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Abstract—This paper introduces a variant of the resource
calculus, the rigid resource calculus, in which a permutation
of elements in a bag is distinct from but isomorphic to the
original bag. It is designed so that the Taylor expansion within it
coincides with the interpretation by generalised species of Fiore
et al., which generalises both Joyal’s combinatorial species and
Girard’s normal functors, and which can be seen as a proof-
relevant extension of the relational model. As an application,
we prove the commutation between computing Böhm trees and
(standard) Taylor expansions for a particular nondeterministic
calculus.

I. INTRODUCTION

Around the same time as the birth of linear logic [20],
Girard [21] proposed the normal functor semantics of the λ-
calculus. In this semantics, a term is interpreted as a formal
power series with set-valued coefficients, i.e., as a functor
X → Set, where the set X is the denotation of a type. This
idea has subsequently been studied extensively, leading to new
models of linear logic such as Köthe sequence spaces [11] and
finiteness spaces by Ehrhard [12]; and differential λ-calculus, a
differential calculus for higher-order functions by Ehrhard and
Regnier [14]. In a follow-up paper [16], Ehrhard and Regnier
introduced the Taylor expansion of a λ-term as a formal sum
(with rational coefficients) of terms of the resource calculus,
which may be viewed as a calculus of linear approximants of
the λ-terms.

Meanwhile, similarities were noted between Girard’s normal
functors and Joyal’s combinatorial species [25], which are
functors P→ Set, where P is the category of finite cardinals
and bijections; Hasegawa [23], amongst others, investigated
these connections. There is however an important difference
between the two: the domain of (the power series representa-
tion of) a normal functor is any set, by which one can interpret
a type; whereas a combinatorial species uses P, which has
non-trivial (iso)morphisms. Unifying them, Fiore et al. [18,
19] introduced generalised species of structures between small
categories, whose domains have enough variation to interpret
types and have non-trivial (iso)morphisms. The generalised
species of structures have been proved to form a cartesian
closed bicategory [19], by which one can interpret the λ-
calculus. It can be seen as a proof-relevant version of (the
Kleisli category of) the relational model of linear logic.

This paper investigates the connections between these lines
of thought. Specifically we introduce a variant of the resource
calculus, which we call the rigid resource calculus, together
with the Taylor expansion of a term that uses this calculus,

and show that the Taylor expansion coincides with the inter-
pretation of the term by generalised species.

This work, however, did not start as an abstract study of
the connection. Instead we addressed other, more concrete,
problems, and the generalised species of structures seemed
suitable as a tool to solve the problems, as we shall see below.
In those problems, isomorphisms play a central rôle.

A. Compositional enumeration of reduction sequences

The first problem is related to the semantics of programming
languages with branching constructs, such as nondeterministic,
probabilistic, weighted and quantum programming languages
(e.g. [8, 17, 22, 34, 39]). This is an important area of current
interest.

The operational semantics of these calculi seems to share
the same idea. Consider, for example, a programming lan-
guage with probabilistic branching. Its operational semantics
is usually defined by the following steps:

1) Define the set of all reduction sequences π : M −→∗ V
where π is the name of this sequence. A program M may
have many reduction sequences.

2) Associate to each reduction sequence π the probability
(or weight) w(π), a real number between 0 and 1.

3) The probability of a program M being evaluated to a
value V is defined as the sum

∑
π:M−→∗V w(π) of the

weights of reduction sequences π resulting in V .

By choosing the weights and the sum appropriately, this frame-
work applies to languages with other branching structures.
For example, for a nondeterministic program, a weight is an
element of the two-valued Boolean algebra and the sum is the
disjunction (i.e. existence of a reduction sequence). We think
that this framework applies also to quantum programs though
the structure of weights and the sum are more complicated.

Hence it is natural to develop a denotational model of such a
language following the above framework, which semantically
enumerates all reduction sequences and then calculates the
sum of the weights. Indeed recent quantitative models of
probabilistic and quantum languages [8, 17, 34] can be seen
as models of this kind. Our ultimate aim is to give a unified
account for these models.

The key process of the above framework is the enumeration
of reduction sequences. For example, the following program

M := (λf.f (f z)) ((λx.x)⊕ (λy.y))978-1-5090-3018-7/17/$31.00 c©2017 IEEE



(where ⊕ is nondeterminstic branching and the underlined
expression will be referenced later) always reduces to z but in
four different ways in call-by-name; indeed

M −→ ((λx.x)⊕ (λy.y))
(

((λx.x)⊕ (λy.y))z
)

and a choice of branch for each occurrence of ⊕ in the right-
hand-side determines an evaluation of the program. If the
whole program is given as above, there is no difficulty in
enumerating the set of all reduction sequences. However we
aim to develop a denotational semantics, which is usually
expected to be compositional. Hence we need a way to
enumerate reduction sequences compositionally.

How can we enumerate individual runs compositionally? We
call this problem the Compositional Enumeration Problem

B. Key idea: Rigid resource calculus

Let us recall the above example. Observe that every reduc-
tion sequence encounters the nondeterministic branch twice,
even though there is lexically one occurrence in the original
program. This is because the underlined part is duplicated
during the evaluation. This suggests to us that a quantitative
approach of linear logic (e.g. [11, 12, 21]) may be useful.

From this observation, it is fairly natural to use the resource
calculus and the Taylor expansion [16]. The resource calculus
is basically the standard λ-calculus except that an argument
is not a term, but a finite multiset of terms, called a bag,
which is linear in the sense that each element in a bag must
be used exactly once. Hence the number of elements in a bag
corresponds to the number of calls of the argument. The Taylor
expansion is a technique representing a program as a (formal)
sum of resource terms with real number (or other kinds of)
coefficients. For example, the Taylor expansion of the above
program M is

1 · (λf.f [f [z]]) [(λx.x)L, (λy.y)R]

+ (1/2) · (λf.f [f [z]]) [(λx.x)L, (λx.x)L]

+ (1/2) · (λf.f [f [z]]) [(λy.y)R, (λy.y)R]

where (·)L and (·)R are the marks indicating the chosen branch
(which may or may not be a part of the resource calculus).1

The underlined parts correspond to the underlined part in the
original program: they are bags with two elements since the
underlined part of the original program is called twice in every
possible evaluation.

Unfortunately a resource term cannot describe individual
runs. For example, the term (λf.f [f [x]]) [(λx.x)L, (λy.y)R]
reduces to (λx.x)L [(λy.y)R [z]] + (λy.y)R [(λx.x)L [z]],
which is the sum of two different evaluations of M . This
phenomenon stamps from the fact that a resource term does
not specify the connection between elements in a bag and
occurrences of a variable (so we should try all possibilities).

