
G with an a-labeled edge; the constructor [&y] constructs a graph
with a single node marked with an output marker &y (in (Buneman
et al. 2000), [a : G] and [&y] are denoted as {a : G} and &y ,
respectively). Marker renaming &x := G associates an input marker
&x with the root node of G (here, G should have only one default

input marker &). () constructs a trivial graph that has neither a node
nor an edge; and G1 ⊕ G2 constructs a disjoint union of G1 and
G2, i.e., the set of nodes of G1⊕G2 is the disjoint union of those of
G1 and G2 and branching of nodes (B) is the same as the original.
Then, G1@G2 appends two graphs by replacing the output markers
of G1 with an ε-edge pointing to the corresponding input nodes of
G2, and cycle(G) replaces the output marker of G with ε-edges
pointing to the corresponding input nodes of G to form cycles.

Note that this set of constructors is powerful enough to describe
any finite ordered graphs (although such a description may not be
unique). More precisely, for any finite graph, there is a term using
graph constructors whose interpretation is bisimilar to the given
graph. This can be shown in a quite similar way to that in (Buneman
et al. 2000). For instance, the ordered graph in Figure 2(a) can be
constructed as follows:

&n1 @ cycle((&n1 := [d : [&n2]] ++ [a : [&n4]]) ⊕
(&n2 := [c : [&n3]]) ⊕
(&n3 := [d : [&n2]]) ⊕
(&n4 := [b : [&n3]] ++ [&y])).

2.2.2 Structural Recursion
Structural recursion in λFG provides a powerful mechanism to de-
scribe transformations and queries over ordered graphs that guaran-
tees the termination of the computation and preserves the finiteness
of graphs.

In general, the typing rule of srec is the one given in Figure 4;
but here, for ease of explanation, we will use the following simpli-
fied variant in which the input graph has no output marker.

` e: Label×G∅ → GZ
Z ` d: List(GZ

Z×α)→ GZ
Z×α

` srec′(e, d): GX
∅ → GZ×X

Z×∅

This srec′ is obtained as syntax sugar from the original srec:

srec′(e, d)
def
= srec(e, i ◦ d ◦ p)

where p : List(GZ
Z×α+GZ

Z×∅) → List(GZ
Z×α) discards ele-

ments in GZ
Z×∅ in an input list and i : GZ

Z×α → GZ
Z×α+Z×∅ is

the obvious isomorphism. Throughout this section, we will simply
srec for srec′.

Now let us briefly explain the semantics of srec(e, d); there are
two different styles: recursive semantics and bulk semantics. Recur-
sive semantics is more concise and useful for reasoning about not
only the behavior of a function defined in a recursive way but also
program transformation/optimization (This will be considered in
Section 5.1). On the other hand, bulk semantics is useful for under-
standing how a graph is transformed on the whole, for parallel com-
putation, and for proving the termination and finiteness-preserving
properties. We will explain recursive semantics in a simple form
here and formally describe these two semantics in Section 4.

We introduce a reasonable condition called production-
consumption compatibility (PCC) on e and d so that we can give
a clearer form of recursive semantics. The condition is explained
in detail in Section 4.1, and the following examples in this section
satisfy it. Furthermore, for simplicity, we consider the following
case: d = foldr(�, ι�) for some monoid (�, ι�) on GZ

Z×α; we
consider general d in Section 4.1. The structural recursion function
f

def
= srec(e, d) satisfies the following equations (here, equality

means the bisimilarity):

f([]) = ι�
f(g1 ++ g2) = f(g1)� f(g2)
f([l : g]) = e(l, g) @ f(g)
f(&x := g) = (⊕&z∈Z(&z ,&x) := [(&z ,&)]) @ f(g)
f(()) = ()
f(g1 ⊕ g2) = f(g1)⊕ f(g2).

(1)

book

book

book book

&

section

title

“untyped

λ-calculus”

paragraph

introduction
title

refs

ref

section

“data encoding”

section

title

“π-calculus”

book

ref

refs

section
title

“ λ-calculi”

Figure 6. Ordered Graph Representation of Books

Though the above equations do not necessarily determine the func-
tions f uniquely (up to bisimilarity), we can obtain a definition of
f by the above equations: graphs can be regarded as infinite trees
constructed by the above seven graph constructors (i.e., all the nine
graph constructors but @ and cycle), and hence the above equa-
tions can be taken as a definition by a fixed-point operator.

Thus, f transforms graphs along the structures of graphs; e re-
places a label with a new graph, and d (i.e., �) acts on branches
and transforms in sibling directions. The fourth equation is just re-
naming of input markers and the fifth and sixth equations are cases
of multi-rooted graphs; these three equations are straightforward,
and so will be omitted in other forms of recursive semantics given
later. In the case of the monoid (++, [])—this satisfies PCC with
any e—, the above recursive semantics is the same as given in
UnCAL (Buneman et al. 2000) except that we treat ordered graphs
rather than unordered graphs.

Though the above recursive semantics gives us a definition of
the structural recursion, it is not obvious how to make the semantics
terminating and that the semantics outputs finite (up to bisimilarity)
graphs for given finite input graphs. It is the bulk semantics that
shows the termination and finiteness of output graphs; and the bulk
semantics satisfies the above equations.

In the following, we give several examples demonstrating the
power of our language in transforming ordered graphs. Further
examples are given in Sections 4.1 and 5.2.

Example 2. This example shows how we can manipulate edges of
the graph and change its shape. The following structural recursion
a2d xc replaces all labels a with d and contracts c-labeled edges
by using the function rc (remove c).

a2d xc = srec(rc, foldr(++, []))
where rc(l, g) = if l=a then [d : [&]]

else if l=c then [&] else [l : [&]]

Applying the function a2d xc to the graph in Fig. 2(a) yields the
graph in Fig. 2(c). Note that [&] can be considered as a hole that
will be later filled in with a recursive result.

Example 3. This example demonstrates that our structural recur-
sion can define transformations in the sibling direction, showing
that it is more powerful than the structural recursion in UnCAL.
The following function reverses the branches of each node of a
graph.

revBranches = srec(idE, foldr(+̂+, []))
where idE(l, g) = [l : [&]]

r1+̂+r2 = r2 ++ r1

Example 4. This example demonstrates the usefulness of nested
structural recursion. Figure 6 shows an ordered graph represen-
tation of a list of books that contains hierarchical structures with
“section”-labeled edges. Since “section”s must be ordered and
there would be reference links in books, we can regard books
as ordered graphs. The following nested structural recursion
toc, which is adapted from (Robertson et al. 2009), computes a
table-of-contents of books in which sections can be arbitrarily
nested:

toc = srec(extractSection, foldr(++, []))
where extractSection(l, g) =

if l=section

then [section : (get title(g) ++ [&])]
else [&]

where the function get title , again defined by a structural recur-
sion, results in the title of the section.

get title(g) = srec(extractTitle, foldr(++, []))
where extractTitle(l1, g1) =

if l1 =title

then [title : srec(λ(l2, g2).[l2 : []], foldr(++, [])) (g1)]
else []

Example 5. We can define complex graph transformations by
gluing together smaller ones. Suppose that we want to make a
reverse version of the table-of-contents of a book. We can simply
define it as

tocRev(g) = revBranches (toc(g)).

Before ending the review of λFG, it is worth remarking that
compared with the structural recursion in UnCAL (Buneman et al.
2000), structural recursion in λFG can deal with ordered graphs
and computations on the sibling dimension of graphs; in fact, srec
in UnCAL does not have the function argument d. As will be seen
later, the key to the success of our extension from unordered graphs
to ordered ones is a new definition of bisimilarity for ordered
graphs having ε-edges, under which (finite) ordered graphs are
equivalent to (possibly infinite) regular trees up to bisimilarity.

In the rest of this paper, we will formally define our version of
bisimilarity on ordered graphs, give a formal semantics for λFG,
prove the three important properties of λFG, namely bisimulation
genericity, termination, and finiteness-preservation, and demon-
strate how to reason about graph transformations.