To overcome the problem, we consider a calculus in
which application arguments are organised into a list (as
opposed to bag) and abstraction takes a list of variables as in

1Here we ignore terms evaluated to 0 such as (λf.f []) [].

(λf1f2.f1 〈f2 〈z〉〉) 〈(λx.x)L, (λy.y)R〉. The reduction of this
calculus is deterministic: we should substitute the first element
for the first variable and so on. Now a term of this calculus
represents a unique evaluation of the original program.

There is another problem, though: an evaluation of the orig-
inal program has many different representations. For example,

(λf1f2.f1 〈f2 〈z〉〉) 〈(λx.x)L, (λx.x)L〉 and
(λf2f1.f1 〈f2 〈z〉〉) 〈(λx.x)L, (λx.x)L〉

(1)

both represent the evaluation of the original program in which
we choose the left branch twice. This suggests to us that a
naı̈ve use of lists cannot solve the problem.

Our approach is a hybrid between bags and lists: the
connection between elements in an argument and occurrences
of variables are tracked by lists, but terms that describe the
same connection are identified.

For example, the above terms are identified since both
represent the map given by f1 7→ (λx.x)L and f2 7→ (λx.x)L.
By writing this identification as a relation ∼, we have the
following more general law:

(λx1 . . . xn.t) 〈u1, . . . , un〉
∼ (λxσ(1) . . . xσ(n).t) 〈uσ(1), . . . , uσ(n)〉.

It is not trivial to define the relation ∼: for example,

(λf.f 〈z1, z2〉) 〈λy1y2.t〉 ∼ (λf.f 〈z2, z1〉) 〈λy2y1.t〉 (2)

since both describe the mapping y1 7→ z1 and y2 7→ z2.
In order to correctly define ∼, we use an intersection type

system in which a∧ b is distinct from but isomorphic to b∧a.
Then a permutation σ ∈ Sn induces an isomorphism between
a1∧· · ·∧an and aσ(1)∧· · ·∧aσ(n). Key observations are that
an isomorphism acts on terms, e.g., σ maps 〈u1, . . . , un〉 to
〈uσ(1), . . . , uσ(n)〉 and that the desired relation ∼ can naturally
be defined by using the actions of isomorphisms, instead of
permutations. Note that an isomorphism may not merely be a
permutation; the identification in Equation (2) is induced by
an isomorphism that is not just a permutation.

The rigid resource calculus is now defined as a list-based
resource calculus, in which terms are considered modulo ∼.
Rigid resource terms enable us to describe individual runs, and
enumeration is given by a variant of the Taylor expansion, the
rigid Taylor expansion, which is compositional.

A significant advantage of the rigid resource calculus is
determinism of reduction. It gives us a simple way to compare
the rigid Taylor expansions of a term and its Böhm tree
(Theorem 17).

C. Reasoning about coefficients of the Taylor expansion

The Taylor expansion of a term is a formal sum of (standard)
resource terms with real number coefficients. The properties
of its support (i.e. terms with non-zero coefficients) has been
well-studied, but reasoning about coefficients of the Taylor
expansion is rather difficult. For example, according to [35],
it has been open whether the computation of the Böhm
tree commutes with the Taylor expansion in the presence of
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nondeterminism; the commutation property has been proved
for deterministic (untyped) λ-calculus in [15, 16], and claimed
for System F with weighted branching in [13] (although the
proof does not seem to have been published).

The notion of isomorphism appears here as well. Ehrhard
and Regnier [16] proved that, if a resource term t has non-zero
coefficient in the Taylor expansion of a λ-term M (without
nondeterministic branching), the coefficient is 1/m(t) where
m(t) is the order of the isotropy group of t.

Inspired by their observation, we express the coefficients by
a groupoid of isomorphisms and its action on rigid resource
terms, in a way reminiscent of the generating series of
combinatorial species. A resource term can be seen as an orbit
of the action, and the coefficient is the ratio of the number of
elements in the orbit to the number of all isomorphims. From
this point of view, the rigid resource calculus may be seen as a
developed form of the combinatorial concepts studied in [16].

We show that the commutation property holds for the
simply-typed nondeterministic λY-calculus, although coeffi-
cients may be infinite.

D. Contribution of this paper

The contributions of the paper are as follows.
• Proposal of the rigid resource calculus and the rigid

Taylor expansion. The rigid Taylor expansion is proved to
be sound with respect to Böhm theory, and adequate with
respect to the standard operational semantics. It is also a
solution to the Compositional Enumeration Problem.

• Proof of the coincidence of the rigid Taylor expansion of
a term and the interpretation of the term by generalised
species of structures [18, 19]. By this result, we obtain
two different descriptions of the same mathematical ob-
ject, one is concrete and syntactic and the other is abstract
and categorical.

• Study of the relationship between the rigid and standard
resource calculi. This leads us to a proof of the commu-
tation of normalisation and the standard Taylor expansion
for the simply-typed nondeterministic λY-calculus.

To accomplish the program described in Section I-A, we
need to introduce the notion of weights to generalised species
of structures. The study of weighted generalised species and
the construction of a model based on it are left for future work
(see also Section VII).

E. Related work

In the preamble, we discussed the main ideas that have
motivated our paper. Here we comment on works in the
literature relevant to a number of other key themes.

The computational enumeration problem introduced in the
preceding is concerned with the analysis of reduction se-
quences of λ-calculus with branching constructs using quan-
titative semantics. Versions of this problem have been studied
by Danos and Ehrhard [8], and Laird et al. [29], among others.

The notion of symmetry is central to our work. The idea of
considering intersection types up to isomorphism was already
present in Bucciarelli and Ehrhard’s work on the semantics

of linear logic exponentials [7], in the guise of indexed
linear logic, where it was developed in connection with the
relational model. We have alluded to the isotropy group in
the coefficient computation of the Taylor expansion of λ-
terms [16]. There are manifestations of the same idea of group
action in game semantics. A key ingredient of the AJM game
model [1] is a partial equivalence relation (PER) on strategies,
which enables the formulation of strategies that are “blind to
the Opponent’s thread indexing”. Melliès [31] subsequently
revealed the group-theoretic nature of this PER construction:
he introduced orbital game, which is a reformulation of HO-
style arena games [24] by replacing justification pointers by
thread indexing, modulo certain left and right group actions.
Symmetry in a similar spirit can be found in a model of
quantum computation by Pagani et al. [34]. They construct
a model of non-linear quantum computation from a linear
model by focusing on morphisms invariant under certain group
action.

There are a number of intersection type systems in the
literature that are non-commutative (in a variety of senses).
Thanks to Kfoury and Wells [27, 28], and Neergaard and
Mairson [32], and others, it is known that non-commutative,
non-idempotent intersection type systems do not enjoy subject
reduction. Our approach (and notion of rigidity) is different
from the above in a crucial way: two syntactically distinct
intersections that are equal modulo permutation are considered
distinct but isomorphic. This contrasts with, for example, Sys-
tem I [32] which, being “completely” rigid2, is thus unsound
with respect to the reduction.

First observed by Kfoury [28], the fruitful relationship
between (non-idempotent) intersection types and linearity has
been a recurrent theme in recent years (see e.g. de Carvalho
[10], and Bernadet and Lengrand [5]). Building on this is
the idea that intersection type derivations of a λ-term are
formally representable by approximants of the term. For
example, Ong and Tsukada [33] presented just such a bijective
correspondence in a non-linear setting. Our rigid resource
calculus may be viewed as a refinement of Mazza’s calculus
of approximants3 [30], the derivations of which correspond
bijectively to reduction sequences. Another related system is
the type system by Ehrhard et al. [17] for calculating the
interpretation in the probabilistic coherence space model [8].

Following Kfoury [28], many of the above studies use
subject reduction and subject expansion to establish a strong
connection between reductions of a given term and intersection
type derivations (or approximants) of that term. Our approach
gives a refinement: we show that the witnessing type of the
reduction (respectively expansion) of a term can always be
chosen from among the isomorphic types of the term. This
relates to the phenomenon that, in the AJM game model, the

2Neergaard and Mairson [32] call an intersection operator, ∧, rigid if
idempotency, commutativity nor associativity does not hold.

3Mazza’s intersection type system is not non-commutative in the sense
of Kfoury and others [28, 32]. It follows from the only constraint in his
system—each assumption be used exactly once—that the order of types
(and assumptions) is insignificant. Consequently one can implicitly apply the
exchange rule to the assumptions.
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interpretation of a term as a strategy is not preserved by β-
reduction, but the equivalence class of strategies is.

Our rigid Taylor expansion semantics of the nondetermin-
istic λY-calculus is closely related to two recent categorical
presentations of the HO/N game model. Tsukada and Asada
[37] gave a profunctorial reformulation of HO/N games in
which plays are graphs: they constructed a pseudofunctor from
the category of HO/N games to the bicategory of profunctors.
In [39] Tsukada and Ong developed a fully abstract innocent
game model for the simply-typed nondeterministic λ-calculus.
Mathematically a strategy is formalised as a sheaf over an
appropriate site of plays. The precise relationships between
the generalised species model and each of the above reformu-
lations of the game model will be developed elsewhere. In a
different operational direction, Allioux [2] has recently given
an account of the Taylor expansion of algebraic λ-terms based
on a kind of resource-constrained Krivine machine.

Notation: We define [n] := {1, 2, . . . , n} for a natural
number n (so [n] is a set with n elements and [0] is empty).

II. PROBLEM SETTING

This section defines a problem addressed in (the first part
of) this paper. The problem is compositional enumeration of
all possible evaluations of a given nondeterministic term of a
certain type. We choose the simplest calculus to illustrate the
ideas of our approach; and we claim that our idea is applicable
to PCF and the (untyped) λ-calculus, for example.

Further, the problem is a guide, which serves to justify and
explain the design of the syntactic development in Sections III
and IV, from which generalised species naturally arise.

A. The target language: Nondeterministic λY-calculus
The target language is the λndY-calculus, the simply-typed

λY-calculus with nondeterministic branching. The syntax of
simple types is A,B ::= o | A → B where o is the unique
atomic type. The syntax of terms is given by the following
grammar:

M,N := x | λxA.M |MM | YAM |M ⊕AM.

Here YA is the fixed-point operator of type (A → A) → A
and M ⊕AN is the nondeterministic branching where M and
N are terms of type A. We identify α-equivalent terms. Type
annotations are often omitted.

A simple type environment Γ is a finite sequence of type
bindings of the form x : A. The typing rules are fairly
straightforward.

A term M is η-long if every application in M is fully-
applied and every variable as well as Y occur with its
arguments. Formally it is defined by the following grammar:

R ::= λx1.λx2. . . . λxn.Q | R⊕R′

Q ::= xR1 . . . Rn | R0R1 . . . Rn | YR1 . . . Rn | Q⊕Q′

where n ≥ 0 and the type of Q must be o. Every term can be
transformed into an η-long form in the obvious way. Hence we
can assume without loss of generality that a term is in η-long
form. This assumption simplifies the statements of lemmas and
theorems, and will be used often (but always explicitly).

B. Evaluation

The calculus is call-by-name. The syntax of evaluation
contexts is given by: E ::= [] | EM . The one-step evaluation
relation is given by the following rules:

E[M1 ⊕M2]
L
↪→1 E[M1] E[(λx.M)N ]

0
↪→1 E[{N/x}M ]

E[M1 ⊕M2]
R
↪→1 E[M2] E[YM ]

ε
↪→1 E[M (YM)]

where ε is the empty sequence. For a sequence π ∈
{L, 0, R }∗, we write M

π
↪→ M ′ if there exists an evaluation

sequence M = M0
d1
↪→1 M1

d2
↪→1 · · ·

dn
↪→1 Mn = M ′ and

π = d1d2 . . . dn (where n ≥ 0). The length of π is the number
of β- and ⊕-rules in the sequence; evaluation of Y is not
recorded in π. Evaluation preserves η-longness: if M

π
↪→M ′

and M is η-long, then M ′ is also η-long.

C. Compositional Enumeration Problem

Sections III and IV address the following problem.

Problem. Give a compositional semantics of the λndY-
calculus such that the interpretation of a term x1 :o, . . . , xn :
o `M :o can be seen as the set of all its evaluation sequences.

Here the set of evaluation sequences means something like
{ (π, xi) | M

π
↪→ xi }, although it is not necessarily exactly

the same. A satisfactory information on the set depends on
the purpose. For example, if we aim to model a language with
probabilistic binary branching which chooses each branch with
probability 1/2, the number of L and R in π is important but
that of 0 is not. For another example, if the language has a
weighted branching (αM) ⊕ (β N) where weights α and β
are taken from a given ring, we need additional information
of weights for each L and R symbols.

We would like to emphasise that solving the above problem
is not the ultimate goal of our development. We are looking for
a good way to solve the problem, which would be applicable to
other settings, which would be useful in proving an interesting
result, and which would provide us with new insights. The
solution presented in Sections III and IV is justified by a strong
semantics background studied in Section V.

D. Full reduction and Böhm tree

Directly reasoning about the set of evaluation sequences is
a bit messy. This subsection introduces another operational
semantics, in which the set of all evaluation sequences in the
previous subsection are put into the result (i.e. its Böhm tree).