3. Ordered Graphs and Bisimilarity
As discussed in the introduction, direct manipulation of graphs is
difficult. We will tackle this problem by regarding graphs as their
equivalent trees so that we can manipulate graphs as if to manipu-
late trees. To this end, we need to define the semantic equivalence
for the graph model of λFG: bisimilarity between ordered graphs. It
should be noticed that ordered graphs have a big problem that does
not occur with unordered graphs: i.e., ε-elimination might induce
branches with an infinite width. In the following, we shall illustrate
this problem and show how to define bisimilarity between ordered
graphs. We will show an effective procedure to avoid infinite-width
graphs.

3.1 Bisimilarity for Ordered Graphs
Let us show some examples of ordered graphs in order to get
a feeling for the bisimilarity to be defined. Consider the graphs
in Figure 7. Unfolding the graph Gs will yield an infinite tree
(the graph in the middle), and performing “ε-elimination” on the
infinite tree will give the graph on the right, whose branchings

Gs

0

1

a
∼

00

1001

a

...11

a

∼
...

00

01

a

11

a

Gd

0

1

a
∼

00

10 01

a

20

... 11

a

...... 21

a

...

∼
00

...

11

a

...

01

a
...

21

a
...

Figure 7. Graphs with Stream Branching and with Dense Branch-
ing

look like a stream. However, such infiniteness that occurs in or-
dered graphs having ε-edges is not just the stream type, as in the
next example Gd. Unfolding Gd will yield the tree in the middle,
and performing “ε-elimination” will give the graph on the right.
This graph has a set of branches behaving like the ordered set
{n/2m∈Q |n, m∈N, 0<n<2m}, which is a dense countable lin-
ear ordered set.1 It is worth noting that, if we were in an unordered
setting where the branches are sets (that is, duplications of iden-
tical branches are ignored), Gs and Gd after ε-elimination would
be bisimilar to the graph with only one branch; consequently, ε-
elimination in this case would just delete the ε-loops.

Now let us define bisimilarity between ordered graphs. As can
be seen from the above examples, the ε-elimination of an ordered
graph might induce a countable width. Therefore, we shall first
define a generalized notion of an “ordered graph with a countable
width”, and then proceed to define bisimilarity for such generalized
graphs. To this end, for a set S, we extend the set of lists List(S)(=
Σn∈NSn) to that of the countable list CList(S) defined as

CList(S)
def
= ΣL∈LSL

where N is generalized to L, the set of countable linear ordered
sets up to order isomorphism 2. Replacing List with CList , we
extend the notion of ordered graph to that of ordered graph with a
countable width. The set of such extended graphs is denoted by
GcX

Y . Certainly, our original ordered graphs GX
Y are a subset of

GcX
Y .
Once we become aware of the importance of countable linear

order, our idea to define bisimilarity between graphs in GcX
Y is

rather simple. Informally, given two graphs, a relation R is a bisim-
ulation relation if for any two R-related nodes v and v′, their corre-
sponding proper branch sets are related through R. Here a proper
branch of a node is defined as a path from v going through zero or
more ε-edges and reaching a non-ε-edge.

Now we see the formal definitions. For a branching function
B(v), we use |B(v)| to denote the countable linear ordered set L,
call i ∈ |B(v)| a branch index of a node v, and write B(v).i ∈
Lε×V +Y for the i-th branch.

Definition 6 (Proper Branch). Let G = (V, B, I) ∈ GcX
Y and

v ∈ V . The path starting from v

v (= v0)
ε→i0 v1 ...

ε→in−1 vn →in

1 In this paper, the term countable includes the finite case.
2 More precisely, CList(S) is the set of objects of the skeleton of the
comma category (U ↓S) where U : CLO → Set is the forgetful functor
from the category CLO of countable linear ordered sets and monotone
functions.

is called a proper branch of v if the in-th branch B(vn).in is not
an ε-edge; i.e., it is either a non-ε edge or an output marker. The set
of all proper branches of v in G is denoted by Pb(G, v).

Definition 7 (Order on Proper Branches). Given two proper
branches p = (v

ε→i0 v1 ...
ε→in−1 vn →in) and

p′ = (v
ε→i′0

v′
1 ...

ε→i′
n′−1

v′
n′ →i′

n′
), let their branch index

sequences be p̃
def
= (i0, ..., in−1, in) and p̃′ def

= (i′0, ..., i
′
n′−1, i

′
n′).

We define p ≤Pb p′ def⇐⇒ p̃ ≤l p̃′, where ≤l is the lexicographical
order between branch index sequences.

Now we are ready to define the bisimilarity.

Definition 8 (Bisimilarity). For two graphs G = (V, B, I) and
G′ = (V ′, B′, I ′) in GcX

Y , a relation R between V and V ′ is
called a bisimulation relation, if for any vRv′, there is an order
isomorphism f : (Pb(G, v), ≤Pb) → (Pb(G′, v′), ≤Pb) satisfy-
ing the following order-preserving property: For any proper branch
p = (v

ε→i0 ... vn →in) ∈ Pb(G, v) with f(p) = (v′ ε→i′0
... v′

n′ →i′
n′

) ∈ Pb(G′, v′), we have

• Edge Correspondence: if B(vn).in = Edge(l, u) for
some l ∈ L, u ∈ V , then there exists u′ ∈ V ′ such that
B′(v′

n′).i′n′ = Edge(l, u′) and uRu′,

• Marker Correspondence: if B(vn).in = Outm(&y) for some
&y ∈ Y , then B′(v′

n′).i′n′ = Outm(&y).

Two graphs G and G′ are bisimilar (denoted by G ∼ G′) if there is
a bisimulation relation R such that for every input marker &x ∈ X ,
I(&x) R I ′(&x).

3.2 Elimination of ε-Edges
The ε-edges are introduced (and necessary) in our internal seman-
tics of graph transformation, but unnecessary ε-edges in the final
result should be eliminated. The following definition leads to a
procedure to eliminate ε-edges (for example by taking transitive
closures) from the graphs and shows that the graph obtained by
ε-elimination is bisimilar to the original graph.

Definition 9 (ε-elimination). For a graph G = (V, B, I) ∈ GcX
Y ,

the ε-elimination ε-elim(G) of G is a graph (V, B′, I) ∈ GcX
Y

where |B′(v)| def
= Pb(G, v) and B′(v).p

def
= B(vn).in for p =

(v
ε→i0 ... vn →in) in |B′(v)|.

Note that the ε-elimination does not change the sets of nodes.

Proposition 10.

1. For any G ∈ GcX
Y , ε-elim(G) has no ε-edge, and G and

ε-elim(G) are bisimilar.
2. Two graphs G, G′ ∈ GcX

Y are bisimilar if and only if ε-elim(G)
and ε-elim(G′) are bisimilar.

3.3 Decidability of Empty and Finite-Width Graphs
In our graph transformation, i.e., any function from a graph type
to a graph type in λFG like tocRev in Example 5 the input graph
is usually an ordered graph that has neither ε-edges nor infinite
width, but the result may contain ε-edges in our context. In the
following, we show that, given a graph with ε-edges, it is possible
to decide whether there is a corresponding bisimilar ordered graph
that has neither ε-edges nor infinite width, and there is a procedure
to compute out such a bisimilar graph.

Let FG/ε be the set of finite ordered graphs (with finite width
and possibly with ε-edges) that are bisimilar to some finite ordered
graphs without ε-edge or infinite width. The following procedure

answers (decides) whether a finite ordered graph G is in FG/ε or
not.

1. For each node accessible from a root, check if there is an ε-
cycle—a cyclic path consisting only of ε-edges—on the node
or not. If there is no ε-cycle, then G is in FG/ε.

2. Otherwise, for every accessible node with an ε-cycle, if there is
no proper branch, then graph G is in FG/ε; otherwise, it is not
in FG/ε.

If G is in FG/ε, we can effectively eliminate ε-edges; otherwise,
it is impossible to eliminate ε-edges and keep the width finite.
isEmpty(G) is true iff G has no non-ε edge in the accessible
part, and thus, it is decidable.