The (full) reduction relation has the form M −→M ′. It is
defined by the following base cases

(λx.M)N −→ {N/x}M YM −→M (YM)

(M1 ⊕M2)N −→ (M1N)⊕ (M2N)

and the context rule: M −→ M ′ implies C[M ] −→ C[M ′]
for every context C. Notice that, unlike the evaluation relation,
no branch of a nondeterministic choice is discarded.

We write −→∗ for the reflexive and transitive closure of
−→. The standard technique shows that −→∗ is confluent.
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Basically the “normal form” of the reduction relation con-
tains information on all evaluations. Since both the length of
the reduction sequence as well as the size of the resulting
“term” can be infinite, we need an auxiliary definition to
formalise this idea.

The finite canonical form is defined by the following syntax:

S ::= λx1.λx2. . . . λxn.T T ::= ⊥ | T ⊕T ′ | xS1 . . . Sn

where the type of T must be o. It is basically an η-long term
in β-normal form except for the additional constant ⊥ for the
diverging term of type o. We write FCF for the set of finite
canonical forms. The set of finite canonical forms (of a given
type) forms a poset with the least element λx1. . . . λxn.⊥ and
the order v defined as the least partial order such that C[⊥] v
C[T ] for every context C and term T with C[T ] ∈ FCF.

One can compare a λndY-term with a finite canonical
form in a similar way because the constructors of finite
canonical forms (except for ⊥) can be regarded as those of the
calculus. We write T CM for the relation consisting of pairs
C[⊥, . . . ,⊥] C C[M1, . . . ,Mn] for every multi-hole context
C and terms M1, . . . ,Mn such that C[⊥, . . . ,⊥] ∈ FCF and
C[M1, . . . ,Mn] is a λndY-term.

A Böhm tree is an order ideal4 of finite canonical forms
with respect to v. Given a λndY-term M in η-long form, its
Böhm tree BT (M) is defined by

BT (M) := {T ∈ FCF | ∃M ′. M −→∗ M ′ B T}.

There is, of course, a tight relationship between the eval-
uation and reduction. Let ·̄ : {L,R, 0 }∗ → {L,R }∗ be the
map that erases 0. For π̄ ∈ {L,R }∗, we define Cπ̄ by

Cε := [] CLπ̄ := Cπ̄ ⊕⊥ and CRπ̄ := ⊥⊕ Cπ̄.

Proposition 1. For every x1 : o, . . . , xn : o ` M : o in η-
long form, the map ·̄ is a bijection from {π | M π

↪→ xi } to
{ π̄ | Cπ̄[xi] ∈ BT (M) } for every i ∈ [n].

Remark 2. Proposition 1 together with certain properties on
BT (·) shows that the Böhm tree interpretation can be a
solution to the problem in Section II-C. This is, however,
unsatisfactory for us. For example, this solution is quite
syntactic rather than semantic and ⊕ in this solution is neither
commutative nor associative. Recall that to solve the problem
in Section II-C is not our ultimate goal, rather we aim to
use the problem as a guide of our development that provides
us with a syntactic description of the generalised species of
structures [18, 19].

III. GROUPOID OF RIGID REFINEMENT TYPES

This section introduces types with non-idempotent and
non-commutative intersection which we call rigid refinement
intersection types (cf. [32]). The key difference from the
existing work on non-commutative intersection types (such as
[28, 30, 32]) is that we consider the types a∧b and b∧a distinct

4Given a poset (P,≤), an order ideal is a subset X ⊆ P that is downward
closed (i.e. x ≤ y and y ∈ X implies x ∈ X) and directed (i.e., for every
x, y ∈ X , there exists z ∈ X such that x ≤ z and y ≤ z).

but isomorphic. In other words, while we do not allow implicit
use of commutation, we allow explicit commutation.
Remark 3. The indexed syntax of rigid intersection types is
reminiscent of the indexed linear logic of Bucciarelli and
Ehrhard [7]. The development in Sections III and IV can be
seen as a proof-relevant variant of [7], although there is a
difference even in the proof-irrelevant setting. For example,
indices of rigid intersection types do not affect provability of
a judgement. A detailed comparison is left for future work.

A. Rigid refinement intersection types

The rigid intersection types are basically the same as
the standard nonidempotent intersection types except that an
intersection is no longer a finite multiset of types but a finite
sequence. We write 〈a1, . . . , an〉 for a sequence. Then the
syntax is given by:

a, b ::= ? | θ( b θ ::= 〈a1, . . . , an〉

where n ≥ 0. The sequence 〈a1, . . . , an〉 is also written as
〈ai〉i∈[n], or simply as 〈~a〉 if the length is unimportant. The
sequence 〈a1, . . . , an〉 means the intersection type a1∧· · ·∧an.

The refinement relation aCA is defined by:

?C o

θ C !A bCB
θ( bCA→ B

∀i ∈ [n]. ai CA
〈ai〉i∈[n] C !A

Here A→ B is identified with !A( B, where ! and ( are
the exponential modality and linear implication of linear logic.
We write JAK := {a | aCA} for the set of all refinement types
of the simple type A.

B. Type isomorphisms

Although the type 〈a, b〉 is not identical to 〈b, a〉, they are
clearly closely related. Relating these types is also motivated
by an observation that a non-commutative intersection type
system does not enjoy subject reduction [27, Remark 2.9].5

We consider these types isomorphic.
Let a1 and a2 be rigid intersection types (not necessarily

refinements of simple types). We write ϕ : a1
∼= a2 to mean

that a1 and a2 are isomorphic, of which ϕ is a witness (or a
proof ). This relation is defined by the rules below:

id? : ? ∼= ?

ψ : θ′ ∼= θ ϕ : b ∼= b′

(ψ( ϕ) : (θ( b) ∼= (θ′( b′)

σ ∈ Sn ∀i ∈ [n]. ϕi : ai ∼= a′σ(i)

(σ, 〈ϕi〉i∈[n]) : 〈ai〉i∈[n]
∼= 〈a′i〉i∈[n]

Here id? is a constant witnessing that the type ? is (obviously)
isomorphic to ?. The rules are fairly straightforward; we note
contravariance of the position of θ in θ( b.