Note that this procedure is useful for evaluating λFG; though
we need ε-edges for the implementation—for structural recursion
and for the efficiency of the graph calculation—, practical graphs
in the real world have no ε-edges. If a user writes such a practical
query, the result should be a graph in FG/ε; if it is an incorrect query
not intended by the user and then if the result has ε-edges, the
above procedure can determine this and can warn the user. Note
also that, in the FG/ε class, since we can eliminate ε-edges, we can
use familiar effective procedures for checking bisimilarity and for
obtaining the minimum graphs in a similar way to that of unordered
graphs.

3.4 Graph Constructors
In Section 2.2.1, we have given an intuitive explanation for our
graph constructors; the formal semantics of them should be obvi-
ous. As an example, we give the semantic definition of G1 ++ G2

(the formal semantics of all graph constructors can be found in Ap-
pendix A). For Gi = (Vi, Bi, Ii) ∈ GX

Y ,

G1 ++ G2
def
= (V1 ∪ V2 ∪ {v1, . . . , vm}, B′, I ′)

where
v1, . . . , vm are fresh node identifiers
{&x1, . . . ,&xm} = Dom(I1) (= Dom(I2))

B′ = B1 ∪B2∪
{vi 7→ [Edge(ε, I1(&xi)), Edge(ε, I2(&xi))] | i=1, ..., m}

I ′(&xi) = vi.

Above, we assume V1 and V2 to be disjoint, which is realized by
taking copies of them; recall that node identity is ignored in the
context of bisimilarity.

One important property of the graph constructors is that they
are bisimulation generic. As an example, consider G1 ++ G2; we
want to show that ++ is bisimulation generic in the sense that
if G1 ∼ G′

1 and G2 ∼ G′
2, then G1 ++ G2 ∼ G′

1 ++ G′
2.

We say that two graphs are strongly bisimilar if they are bisim-
ilar without special treatment of ε-edges (i.e., ε-edges are con-
sidered as ordinary edges but labeled ε). It is quite straightfor-
ward to see that the graph concatenation constructor ++ is strongly-
bisimulation generic. Furthermore, we can see that ε-elim(G1 ++
G2) is bisimilar to ε-elim(ε-elim(G1)++ε-elim(G2)). This means
that strong-bisimulation genericity implies bisimulation generic-
ity for this graph constructor. Similarly we can show other graph
constructors are bisimulation generic. This leads to the following
proposition.

Proposition 11 (Bisimulation Genericity of Graph Constructors).
All the graph constructors are strongly-bisimulation generic and
also are bisimulation generic.

4. Structural Recursion
Here, we give the semantics of our structural recursion; we modify
structural recursion for unordered graphs UnCAL (Buneman et al.
2000) to deal with ordered graphs and extend it so that we can
transform graphs also in the sibling direction. We start by giving
recursive semantics of our structural recursion; this enables us to
understand the behavior of functions by recursive reasoning. After
that, we give the bulk semantics of the structural recursion to show
the termination and finiteness preserving properties.

Next, we show that our structural recursion and every transfor-
mation in λFG are bisimulation generic; i.e., they returns bisimilar
results for bisimilar inputs. This bisimulation genericity plays an
important role in our framework, allowing us to reason about prop-
erties of graphs by using (possibly infinite) trees bisimilar to them.
To this end, we extend the notion of bisimilarity to higher order
functions in Section 4.3 and give the whole semantics of λFG.

After that, we will discuss implementation and termination
property. Finally, we will summarize relations of conditions and
results provided in this section.

Below, we often use the following marker renaming graphs:
for a “marker renaming” function f : X → Y , we define a graph
bfc ∈ GX

Y as bfc def
=

L

&x∈X&x := [f(&x)]. As two use cases,
for G ∈ GX

Y with f : X ′ → X , bfc@ G ∈ GX′
Y is “input marker

renaming” by f : an input marker f(&x) is replaced with &x and
input markers of G that are not in the image of f are removed. Also,
for G ∈ GX

Y with f : Y → Y ′, G @ bfc ∈ GX
Y ′ is “output marker

renaming” by f : an output marker &y is replaced with f(&y).

4.1 Recursive Semantics
In Section 2.2.2, we described the recursive semantics of our
structural recursion in the simple setting where we ignored output
marker cases, assumed production-consumption compatibility
(PCC), and restricted d to be the form of foldr(�, ι�). Here,
we will give other forms of recursive semantics, relaxing these
restrictions; but we still ignore output marker cases for the sake
of simplifying the presentation. (For recursive semantics for the
general d without ignoring output markers, see Appendix B.)
Hence, in this subsection, the type of d is List(GZ

Z×α)→ GZ
Z×α.

(In bulk semantics, though, we will deal with also output marker
cases.)

First, let us explain the polymorphism α in the type of d. This α
plays two important roles: It is used to substitute a concrete set for
α in order to express recursive semantics and define bulk semantics;
it is also used to show bisimulation genericity of the bulk semantics
by using relational parametricity. Formally, we should introduce
α by formulating λFG as polymorphic typed lambda calculus as
well as by introducing sets of markers as types, but to keep the
presentation simple, we formulated λFG as a simply typed lambda
calculus. In the following explanation of semantics, we will write
dX for the “type application” of d to X on α, and when we interpret
srec(e, d), we introduce the universal quantifier ∀α. for d to bind
α. We use the “type application” only in semantics for the above
purposes, and do not use syntactically in λFG itself. Thus, λFG

is essentially a rank-2 polymorphic lambda calculus; hence, type
inference is decidable (Kfoury and Tiuryn 1990).

Now, let us consider recursive semantics of f = srec(e, d). For
general e and d, the straightforward generalization of Equations (1)
should be, just in form, as the following:

f([l1 : g1] ++ · · · ++ [ln : gn])

= d∅
`

[e(l1, g1) @ f(g1), . . . , e(ln, gn) @ f(gn)]
´

.
(2)

This equation means that, when we start from the root of a graph,
we have the branches [li : gi] under the root; then f first computes

e(li, gi) and recursively computes f(gi); they are connected by @
and finally are transformed in the sibling direction by using d.

However, for general e and d, this recursive semantics is not
necessarily correct, i.e., the structural recursion functions defined
by bulk semantics given later do not necessarily satisfy this equa-
tion. On the other hand, if we evaluate the above recursively, then,
since the computation of d depends on f(gi), and since gi may
include a cyclic path returning to the original root, the evaluation
may not terminate. Even if it terminates, the result is not necessarily
bisimilar to the result by bulk semantics.

Instead, for general e and d, we have the following recursive
semantics.

f([l1 : g1] ++ · · · ++ [ln : gn])

= dn̄

`

[e(l1, g1)@bin1c, . . . , e(ln, gn)@binnc]
´

@
“

`

biso1c@f(g1)
´

⊕ · · · ⊕
`

bisonc@f(gn)
´

”

(3)

where n̄
def
= {1, ..., n}, ini : Z → Z×n̄ is defined as ini(&z)

def
=

(&z , i), and isoi : Z×{i} ∼= Z is defined as isoi((&z , i))
def
= &z .

This might look a bit complicated, but you can disregard marker-
renaming parts @binic and bisoic@, which are not essential. A
noteworthy point in Equation (5) is that d is applied before @
connects e(li, gi) to f(gi); in Equation (2), the order is reversed.

Now, the PCC condition is naturally introduced as the require-
ment that the recursive semantics (2) and (3) coincide, i.e., the
order of application of d and connecting e(li, gi) with f(gi) by
@ may be interchanged. Formally e: Label×G∅ → GZ

Z and
d: List(GZ

Z×α) → GZ
Z×α are called production-consumption

compatible (PCC) if they satisfy the following equation:

d∅
`

[e(l1, g1) @ g′
1, . . . , e(ln, gn) @ g′

n]
´

= dn̄

`

[e(l1, g1) @ bin1c, . . . , e(ln, gn) @ binnc]
´

@
“

`

biso1c@g′
1

´

⊕ · · · ⊕
`

bisonc@g′
n

´

”

Intuitively, the above condition says that d consumes only the infor-
mation in the graphs produced by e and does not traverse beyond
the output markers of the graphs produced by e. For example, if
we write e such that any e(l, G) has no output markers down to
depth three, we can write d that can traverse graphs up to depth
three. Note that, if d changes only the positions of graphs in an
input list—such positions are regarded as positions of branches—
and does not traverse each graph, then d satisfies the PCC condition
with any e.

By definition, if e and d satisfy PCC, then f = srec(e, d)
has the recursive semantics (2). Note that, in this paper, we call
only the functions defined by the following equivalent semantics
structural recursion functions (and denoted by srec(e, d)): (i) the
bulk semantics (Definition 13), (ii) the recursive semantics (3), and
(iii) when PCC holds, the recursive semantics (2) and (1). For
example, if e and d do not satisfy PCC, then in this paper we do
not call functions defined by the recursive semantics (2) structural
recursion functions even if they terminate.

Introducing d is our extension for sibling transformations from
the original structural recursion in UnCAL. Note that, no matter
whether we use the general recursive semantics (3) or the recursive
semantics (2) with PCC, access by d is confined to the graphs
produced by e anyway. This is the key restriction on our structural
recursion for termination.

Example 12. In this example, d satisfies PCC with any e. To re-
move the even branches of a graph, we can apply even remove

def
=

srec(e, d) where e(l, g)
def
= [l : &]; and d([])

def
= [], d([g])

def
= g, and

d(g :: g′ :: gs)
def
= g ++ d(gs).

In the next example, e and d do not satisfy PCC, but we still can
reason that this works as expected from the recursive semantics (3).
To contract the even edges of a graph, from (3), it is enough that e is
an “identity” and d contracts even labeled edges; i.e., we can apply
even contract

def
= srec(e, d) where

e(l, g)
def
= [l : &], d([])

def
= [] , d([g])

def
= g,

d(g :: g′ :: gs)
def
= g ++ p(g′) ++ d(gs),

p
def
= srec(λ(l, g).[&], foldr(++, [])) : G

{&}
{&}×α → G

{&}
{&}×α.

4.2 Bulk Semantics
Here, we give bulk semantics of the structural recursion srec(e, d)
for a general d not assuming PCC nor ignoring output markers.

Before giving the formal definition of the bulk semantics of
srec(e, d), we illustrate the behavior of the semantics in an ex-
ample a2d xc

def
= srec(rc, foldr(++, [])) (see Example 2 for rc).

Mainly, an evaluation with the bulk semantics consists of three
steps; we start with the input graph (a) in Figure 8.

1. Applying the Map Computation on Edges with e

We apply the function rc (which renames a-labeled edges as
d-labeled ones and contracts the c-labeled edges) to every l-
labeled edge and the graph g following the edge, to yield a
graph in GZ

Z . Let us call the graphs produced by an expression
e e-graphs. Graph (b) is a graph whose edges are labeled by
rc-graphs.

2. Applying Map Computation on Nodes with d

For each edge—from a node v to a node v′—of Graph (b),
we replace every output marker &z of the e-graph with a pair
(&z , v′), which will be used in the next “grouping” step. Next,
for every node v of Graph (b), we use binary operator ++ to
combine all e-graphs which are labels of the branches of v. Let
us call the graphs produced using d (= foldr(++, [])) d-graphs;
Graph (c) shows the result. Nodes 1 and 4 have more than one
branch which need to be merged using ++. After producing the
d-graph for v, we replace each input marker &z with a pair
(&z , v).

3. Grouping New Graphs with ε-Edges
Now, for each node of Graph (b)—equivalently, for each node
of the original graph—, we have a d-graph produced as above.
We group all these d-graphs in Graph (c) by connecting every
output marker (&z , v) of every d-graph to the corresponding
input node of some d-graph by using an ε-edge. The root of
the new graph is that of the d-graph on the original root node.
Thereby, we get Graph (d) as an evaluation result of the struc-
tural recursion. Graph (e) is the graph obtained by perform-
ing ε-elimination on Graph (d). We remark that ε-elimination
may increase the number of non-ε edges as this example. (We
can further minimize Graph (e) if necessary, resulting the graph
in Figure 2(c).)

Before applying a structural recursion function srec(e, d)
to G, we have to perform ε-elimination on G; if ε-elim(G)
has infinite width, we raise an error. Without the ε-elimination,
if we extend the bulk semantics to treat input graphs hav-
ing ε-edges by extending e to ē(ε, g)

def
= bidZc, then the

srec(ē, d) is not necessarily bisimulation generic, as shown
by the following counter example. The two graphs on the left
are bisimilar, but if we apply the structural recursion function
even remove in Example 12, the resulting graphs are not bisimilar.

4

1

2 3 4

d

d

a

b

c &y

1

2 3 4

d d

d
&y

1

2 3

d d

d

d d

srec(rc, foldr(++,[]))

(a)

(b) (c) (d)

(e)

& &

&

&

(&,2) (&,4)

b

&

(&,&y)
b

d

d

d

b

(&,&y)d

d

(&,3)

(&,2)

&

&

&

&

&

&

&

d

(&,2)

(&,3)

(&,&y)
b

(&,3)

(&,4)

(&,1) (&,&)

(&,&)

ε-elimination

Figure 8. Bulk Semantics of Structural Recursion: An Example of srec(rc, foldr(++, []))

1

2 3

4 5

a

b c

&
1

2 3 4

a b c

&

~

1

2

a

&
1

2 4

a c

&

 ~/

Though, if d = foldr(++, []) or d = foldr(+̂+, []) (reverse func-
tion), then we can show the bisimulation genericity without
performing ε-elimination.

Now let us give the formal definition of the bulk semantics of
the structural recursion. Note that the following definition is more
concise than the one given in (Asada et al. 2012), which mimics the
original bulk semantics of UnCAL given in (Buneman et al. 2000);
and this simplification makes the proof of bisimulation genericity
clearer.

Definition 13 (Bulk Semantics). For functions

e: L×GY → GZ
Z d: ∀α.List(GZ

Z×α+GZ
Z×Y)→ GZ

Z×α+Z×Y ,

a structural recursion function srec(e, d): GX
Y → GZ×X

Z×Y is de-
fined as follows.

Let G = (V, B, I) be a graph in GX
Y . As explained above,

we perform ε-elimination on G in order to ensure bisimulation
genericity; hence, we assume G has no ε-edges. Let us define
ẽ: L×V → GZ

Z as e ◦ (idL×G|(-)), where G|(-) : V → GY

extracts the subgraph of G whose root is a given node: i.e., G|v
def
=

(V, B, {&7→v}).
Then, as in the first step explained above, we construct a new

branching function B′ def
= map(〈ẽ, π2〉+idY) ◦B of type

V
B−→ List(L×V +Y)

map(〈ẽ,π2〉+idY)−−−−−−−−−−−→ List(GZ
Z×V +Y).

This corresponds to a step producing Graph (b) in Figure 8.
As for the second step, first, we construct a function d′

α
def
=

dα ◦map(p+q) of type

List(GZ
Z×α+Y)

map(p+q)−−−−−→ List(GZ
Z×α+GZ

Z×Y)
dα−→ GZ

Z×α+Z×Y

where p(G,&a)
def
= G @ b&z 7→ (&z ,&a)c and q(&y)

def
=

b&z 7→ (&z ,&y)c. Next, by using the following bijective corre-

spondence,

oplus : (V→GZ
Z×V +Z×Y)

∼=−→ GZ×V
Z×V +Z×Y ,

oplus(f)
def
=

L

(&z,v)∈Z×V (&z, v) := ([&z] @ f(v))

we obtain a graph G′ def
= oplus(d′

V ◦ B′) ∈ GZ×V
Z×V +Z×Y , which

corresponds to (c) in Figure 8; then, in correspondence with (d) in
Figure 8, we define

srec(e, d)(G)
def
= bidZ×Ic@ cycle(G′) (∈ GZ×X

Z×Y).

It is worth remarking that the above bulk semantics is essentially
root-independent: the whole part except for the final step—i.e., till
constructing cycle(G′)—does not use the input function I .

The following is clear from the above bulk semantics.

Proposition 14. If the functions e and d map finite graphs to finite
graphs, so does srec(e, d).