As expected, type isomorphism is an equivalence relation.
Reflexivitiy is witnessed by ida and idθ defined by idθ(b :=
idθ ( idb and id〈ai〉i∈[n]

:= (id[n], 〈idai〉i∈[n]). Transitivity
is witnessed by the composition operation ◦A such that ϕ1 :

5Although the remark in [27] is about system I, in which ∧ is non-
commutative and non-associative, it directly applies to an intersection type
system with non-commutative but associative ∧.
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a1
∼= a2 and ϕ2 : a2

∼= a3 implies (ϕ2 ◦ϕ1) : a1
∼= a3, which

can be defined by id? ◦o id? := id? and

(ψ2 ( ϕ2) ◦ (ψ1 ( ϕ1) := (ψ1 ◦ ψ2)( (ϕ2 ◦ ϕ1)

(σ2, 〈ϕ2
j 〉j) ◦ (σ1, 〈ϕ1

i 〉i) := (σ2σ1, 〈ϕ2
σ1(i) ◦ ϕ

1
i 〉i)

where we omit the ranges of i and j which must be the
same. Symmetry is proved by the inverse operation (·)−1

defining by id−1
? := id?, (ψ ( ϕ)−1 := ψ−1 ( ϕ−1 and

(σ, 〈ϕi〉i∈[n])
−1 := (σ−1, 〈ϕ−1

σ−1(j)〉j∈[n]). Then ϕ : a1
∼= a2

implies ϕ−1 : a2
∼= a1 and ϕ−1 ◦ ϕ = ϕ ◦ ϕ−1 = id.

By these data, the refinement types of a simple type A
form a groupoid (i.e. a category in which every morphism is
invertible), whose objects are rigid refinement types aCA and
morphisms from a to b are type isomorphisms ϕ : a ∼= b. We
write this groupoid as JAK. The groupoid J!AK whose object
is θ C !A is defined in the same way.

We abbreviate (σ, 〈idai〉i) to σ and (id, 〈ϕi〉i) to 〈ϕi〉i.

C. Categorical definition

The groupoid JAK of rigid refinement intersection types
and isomorphisms has a simple categorical definition. This
is, indeed, the interpretation of simple types by generalised
species of structures [18, 19].

We start from an auxiliary definition. Let C be a small
category. We define a category P C as follows. An object
of P C is a (possibly empty) finite sequence 〈Ci〉i∈[n] of
objects in C. A morphism from 〈Ci〉i∈[n] to 〈Di〉i∈[m] is a
tuple (σ, 〈fi〉i∈[n]) where σ : [n] → [m] is a bijection and
fi : Ci → Dσ(i) is a morphism in C (for all i ∈ [n]). Note
that there is no morphism if n 6= m. Composition is given by

(σ2, 〈gj〉j∈[n]) ◦ (σ1, 〈fi〉i∈[n]) := (σ2 ◦ σ1, 〈gσ1(i) ◦ fi〉i∈[n]).

The groupoids JAK are given by induction on the structure
of simple types A. For the base case, JoK is the set {?}, i.e. a
category with a single object ? and no morphism other than
the identity. For the inductive steps, we have

JA→ BK = J!AKop × JBK J!AK = P JAK.

This resembles the interpretation of types in the relational
model: we just replace a set with a groupoid and the finite
multiset comonad with P.

D. Isomorphisms of type environments

A type environment is a sequence of type bindings of the
form x : a (such that a is a refinement of the simple type
of x). Here a variable can appear many times in a sequence.
The refinement relation and the isomorphisms can be naturally
extended to intersection type environments:

∀(x : a) ∈ Θ. ∃(x : A) ∈ Γ. aCA
ΘC Γ

σ ∈ Sn ∀i ∈ [n].
(
xi = yσ(i) and ϕi : ai ∼= bσ(i)

)
(σ, 〈ϕi〉i∈[n]) : (x1 :a1, . . . , xn :an) ∼=Γ (y1 :b1, . . . , yn :bn)

.

IV. RIGID RESOURCE CALCULUS

This section introduces the rigid resource calculus, by
which one can describe individual runs of a term. It is a variant
of the resource calculus in the sense of [16], a variant which
uses lists instead of bags. The key notion is the equivalence
relation ∼ on terms, which identifies terms describing the same
run, where the groupoid structure of refinement types plays an
important rôle.

A. Rigid resource raw terms

Rigid resource raw terms are defined by:

t, u := x | λ~x.t | t µ | t⊕ • | • ⊕ t µ := 〈u1, . . . , un〉

(formally each variable is annotated by a rigid intersection
type, which is omitted above). Here • is a place holder for the
unused part of branching and ~x is a (possibly empty) sequence
of variables. Rigid resource terms appearing in the sequel are
always linear, i.e. each variable appears exactly once.

A rigid resource term shall be used to describe a reduction
sequence of a λndY-term.6 For example, t ⊕ • means that
the left-branch should be chosen here; since the right branch
is irrelevant in this case, a rigid resource raw term simply
ignores it.

A rigid type environment Ξ is a finite sequence of type
bindings of the form x : a. We stipulate that a rigid type
environment contains each variable at most once. We write
Ξ1,Ξ2 for the concatenation. For sequences ~x = x1, . . . , xn
and ~a = a1, . . . , an, we write ~x : ~a for x1 : a1, . . . , xn : an.
A type judgement is of the form Ξ ` t : a or Ξ ` µ : 〈~a〉.
The typing rules are listed in Fig. 1. It is worth noting that the
order of type bindings in a type environment does not affect
the derivability of a judgement by the exchange rule. This rule
can be seen as a weaker version of type-isomorphism rules;
the relationship to general rules is the topic of Section IV-D.

In the sequel, we shall consider only typed rigid resource
terms, i.e. rigid resource terms associated with derivable typing
judgements Ξ ` t : a (or Ξ ` µ : θ). The notion of η-long
forms is defined in a similar way to the λndY-calculus . The
associated judgements are often left implicit.

We can give an evaluation relation for rigid resource raw
terms. Evaluation contexts are given by: E ::= [] | E µ.

E[t⊕ •] L
↪→ E[t] E[• ⊕ t] R

↪→ E[t]

E[(λ~x.s) 〈u1, . . . , un〉]
0
↪→ E[{u1/x1, . . . , un/xn}s].

As before, we write s
π
↪→ s′ if there exists a sequence s =

s0
d1
↪→ s1

d2
↪→ · · · dn↪→ sn = s′ and π = d1d2 . . . dn (where n ≥

0). Evaluation of a rigid resource raw term is deterministic.
We give a (full) reduction semantics for rigid resource terms.

It is defined by the base cases

(λx1 . . . xn.t) 〈u1, . . . , un〉 −→ {u1/x1, . . . , un/xn}t
(t⊕ •)µ −→ (t µ)⊕ • (• ⊕ t)µ −→ • ⊕ (t µ).