From the above bulk semantics, we can show obviously
the termination property of λFG. We can implement the above
bulk semantics in an obvious way: We may represent graphs
(X, Y, V, B, I) using “set” and “map” (implemented as, e.g.,
balanced trees); X ,Y , and V are as “set”s, and B and I are
as “map”s. Then implementation of the bulk semantics is
straightforward. It is clear that the computation of the bulk
semantics terminates by the above definition and the finiteness
on nodes and width of graphs, which is ensured by the above
proposition. Our actual implementation in OCaml can be found at
http://www.biglab.org/src/lambdaFG/; note that d
in srec in the implementation is currently restricted to the form
foldr(�, ι�).

4.3 Semantics of λFG and Bisimilarity on Functions
Before proving the bisimulation genericity of the structural recur-
sion, we will summarize the whole semantics of λFG.

A requirement of our semantics is that it should guarantee
that any transformation—including the one using higher order
functions—in λFG must be bisimulation generic. To this end,
we extend the notion of bisimilarity on graphs to bisimilarity

http://www.biglab.org/src/lambdaFG/

on functions in λFG. We have defined bisimilarity for graph
types GX

Y , and we can use the equality relations for the other
basic types. It is well known that, if we want to lift equivalence
relations to function types, we need to switch from the notion of
an equivalence relation to that of a partial equivalence relation,
i.e., equivalence relation on some subset of the original set. This
is because, in the current case, it is not true that all functions on
GfX

Y are bisimulation generic, so we have to focus on its subset
consisting of bisimulation generic functions.

Formally, for types σ of λFG, we define binary logical relations
∼σ from the above equivalence relations on the base types. Let us
recall the logical relation∼σ only in the essential case, i.e., function
types: σ = σ1 → σ2 (for other cases, one can consult (Mitchell
1996)). We define a binary relation ∼σ on [[σ]]

def
= [[σ1]]→ [[σ2]] as

f ∼σ f ′ def⇐⇒ ∀x, x′ ∈ [[σ1]]. (x ∼σ1 x′ ⇒ f(x) ∼σ2 f ′(x′)).

For any type σ, ∼σ becomes a partial equivalence relation on [[σ]],
i.e., an equivalence relation on the subset |∼σ|

def
= {x ∈ [[σ]] | x ∼σ

x}. We say a function f : [[σ1]]→ [[σ2]] bisimulation generic if f is
in |∼σ1→σ2 |.

Now from the Basic Lemma of the logical relation (Mitchell
1996), interpretations of all the terms are bisimulation generic if in-
terpretations of all the constants (including constant functions) are
bisimulation generic; accordingly, we can form a model (a carte-
sian closed category) of λFG such that the interpretations of types
are the quotient sets of the partial equivalence relations. We have
already shown the bisimulation genericity of graph constructors,
and now we will show the same for the structural recursion.

4.4 Bisimulation Genericity of the Structural Recursion
We prove a stronger statement of bisimulation genericity than the
original one in (Buneman et al. 2000), which proves only first-order
bisimulation genericity, i.e., only bisimulation genericity on graph
arguments. In addition, our proof is much clearer than the original
naive proof. This simplification should make further extensions of
structural recursion easier.

Theorem 15 (Bisimulation Genericity of srec). The higher order
function srec is bisimulation generic; i.e., for e1 ∼ e2, d1 ∼ d2,
and G1 ∼ G2, srec(e1, d1)(G1) ∼ srec(e2, d2)(G2).

We will use the following notions and notations in the proof
of the above theorem. We write R : A1 p A2 for a relation
R ⊆ A1×A2; e.g., the diagram on the left below means that if
a1 R a2, then f1(a1) S f2(a2).

A1
_R

f1 // B1
_S

A2
f2

// B2

X1

_S

I1 // V1

_R

B1 // CList(L×V1+Y1)
_CList(L×R+T)

X2
I2

// V2
B2

// CList(L×V2+Y2)

For S : X1 p X2 and T : Y1 p Y2, let us define the relation
∼S

T : GX1
Y1

p GX2
Y2

: for Gi, let (Vi, Bi, Ii) = ε-elim(Gi), then
G1 ∼S

T G2 if there exists a relation R : V1 p V2 such that
the right diagram above commutes (i.e., each of the two squares is
true). We write simply X for the diagonal relation between X and
X , then note that ∼X

Y : GX
Y p GX

Y is the same as ∼.

Proof. Let Gi be (Vi, Bi, Ii). From G1 ∼ G2, there exists R :
V1 p V2 such that the following diagram commutes.

X
I1 // V1

_R

B1 // List(L×V1+Y)
_List(L×R+Y)

X
I2

// V2
B2

// List(L×V2+Y)

(4)

Next, from the assumption that e1 ∼ e2 and d1 ∼ d2, the
following diagram commutes.

V1

B1 //
_R

List(L×V1+Y)
map(〈ẽ1,π2〉+idY)

//
_List(L×R+Y)

List(GZ
Z×V1+Y)

d′
1V1//

_List(∼Z
Z×R+Y)

GZ
Z×V1+Z×Y

_∼Z
Z×R+Z×Y

V2
B2

// List(L×V2+Y)
map(〈ẽ2,π2〉+idY)

// List(GZ
Z×V2+Y)

d′
2V2

// GZ
Z×V2+Z×Y

Note that to show the right square above, we also use the relational
parametricity of di and hence of d′

i; see Definition 13 for the
definition of d′

i. Then, for the above compositions, transposing Vi

by using oplus as in Definition 13 yields

1
G′

1 // GZ×V1
Z×V1+Z×Y

_∼Z×R
Z×R+Z×Y

1
G′

2

// GZ×V2
Z×V2+Z×Y

i.e., G′
1 ∼Z×R

Z×R+Z×Y G′
2. (5)

After that, we can show that

cycle(G′
1) ∼Z×R

Z×Y cycle(G′
2), (6)

and from the left square of the diagram (4) we get

bidZ×I1c@ cycle(G′
1) ∼Z×X

Z×Y bidZ×I2c@ cycle(G′
2)

i.e., srec(e1, d1)(G1) ∼ srec(e2, d2)(G2).

For readers familiar with category theory, we will elaborate a bit
on the general technique behind Equation (6). From the correspon-
dence Y 7→ GY , we can construct a monad on Set; then cycle
becomes an iteration operator (dual of fixed point operator) in its
Kleisli category. Furthermore, the iteration operator is uniform on
values (i.e., functions). The above Equation (6) from Equation (5)
is then the uniformity principle on relations (Hasegawa 2002).

4.5 Remark
We conclude this section with a summary of some conditions that
we assumed occasionally. (Ignoring output marker cases is just for
presentation and not essential.)

We use PCC to obtain more familiar form of recursive seman-
tics (2), and moreover we assumed d to be in the fold form of
monoid to obtain simpler recursive semantics (1). The PCC con-
dition and its recursive semantics are also used for optimization
given in Section 5.1.

The polymorphism of α of d is used to express recursive se-
mantics and define bulk semantics, and its parametricity is used to
prove the bisimulation genericity of the bulk semantics. The pre-
processing of ε-elimination for input graphs of structural recursion
functions is also used to prove the bisimulation genericity.

Termination and node-finiteness preserving properties of the
structural recursion was shown via the bulk semantics, and essen-
tially comes from the suitable restriction of recursion pattern; our
structural recursion still has rich expressive power (see Section 5.2)
and enables systematic optimization by the recursive semantics (see
Section 5.1).

5. Discussion
5.1 Optimization of λFG Programs
Embedding graph queries into lambda calculus as structural recur-
sions would make query optimization easier and more systematic.
This is not only because existing optimization techniques for func-
tional programs can be directly brought in, but also because struc-
tural recursion itself has nice algebraic properties for optimization.

Here, we illustrate the usefulness of structural recursion in reason-
ing and manipulating graph queries with two known transformation
techniques, fusion and tupling.

Fusion Transformation Fusion (or called deforestation) (Meijer
et al. 1991; Gill et al. 1993; Takano and Meijer 1995) is an impor-
tant program transformation to turn a composition of two structural
recursions into one so that unnecessary intermediate data passed
from one structural recursion to another can be removed. The fol-
lowing is our fusion rule showing that a composition of a function
f and a structural recursion srec(e, d) can be merged into one as
long as the PCC condition holds for e and d:

f ◦ srec(e, d) = srec(e′ ◦ e, d′)

holds, provided that f is promoted on d and demoted on @; i.e., for
some f ′, we have

f ◦ d = d′ ◦map f ′ and f ′(g @ r) = e′(g) @ f(r).

Tupling Transformation Tupling (Hu et al. 1997) is another im-
portant optimization technique. It eliminates multiple traversals of
the same data. Our following tupling transformation rule reduces
two traversals of G given by two structural recursions into one.

(&x1 := srec(e1, d1)(G)) ⊕ (&x2 := srec(e2, d2)(G))
= srec(e, d)(G)
where

e (l, g) = (&x1 := (e1(l, g) @ [&x1]))
⊕ (&x2 := (e2(l, g) @ [&x2]))

d gs = (&x1 := d1(map (λg.[&x1] @ g) gs))
⊕ (&x2 := d2(map (λg.[&x2] @ g) gs))

The new structural recursion basically computes in parallel two
graphs marked by &x1 and &x2. Note that the tuple construction
and projection that are used in the ordinary tupling technique are
encoded here by the disjoint union (⊕) and marker renaming: a
pair “(g1, g2)” is by (&x1 := (g1 @ [&x1]))⊕ (&x2 := (g2 @ [&x2])),
and a projection “πi(g)” is by [&x i] @ g.

5.2 Expressive Power of λFG

In the previous sections, we described the definition and properties
of λFG, and showed some interesting query examples. In this sec-
tion, we discuss the expressive power of λFG from the user’s point
of view, to show that λFG can serve as a basis of query languages
on ordered graphs under bisimulation.

As has already been demonstrated by Buneman et al. (2000)
in the unordered setting, nesting of srec can produce a se-
quence of combinations of label and graph variable bindings
(λ(l1, g1), λ(l2, g2), . . .). We can combine this nesting with condi-
tionals on these variables to express variety of join conditions. For
example, two nested structural recursions can extract subgraphs
following consecutive edges with identical labels. Moreover,
regular path expressions of labels can be expressed by srec with
a body e generating multiple roots via tupling (Hu et al. 1997), as
shown in Section 5.1. Such an e can be systematically constructed
from the regular path expressions of labels via finite state automata,
as in Buneman et al. (2000) (while NFA is used in (Buneman et al.
2000), we need DFA to make the result well-defined). These kinds
of queries in λFG can be concisely expressed by using a more
user-friendly syntactic sugar like UnQL for UnCAL in (Buneman
et al. 2000) (although we do not give any concrete desugaring rules
here) so that users do not have to write nested structural recursions
with multiple root expressions manually. For example,

select e where [path:g] in db

binds the graph variable g to every subgraph pointed to by a regular
path expression path from the root of the graph that db is bound to,

1 2
a

b
∼

& &
1 2

a b
2′

b

1 2
a

b

≁&
1 2

a b

&
2′

b

a′ a′

insert reverse edge

1
G

2
G

1
G ′

2
G ′

Figure 9. insertion of reverse edge

and will join (++) the graphs generated by the expression e that
refers the graph variable g.

It is worth noting that, in case of extracting subgraphs under
regular path pattern, we just shortcut the edges with unmatching
labels like in the else clause of extractSection in Example 4.
If there is a cycle of these unmatching labels (labels other than
section in the example) above the matching subgraph, then
the cycle turns into an ε-cycle, meaning that the result of query
represents infinite number of that subgraphs. This infinity is
no surprising since original input graph essentially includes
infinite number of that subgraphs when the cycle is unfolded.
The infinity in the result is reported by ε-elimination error in
λFG. Interestingly, this exhibits the expressive power of λFG to
detect cyclic patterns specified by the automata mentioned above.

//'&%$!"#1

¬section

��
section//?>=<89:;/.-,()*+2

For example, extractSection corresponds
to automata on the right, which includes
a cycle. If this cycle and the ones in the
input graph matches, then an ε-cycle is
produced.

Expressive Power on Sibling Dimension With the parameter d
of type List(GZ

Z×α+GZ
Z×Y) → GZ

Z×α+Z×Y in srec we can
express not only queries such as extracting subgraphs as mentioned
above, but also those manipulating siblings of nodes, like reversal
(Example 2), removing and contracting even-numbered siblings
(Example 12).

Expressiveness under Bisimilarity Equivalence Since our lan-
guage is bisimulation generic, targeting graphs under bisimilarity
equivalence, queries that distinguish bisimilar graphs are not ex-
pressible. For example, we cannot count the number of nodes, since
two bisimilar graphs may have different numbers of nodes. As an-
other example, we cannot insert a ‘reverse’ edge. For example,
in Figure 9, the graph G2 is obtained from G1 by unfolding the
cycle formed by the edge labeled b at node 2; hence so G1 and
G2 are bisimilar. The bisimulation relation S : G1.V × G2.V is
{(1, 1), (2, 2), (2, 2′)}. Now suppose we insert for every a-labeled
edge a reversed a′-labeled edge like in G′

1 and G′
2. Notice the dif-

ference between outgoing edges from node 2 and those from node
2′. In G′

1, there is an outgoing edge a′ from node 2. However, in
G′

2, there is no such edge from node 2′. So G′
1 and G′

2 are not
bisimilar anymore. The essential reason for this bisimulation gener-
icity violation is that the reverse edge on a node is inserted on in-
coming edges while bisimulation is determined by outgoing edges.
So bisimilar nodes are treated differently.

It would be interesting to combine λFG with the predicate of
bisimilarity on graphs. Since (for ε-eliminable graphs) the bisimi-
larity is decidable, we can readily introduce such predicate in λFG

and express queries that identify nodes in terms of their bisimilar-
ity.

6. Related Work
Our structural recursion for ordered graphs is very much related
to research on algebras of programming (Meijer et al. 1991; Bird
and de Moor 1996; Hu et al. 2006), where structural recursions
such as folds and catamorphisms are used to structure programs and
systematically manipulate programs. In particular, our approach is
influenced by the many attempts at defining structural recursions
for specific graphs, such as graphs represented by trees with spe-
cific pointers (Hamana 2009; Dal Zilio et al. 2004; Oliveira and
Cook 2012) and graphs represented by trees with embedded func-
tions (Fegaras and Sheard 1996). However, they do not ensure all
of the bisimulation genericity, terminating property, and finiteness
preserving property, which are our original goals as explained in
the introduction.

In the database community, structural recursion is an important
primitive in database queries. Rewriting rules for optimization can
be obtained by exploiting axiom of languages based on structural
recursion. Although it works for various data models such as rela-
tions (Breazu-Tannen et al. 1991), nested collections (Wong 1994),
unordered graphs (Buneman et al. 2000), and ordered trees (Robert-
son et al. 2009), structural recursion for querying ordered graphs
has not been established yet.

As described in the introduction, our work was inspired by the
structural recursion in UnCAL (Buneman et al. 2000) that is prac-
tically used for manipulating unordered graphs. We borrow from
database community the idea of how to restrict a structural recur-
sion for infinite regular trees so that a structural recursion for fi-
nite graphs preserves finiteness of graphs and becomes terminating,
which are desirable properties for query languages. We solve the
open problem of dealing with ordered graphs by providing a novel
definition of bisimulation relation for ordered graphs. To enhance
the expressive power to deal with transformation among children
graphs, we extend the original structural recursion from srec(e) to
srec(e, d) so that d can be used to combine results among children.

A lot of work has been devoted to efficient implementation of
graph algorithms in lazy functional languages (Burton and Yang
1990; King and Launchbury 1995; Erwig 1997; Johnsson 1998).
The emphasis there is placed on the importance of achieving ef-
ficient implementation of general graph algorithms through the
monadic model for including actions on the state in the non-strict
context. In contrast, we focus on inductive traversals of ordered
graphs and aim to provide an efficient way to deal with a specific
class of important graph algorithms—graph querying. In addition,
unlike the above where graph equivalences are up to isomorphism,
our graph equivalences are up to bisimilarity and all our transfor-
mations are guaranteed to be bisimulation generic.