6Here is another point of view: each term constructor corresponds to a
typing rule of an intersection type system. See also Remarks 8 and 13.
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x : a ` x : a

Ξ, x1 : a1, . . . , xn : an ` t : b

Ξ ` λx1 . . . xn.t : 〈a1, . . . , an〉( b

Ξ1 ` t : θ( b Ξ2 ` µ : θ

Ξ1,Ξ2 ` t µ : b

Ξ ` t : a

Ξ ` t⊕ • : a

Ξ ` t : a

Ξ ` • ⊕ t : a

∀i ∈ [n]. Ξi ` ui : ai

Ξ1, . . . ,Ξn ` 〈ui〉i∈[n] : 〈ai〉i∈[n]

x1 : a1, . . . , xn : an ` t : b σ ∈ Sn

xσ(1) : aσ(1), . . . , xσ(n) : aσ(n) ` t : b

Fig. 1. The typing rules for rigid resource terms (Environment permutation for lists µ is omitted.)

The reduction relation is strongly normalising because of the
linearity of rigid resource raw terms. We write nf(t) for the
normal form of t. Furthermore it is confluent since there is
no critical pair. Unlike the standard resource calculus, the
reduction relation is deterministic (or, reduction does not
introduce formal sums).

B. Rigid term approximation of λndY-terms

A variable refinement X is a sequence of the form x1 C
y1, . . . , xn C yn such that xi 6= xj if i 6= j. The variables
x1, . . . , xn are those of rigid resource terms and y1, . . . , yn are
those of the λndY-calculus. For sequences ~x and ~y of variables
of the same length, ~xC~y denotes the variable refinement x1C
y1, . . . , xn C yn. Let rng(X) := {y | (xC y) ∈ X}.

An approximation judgement has the form X ` tCM , and
valid judgements are defined by the rules in Fig. 2.

C. Representation of reduction sequences

A rigid raw term t C M gives an evaluation of M . The
only nontrivial case is M = E[N1 ⊕ N2] as other cases are
deterministic. Then tCM implies t = E′[u⊕•] or E′[•⊕u];
we choose the left-branch for the former case and the right-
branch for the latter.

Lemma 4. Assume X ` t CM . If t
π
↪→ t′, then M

π
↪→ M ′

and X ` t′ CM ′ for some M ′.

Corollary 5. Let x1 : o, . . . , xn : o `M : o. If yCxi ` tCM
and y : ? ` t : ?, then t represents a unique evaluation
sequence of M

π
↪→ xi, i.e., t

π
↪→ y.

Furthermore every evaluation of a λndY-term has a repre-
sentation by a rigid resource term.

Lemma 6. Assume X ` t′ CM ′. If M
π
↪→ M ′, then t

π
↪→ t′

and X ` tCM for some t.

Corollary 7. Let x1 : o, . . . , xn : o ` M : o and M
π
↪→ xi.

There exists t such that y C xi ` t CM , xi : ? ` t : ? and
t
π
↪→ y.

However there is a problem as mentioned around (1) in
Section I-B: some evaluation M

π
↪→ xi has more than one

rigid resource raw term representation. For example, consider

M = (λf.f (f z)) ((λx.x)⊕ (λy.y))

t1 = (λf1f2.f1 〈f2 〈z〉〉) 〈((λx.x)⊕ •), (• ⊕ (λy.y))〉
t2 = (λf2f1.f1 〈f2 〈z〉〉) 〈(• ⊕ (λy.y)), ((λx.x)⊕ •)〉.

Then both t1 and t2 represent M
0L0R0
↪−−−−→ z.

Remark 8. Corollaries 5 and 7 suggest existence of a sound
and complete intersection type system defined as follows. A
judgement of the type system is of the form x1 : a1, . . . , xn :
an ` M : b (where xi and xj can be the same even when
i 6= j). This judgement is derivable if there exists t such that
y1 : a1, . . . , yn : an ` t : b and y1Cx1, . . . , ynCxn ` tCM .
This “type system” is sound and complete by Corollaries 5 and
7. Indeed it is the type system corresponding to the relational
model of linear logic (see, e.g., [10]). From this point of view,
a rigid resource term is a representation of a derivation of an
intersection type system.

D. Action of type isomorphisms

The goal of this subsection is to avoid the redundancy
described at the end of the previous subsection. The idea
is to introduce an equivalence relation ∼ relating terms that
represent the same evaluation.

Basically redundancy arises from application of the same
permutation to both the variable list and the argument list. For
example, the term

t := (λx1 . . . xn.t) 〈u1, . . . , un〉

represents the same evaluation as

t′ := (λxσ(1) . . . xσ(n).t) 〈uσ(1), . . . , uσ(n)〉.

A difficulty comes from the fact that the corresponding
variable and argument lists are not necessarily syntactically
adjacent. Consider, for example,

(λf.f 〈z1, z2〉) 〈λy1y2.t〉 and (λf.f 〈z2, z1〉) 〈λy2y1.t〉

that are reduced to, respectively,

(λy1y2.t) 〈z1, z2〉 and (λy2y1.t) 〈z2, z1〉.

To correctly handle such a complex case, we use type
isomorphisms and their action on rigid resource terms.

We do not have the type isomorphism rule in the above
type system. For example, Θ ` 〈t1, . . . , tn〉 : 〈a1, . . . , an〉
does not imply Θ ` 〈t1, . . . , tn〉 : 〈aσ(1), . . . , aσ(n)〉, although
σ : 〈a1, . . . , an〉 ∼= 〈aσ(1), . . . , aσ(n)〉.

However, applying the same permutation σ to the list of
terms gives a valid judgement. For example, in the above case,
we have Θ ` 〈tσ(1), . . . , tσ(n)〉 : 〈aσ(1), . . . , aσ(n)〉.

By generalising this idea, it is natural to expect that, given a
rigid resource term Ξ ` t : a and a type isomorphism ϕ : a′ ∼=
a, we obtain another rigid resource term t′ by “applying” ϕ
and we have Ξ ` t′ : a′. Indeed it is the case provided that the
term is η-long. We write such t′ as t[ϕ] and call the operation
(−)[ϕ] the (right) action of ϕ.
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xC y ` xC y
X, x1 C y, . . . , xn C y ` tCM y /∈ rng(X)

X ` (λx1 . . . xn.t)C (λy.M)

X1 ` tCM X2 ` µCN
X1, X2 ` (t µ)CM N

X1 ` tCM X2 ` µC (YM)

X1, X2 ` (t µ)C (YM)

X ` tCM1

X ` (t⊕ •)C (M1 ⊕M2)

X ` tCM2

X ` (• ⊕ t)C (M1 ⊕M2)

∀i ∈ [n]. Xi ` ti CM
X1, . . . , Xn ` 〈ti〉i∈[n] CM

x1 C y1, . . . , xn C yn ` tCM σ ∈ Sn

xσ(1) C yσ(1), . . . , xσ(n) C yσ(n) ` tCM
Fig. 2. Rigid approximation relation (Permutation of variable refinements for lists is omitted.)