Algebraic graph transformations (Ehrig et al. 2006) formalize
graph transformations using categories in which objects are graphs
and graph patterns to be matched, and matching be graph mor-
phisms. A step of transformations is realized by a pushout com-
plement followed by a pushout in the double-pushout approach.
Category theory is elegantly used in the proofs and various con-
structions like transformation rule compositions. In contrast to our
graph model, their graph model is based on graph isomorphism,
and order between outgoing edges are not considered.

Picard and Matthes (2012) deal with node-labeled graphs using
coinductive data types in Coq proof assistant. Although outgoing
edges of their graphs are also ordered and graph equivalence based
on bisimulation is considered, ε-edges are not considered.

Our decision procedure on ε-eliminability under finite-width in
Section 3.3 is close to the eliminability of ε-transition cycles of
weighted automata in Lombardy and Sakarovitch (2012). However,
while eliminability of ε-transition cycle in the weighted automata is
determined solely by the weight of the ε-edge (whether the weight
is starable), we also consider the presence of proper branches. Note

also that there is no notion of order between transitions in Lom-
bardy and Sakarovitch (2012), so our ε-elimination cannot be de-
rived from that of weighted automata.

The treatment for ε-edges in the current paper was inspired
by (Jacobs 2010). Although there was no consideration of ε-edge
itself in that study, the author showed that the trace semantics for
some kinds of coalgebra induces iteration operators by forgetting
the length of trace paths; the resulting iteration operators can be
regarded as ε-elimination. The countable list monad CList is not
treated in that paper (or in any literature to the best of our knowl-
edge); it does not satisfy the assumption of the theorem in that pa-
per. Since our definition of bisimilarity agrees with (strong) bisim-
ilarity defined generally by coalgebra theory if graphs contain no
ε-edges, Proposition 10 suggests that our bisimilarity for graphs
having ε-edges can be equivalently defined by the combination of
the usual strong bisimulation and ε-elimination. In this viewpoint,
our essential contribution in Sections 3.1 and 3.2 is that we define
and exploit CList and define the ε-elimination.

This paper is also related to our another submission (Asada et al.
2013), which also treats an extension of UnCAL. In the current pa-
per, we provide a novel solution to the problem of querying over the
ordered graphs, while Asada et al. (2013) shows that the solution
can be partially generalized with less expressiveness of queries.
More specifically, the two papers are technically independent in the
following two points. First, though Asada et al. (2013) shows that
branch patterns of graphs can be generalized by using monads, the
generalization assumes the existence of a monad with an iteration
operator. For ordered graph case, the definition of the monad CList
with its iteration operator (i.e., the ε-elimination) is the very contri-
bution of the current paper, and Asada et al. (2013) just use the re-
sult to include ordered graph case as an example of the generaliza-
tion. The other point is that the current paper is not an instantiation
of Asada et al. (2013); though the current paper extends the struc-
tural recursion with d for sibling transformations, it is not achieved
in Asada et al. (2013). Also, the decidability of ε-eliminability is
not generalized in Asada et al. (2013).

7. Conclusions and Future Work
We presented the first solution to the open problem of how to
modify the graph model and structural recursion from unordered
graphs to ordered ones and defined a new graph transformation
language λFG for doing so. The key technical contributions are
a novel definition of a bisimulation relation on ordered graphs
having ε-edges and an extension of structural recursion with an
operation for combining sibling results to achieve expressive power
on the sibling dimension. We implemented λFG and showed two
important optimization rules.

There are many interesting future paths of study. First, we
should analyse structural recursion more thoroughly; for instance,
we should examine the circumstances under which structural
recursion is productive. A structural recursion is said to be pro-
ductive, if it produces a finite ordered graph without ε-edges (i.e.,
FG/ε defined in Section 3.3) for any input ordered graph without
ε-edge. Second, following our previous work on bidirectionalizing
UnCAL (Hidaka et al. 2010), we are very interested in developing
a systematic way to bidirectionalize λFG.

Acknowledgments
We would like to thank Kazutaka Matsuda for various comments
to the current and earlier versions of the paper. We also would like
to thank the anonymous reviewers of the present and earlier ver-
sions for their thorough comments and constructive suggestions
to improve the paper. The research was supported in part by the
Grand-Challenging Project on the “Linguistic Foundation for Bidi-

rectional Model Transformation” of the National Institute of Infor-
matics, and a Grant-in-Aid for Scientific Research for Encourage-
ment of Young Scientists (B) No. 23700047, and a Grant-in-Aid
for Scientific Research (B) No. 22300012.

References
K. Asada, S. Hidaka, H. Kato, Z. Hu, and K. Nakano. Parameterized graph

transformation languages with monads. Technical Report GRACE-
TR-2012-07, GRACE Center, National Institute of Informatics, 2012.
http://www.biglab.org/papers.html.

K. Asada, S. Hidaka, H. Kato, Z. Hu, and K. Nakano. A parameterized
graph transformation calculus for finite graphs with monadic branches,
2013. To appear in PPDP’13.

R. Bird and O. de Moor. Algebras of Programming. Prentice Hall, 1996.

V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as
a query language. In Proc. of the Third International Workshop on
Database Programming Languages(DBPL 91), pages 9–19, 1991.

P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: a query language and
algebra for semistructured data based on structural recursion. VLDB
Journal: Very Large Data Bases, 9(1):76–110, 2000.

F. W. Burton and H.-K. Yang. Manipulating multilinked data structures
in a pure functional language. Softw. Pract. Exper., 20:1167–1185,
November 1990.

S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A logic you can count on.
POPL’04, pages 135–146, New York, NY, USA, 2004. ACM.

H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. Springer-Verlag, 2006.

M. Erwig. Functional programming with graphs. ICFP ’97, pages 52–65,
New York, NY, USA, 1997. ACM.

L. Fegaras and T. Sheard. Revisiting catamorphisms over datatypes with
embedded functions. POPL ’96, St. Petersburg Beach, Florida, Jan.
1996.

J. Gibbons. An initial-algebra approach to directed acyclic graphs. In Math-
ematics of Program Construction, MPC ’95, pages 282–303, London,
UK, 1995. Springer-Verlag.

A. Gill, J. Launchbury, and S. P. Jones. A short cut to deforestation. In
Proc. Conference on Functional Programming Languages and Com-
puter Architecture, pages 223–232, Copenhagen, June 1993.

S. Ginali. Regular trees and the free iterative theory. J. Comput. Syst. Sci.,
18(3):228–242, 1979.

M. Hamana. Initial algebra semantics for cyclic sharing structures. TLCA
’09, pages 127–141, Berlin, Heidelberg, 2009. Springer-Verlag.

M. Hasegawa. The uniformity principle on traced monoidal categories.
Electr. Notes Theor. Comput. Sci., 69:137–155, 2002.

S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano. Bidi-
rectionalizing graph transformations. In ACM SIGPLAN International
Conference on Functional Programming, pages 205–216. ACM, 2010.

S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, K. Nakano, and I. Sasano.
Marker-directed Optimization of UnCAL Graph Transformations. In
LOPSTR’11, volume 7225 of LNCS, pages 123–138. Springer, 2012.

Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation elim-
inates multiple data traversals. ICFP’97, pages 164–175, Amsterdam,
The Netherlands, June 1997. ACM Press.

Z. Hu, T. Yokoyama, and M. Takeichi. Program optimizations and trans-
formations in calculational form. In Summer School on Generative and
Transformational Techniques in Software Engineering, pages 139–164,
Braga, Portugal, 2006. Springer, LNCS 4043.

B. Jacobs. From coalgebraic to monoidal traces. Electronic Notes in
Theoretical Computer Science, 264(2):125 – 140, 2010. Proceedings
of the Tenth Workshop on Coalgebraic Methods in Computer Science
(CMCS 2010).

T. Johnsson. Efficient graph algorithms using lazy monolithic arrays. J.
Funct. Program., 8:323–333, July 1998.

F. Jouault and J. Bézivin. KM3: A DSL for metamodel specification.
In Formal Methods for Open Object-Based Distributed Systems, pages
171–185. LNCS 4037, Springer, 2006.