The action (−)[ϕ] of an isomorphism to terms is defined
by the rules in Fig. 3. It is defined by mutual induction with
{[ϕ]/x}(−), which describes the action of the isomorphism ϕ
to environments. We have the following derived rules:

Ξ ` t : a ϕ : a′ ∼= a

Ξ ` t[ϕ] : a′
Ξ, x : b ` t : a ϕ : b ∼= b′

Ξ, x : b′ ` {[ϕ]/x}t : a
.

Example 9. Let σ = (1 2) ∈ S2 and a := 〈?, ?〉 ( ?.
Then (σ ( id) : a ∼= a. Let ϕ be this isomorphism
and Θ ` λy2y1.u0 : a be a rigid resource raw term in
η-long form. Let u := λy2y1.u0. By applying ϕ to u,
we obtain u[ϕ] = λy1y2.u0. Consider another isomorphism
(〈ϕ〉 ( id) : (〈a〉 ( ?) ∼= (〈a〉 ( ?). Consider z1 : ?, z2 :
? ` λf.f 〈z1, z2〉 : 〈a〉( ?, which we write as t. By applying
(〈ϕ〉( id) to t, we obtain t[〈ϕ〉( id] = λf.f 〈z2, z1〉.

Lemma 10. For every term t in η-long form, we have

{[ϕi]/xi}i(t[ψ]) = ({[ϕi]/xi}it)[ψ]

(t[ψ1])[ψ2] = t[ψ1 ◦ ψ2]

{[ϕ1
i ]/xi}i({[ϕ2

i ]/xi}it) = {[ϕ1
i ◦ ϕ2

i ]/xi}it

provided the type isomorphisms are of the appropriate types.

Remark 11. A type isomorphism ϕ : a ∼=A a
′ induces a rigid

resource term, which we write as ` [ϕ] : a′ → a by abuse of
notation, such that ` [ϕ] C ηA(λy.y) where ηA(λy.y) is the
η-long form of λy.y. The action of a type isomorphism ϕ
to Θ ` t : a′ can be seen as the application of the term [ϕ] to
t, followed by the reduction of redex related to [ϕ].

Now we define ∼ as the least congruence that satisfies

t0 (µ1[ϕ1]) . . . (µn[ϕn])

∼ (t0[ϕ1 ( · · ·( ϕn( id])µ1 . . . µn

for every η-long rigid resource terms t0, µ1, . . . , µn and type
isomorphisms ϕ1, . . . , ϕn of appropriate types. We write t̃ for
the equivalence class of ∼ to which t belongs.

Example 12. Let ϕ and a be those defined in Example 9.
We have (λf.f 〈z1, z2〉) 〈λy1y2.t〉 ∼ (λf.f 〈z2, z1〉) 〈λy2y1.t〉
from

(λf.f 〈z1, z2〉) 〈λy1y2.t〉 = (λf.f 〈z1, z2〉) (〈λy2y1.t〉[ϕ])

(λf.f 〈z2, z1〉) 〈λy2y1.t〉 = ((λf.f 〈z1, z2〉)[ϕ( id]) 〈λy2y1.t〉.

Remark 13. Recall that a rigid resource raw-term can be seen
as a derivation of an intersection type system (Remark 8).

From this point of view, a rigid resource term (i.e. an equiv-
alence class modulo ∼) is an equivalence class of derivations
modulo natural commutations such as

∆, x : ~a `M : b

∆ ` λx.M : 〈~a〉(b (id( ϕ) : (〈~a〉( b′) ∼= (〈~a〉( b)

∆ ` λx.M : 〈~a〉( b′

←→
∆, x : ~a `M : b ϕ : b′ ∼= b

∆, x : ~a `M : b′

∆ ` λx.M : 〈~a〉( b′
.

The notions and operations defined for rigid resource terms
are well-defined for the equivalence classes t̃. For example,

• Ξ ` t : a and t ∼ t′ implies Ξ ` t′ : a, and
• t1 ∼ t2 and t1

π
↪→ t′1 implies t2

π
↪→ t′2 with t′1 ∼ t′2.

We have the following result as expected.

Theorem 14. Let x1 : o, . . . , xn : o ` M : o and assume
M

π
↪→ xi for some i. Then there exists t unique up to ∼ such

that y C xi ` tCM and t
π
↪→ y.

E. Rigid Taylor expansion

Let us fix an infinite sequence z1, z2, . . . , zn, . . . of distinct
variables. We write ~z for a prefix of this sequence.

Definition 15. Let Γ ` M : A be a λndY-term in η-long
form. Define, for ∆ = (~z : ~b)C Γ and aCA,

JMK(∆, a) := {t̃ | ~z C ~x ` tCM and ~z : ~b ` t : a}

We call JMK the rigid Taylor expansion of M . We write (∆ `
t̃ : a) ∈ JMK to mean t̃ ∈ JMK(∆, a).

Theorem 14 shows that the rigid Taylor expansion JMK can
be seen as an enumeration of evaluation sequences, which can
be defined by induction on M and is thus compositional. This
aspect is further studied in the next section.

Recall the groupoid JAK of refinement types and isomor-
phims, defined in Section III-C. By the action of an isomor-
phism on a rigid resource term, the rigid Taylor expansion
becomes a functor.

Theorem 16. Let Γ `M : A be a λndY-term in η-long form.
Then JMK is a functor PJΓK× JAKop → Set.

The rigid Taylor expansion is sound with respect to the
Böhm theory. Let Γ ` T : A be a Böhm tree (i.e. an order
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(λx1 . . . xn.t)[id( ϕ] := λx1 . . . xn.(t[ϕ])

(λx1 . . . xn.t)[σ( id] := λxσ−1(1) . . . xσ−1(n).t

(λx1 . . . xn.t)[〈ϕi〉i∈[n] ( id] := λx1 . . . xn.({[ϕi]/xi}i∈[n]t)

(t⊕ •)[ϕ] := (t[ϕ])⊕ • (• ⊕ t)[ϕ] := • ⊕ (t[ϕ])

〈ti〉i∈[n][σ] := 〈tσ(j)〉j∈[n]

〈ti〉i∈[n][〈ϕi〉i∈[n]] := 〈ti[ϕi]〉i∈[n]

{[ψ]/x}(xµ1 . . . µn) := x (µ1[ϕ1]) . . . (µn[ϕn])

(where ψ = ϕ1( . . .(ϕn( id?)