A. J. Kfoury and J. Tiuryn. Type reconstruction in finite-rank fragments of
the polymorphic lambda-calculus (extended summary). In LICS, pages
2–11, 1990.

D. J. King and J. Launchbury. Structuring depth-first search algorithms in
Haskell. POPL ’95, pages 344–354, New York, 1995. ACM.

S. Lombardy and J. Sakarovitch. The removal of weighted ε-transitions.
CIAA’12, pages 345–352. Springer-Verlag, 2012.

E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In Proc. Conference on
Functional Programming Languages and Computer Architecture (LNCS
523), pages 124–144, Cambridge, Massachuetts, Aug. 1991.

J. C. Mitchell. Foundations for programming languages. Foundation of
computing series. MIT Press, 1996.

B. C. Oliveira and W. R. Cook. Functional programming with structured
graphs. ICFP ’12, pages 77–88, New York, 2012. ACM.

C. Picard and R. Matthes. Permutations in Coinductive Graph Represen-
tation. In D. Pattinson and L. Schröder, editors, Coalgebraic Methods
in Computer Science, volume 7399 of LNCS, pages 218–237. Springer,
2012.

E. L. Robertson, L. V. Saxton, D. V. Gucht, and S. Vansummeren. Structural
recursion as a query language on lists and ordered trees. Theory of
Computing Systems, 44(4):590–619, 2009.

A. Takano and E. Meijer. Shortcut deforestation in calculational form.
FPCA ’95, pages 306–313, New York, 1995. ACM.

L. Wong. Querying Nested Collections. PhD thesis, Philadelphia, PA, USA,
1994.

A. Semantics of Graph Constructors
Figure 10 summarizes the semantic definitions of all graph con-
structors in λFG. In the definitions of ++, ⊕, and @, we assume V1

and V2 to be disjoint, which is realized by taking copies of them.
The semantics should be easy to understand with the help of

Figure 5 and the intuitive explanations given in Section 2.2.1.

B. Recursive Semantics with Output Markers
In Section 4.1, we gave recursive semantics by omitting output
marker case. Throughout here, we consider general case with out-
put markers. Hence, the typing rule is the one in Figure 4.

Now we will give both cases with and without PCC, whose
definition will be given at the end. Before that, let us see more
simple case, i.e., in addition to PCC, we assume that, for some
monoid (�, ι�) on GZ

Z×α+Z×Y ,

d = foldr(�, ι�) ◦ List([p, q])

: List(GZ
Z×α+GZ

Z×Y)→ GZ
Z×α+Z×Y

where p
def
= (-) @ binlc : GZ

Z×α → GZ
Z×α+Z×Y and q

def
=

(-) @ binrc : GZ
Z×Y → GZ

Z×α+Z×Y . Then, a structural recursion
function f

def
= srec(e, d) characterized by the following recursive

semantics:
f([]) = ι�
f(g1 ++ g2) = f(g1)� f(g2)
f([l : g]) = e(l, g) @ f(g)
f([&y]) = b&z 7→ (&z ,&y)c
f(&x := g) = (⊕&z∈Z(&z ,&x) := [(&z ,&)]) @ f(g)
f(()) = ()
f(g1 ⊕ g2) = f(g1)⊕ f(g2).

(7)

The fourth equation is the new one for the output marker case.
The meaning should be quite easy to understand, and the following
more general versions are essentially the same as this.

http://www.biglab.org/papers.html

[] = ({root}, {root 7→ []}, {& 7→ root}) where root is a fresh node
G1 ++ G2 = let (V1, B1, I1) = G1; (V2, B2, I2) = G2

{&x1, . . . ,&xm} = Dom(I1) (= Dom(I2))
v1, . . . , vm are fresh node identifiers
B′ = B1 ∪B2∪

{vi 7→ [Edge(ε, I1(&x i)), Edge(ε, I2(&xi))] | i = 1, . . . , m}
I ′(&xi) = vi

in (V1 ∪ V2 ∪ {v1, . . . , vm}, B′, I ′)
[l : G] = let (V, B, I) = G

root is a fresh node
in (V ∪ {root}, B ∪ {root 7→ [Edge(l, I(&))]}, {& 7→ root})

[&y] = ({v}, {v 7→ [Outm(&y)]}, {& 7→ v}) where v is a fresh node
&x := G = let (V, B, I) = G in (V, B, {&x 7→ I(&)})
G1 ⊕G2 = let (V1, B1, I1) = G1; (V2, B2, I2) = G2

in (V1 ∪ V2, B1 ∪B2, I1 ∪ I2)
() = ({}, {}, {})
G1 @ G2 = let (V1, B1, I1) = G1; (V2, B2, I2) = G2

B′(v1(∈ V1)) = [fillOutm b | b← B1(v1)]
where fillOutm (Edge(l′, v′)) = Edge(l′, v′)

fillOutm (Outm(&y)) = Edge(ε, I2(&y))
B′(v2(∈ V2)) = B2(v2)

in (V1 ∪ V2, B
′, I1)

cycle(G) = let (V, B, I) = G
B′(v) = [cyclize b | b← B(v)]

where cyclize (Edge(l′, v′)) = Edge(l′, v′)
cyclize (Outm(&y)) = if &y /∈ Dom(I) then Outm(&y)

else Edge(ε, I(&y))
in (V, B′, I)

Figure 10. Semantics of Graph Constructors

Now let us see another recursive semantics, with relaxing as-
sumptions. For e and d satisfying PCC, we have the following re-
cursive semantics.

f(++n
i=1

(

[li : gi]
[&yi]

)

)

= dY

`

[

(

inl

`

e(li, gi) @ f(gi)
´

inr

`

b&z 7→ (&z ,&yi)c
´

)

]ni=1

´

@ b∇Z×Y c
(8)

where [xi]
n
i=1 is comprehension representation of a list [x1, ..., xn].

The above equation is read as follows: for each i on the left hand
side, the content of {-} is upper or lower; then on the right hand
side, for each i, according to the case on the left hand side, we
think the upper or lower.

Compare the above with the following recursive semantics
given in Section 4.1, where we omit the case of output markers:

f([l1 : g1] ++ ... ++ [ln : gn])

= d∅
`

[e(l1, g1) @ f(g1), ..., e(ln, gn) @ f(gn)]
´

.

In Section 4.1, as well as assuming Y to be ∅, we simplified the
typing of d

from d : List(GZ
Z×α+GZ

Z×Y)→ GZ
Z×α+Z×Y

to d : List(GZ
Z×α)→ GZ

Z×α

hence we did not need to use inl and∇ in Equation (8).

For general d without assuming PCC, we have the following
recursive semantics.

f(++n
i=1

(

[li : gi]
[&yi]

)

)

= dn

`

[

(

inl

`

e(li, gi) @ b&z 7→ (&z ,&i)c
´

inr

`

b&z 7→ (&z ,&yi)c
´

)

]ni=1

´

@
`

(
Ln

i=1bisoic@

(

f(gi)

[]

)

)⊕ bidZ×Y c
´

(9)

where isoi : Z×{i} ∼= Z.

Production-Consumption Compatibility The PCC con-
dition is defined as follows: e: Label×GY → GZ

Z and
d: List(GZ

Z×α+GZ
Z×Y) → GZ

Z×α+Z×Y are called production-
consumption compatible (PCC) if they satisfy the following: For
any n, suppose that, for each i ∈ n, li ∈ L, Gi ∈ GY , and
G′

i ∈ GZ
Z×Y are given, or &y ∈ Y is given. Then the following

equation holds

dY ([

(

inl

`

e(li, Gi) @ G′
i

´

inr

`

b&z 7→ (&z ,&y)c
´

)

]ni=1) @ b∇Z×Y c

=dn

`

[

(

inl

`

e(li, Gi) @ b&z 7→ (&z , i)c)
inr

`

b&z 7→ (&z ,&y)c
´

)

]ni=1

´

@
`

(
Ln

i=1bisoic@
˘G′

i

[]
¯

)⊕ bidZ×Y c
´

where∇Z×Y : Z×Y +Z×Y → Z×Y and isoi : Z×{i} ∼= Z.