Fig. 3. Action of isomorphisms on rigid raw terms. Other isomorphims are decomposed into the above ones. The definition of {[ϕ]/x}(−) is the same as
the standard substitution except for the above case.

ideal of the finite canonical forms Γ ` T : A). We define JT K
by, given ∆ = (~z : ~b)C Γ and aCA,

JT K(∆, a) := {t̃ | ~z : ~b ` t : a and ∃T ∈ T . ~z C ~x ` tC T}.

Theorem 17. The family of functions

JMK(Θ, a)→ JBT(M)K(Θ, a) : t̃ 7→ nf(t̃)

defines a natural isomorphism JMK ∼= JBT(M)K. Thus the
rigid Taylor expansion J−K is sound with respect to the Böhm
theory.

V. GENERALISED SPECIES OF STRUCTURES

This section shows that the rigid Taylor expansion of a
λndY-term is equivalent to its interpretation in the bicate-
gory ESP (for espèces de structures [25, 26]) of generalised
species of structures by Fiore et al. [19], which is a proof-
relevant extension of the relational model Rel!. We first review
the generalised species of structures and its cartesian closed
structure and then compare it with the rigid Taylor expansion.

A. Profunctor

We introduce the bicategory Prof of profunctors (or dis-
tributors; see e.g. [3, 4] and [6, § 7.7]), which can be regarded
as a proof-relevant extension of the category Rel of sets and
relations.

Given small categories A and B, a profunctor from A to
B is a functor f : A × Bop → Set. This is an extension of
relations: a relation R ⊆ Y × Z can be seen as a profunctor
fR between sets (i.e. categories with no morphism except for
the identities) such that fR(y, z) is either singleton or empty
depending on whether (y, z) ∈ R. We write f : A −7−→ B if f
is a profunctor from A to B.

Let f : A −7−→ B and g : B −7−→ C be profunctors. A
morphism ϕ : b → b′ in B acts on elements in f(a, b′) by
y 7→ f(a, ϕ)(y) ∈ f(a, b) and in g(b, c) by z 7→ g(ϕ, c)(z) ∈
g(b′, c), which we write y[ϕ] and {ϕ}z, respectively. The
composite gf is defined by

(gf)(a, c) :=
∐
b∈B

(f(a, b)× g(b, c))/∼ (3)

where ∼ is the least equivalence relation that contains
(y, {ϕ}z) ∼ (y[ϕ], z) for every morphism ϕ in B.

B. Generalised species of structures

Given small categories A and B, a (A,B)-species of struc-
tures [18, 19] is defined as a functor PA×Bop → Set, i.e. a
profunctor PA −7−→ B.

There is a bicategory whose 0-cell is a small category
and whose 1-cell is an (A,B)-species. The identity species
IA : PA −7−→ A is defined by IA(θ, a) := PA(〈a〉, θ). The
composition of (A,B)-species of structures f and (B, C)-
species of structures g is defined as follows. Given (A,B)-
species of the structures f : PA −7−→ B, its lifting f ] : PA −7−→ PB
is defined by the following coend:

f ](θ, 〈b1, . . . , bk〉)

:=

∫ (θi)i∈k∈(PA)k ( ∏
i∈[k]

f(θi, bi)
)
× PA(θ1 · · · θk, θ)

where θ1 · · · θk is the concatenation of lists. Then g ◦ f is
defined as the composition gf ] as profunctors. The 2-cells are
natural transformations. We write this bicategory as ESP.

Remark 18. Fiore et al. [19] showed that ESP can be seen
as the coKleisli bicategory of a pseudo-comonad P on the
bicategory Prof of profunctors; the action of P to 0-cells is
the same as P. There is a formal similarity to the construction
of the relational model Rel!, which is the coKleisli category
of the finite multiset comonad !.

C. Cartesian closed structure

The bicategory ESP is cartesian closed [19].
Given small categories Ai (i ∈ [n]), the cartesian productd
i∈[n]Ai in ESP is the coproduct

∐
i∈[n]Ai as categories.

For an object a ∈ Ai, the corresponding object of
d
j∈[n]Aj

is written as ιi(a). For gi : PB −7−→ Ai (i ∈ [n]), the tupling
〈g1, . . . , gn〉 : PB −7−→

d
i∈[n]Ai is defined by

〈g1, . . . , gn〉(b, ιi(a)) := gi(b, a).

The projection πi : P(
d
j∈[n]Aj) −7−→ Ai is given by

πi(u, a) :=

{
Ai(a, a′) if u = 〈ιi(a′)〉
∅ otherwise.

Given small categories B and C, we define CB := PBop×C.
Given g : P(A u B) −7−→ C, we define ΛB(g) : PA −7−→ CB by

ΛB(g)(〈a1, . . . , an〉, (〈b1, . . . , bm〉, c))
:= g(〈ι1(a1), . . . , ι1(an), ι2(b1), . . . , ι2(bm)〉, c).
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The evaluation map evalB,C : P(CB u B) −7−→ C is defined by

evalB,C(u, c) :=

{
(PBop × C)((u�2, c), d′) if u�1 = 〈d′〉
∅ otherwise

where, for u ∈ P(A1 u A2), u�i ∈ PAi (i = 1, 2) is the
subsequence consisting of objects from the ith component.

D. Interpretation

Types are interpreted as groupoids of rigid refinement types.
So JoK is the category with one object ? and one morphism,
J!AK := PJAK and JA→ BK := J!AKop × JBK.

The interpretation of terms is the standard one for the λ-
calculus fragment (i.e. x, λx.M and M N ). The interpretation
of the nondeterministic branching is the disjoint union

JM ⊕NKESP(Θ, a) := JMKESP(Θ, a) + JNKESP(Θ, a).

We write YESP
A for the rigid Taylor expansion of (the η-long

form of) f : A → A ` Y f : A.7 Now the interpretation
JYMKESP of Γ ` YM : A is defined as the composite

JYMKESP := YESP
A ◦ JMKESP.

We show that the ESP interpretation JMKESP is isomorphic
to the rigid Taylor expansion JMK. As we have seen in
Theorem 16, JMK is a generalised species of structures. The
key lemma is that the composition as ESP can be seen
as substitution followed by the rigid Taylor expansion. The
equivalence relation ∼ in the composition of profunctors
(Equation (3)) coincides with that of the resource calculus.

Lemma 19. Let x1 : A1, . . . , xk : Ak ` M : B and Γ ` Ni :
Ai (i ∈ [k]). Then there is a natural isomorphism

JMK ◦ 〈JN1K, . . . , JNkK〉 ∼= J{N1/x1, . . . , Nk/xk}MK.

Theorem 20. For every term Γ `M : A, the ESP interpreta-
tion is naturally isomorphic to the rigid Taylor expansion:

JMK ∼= JMKESP : PJΓKop × JAK→ Set.

Proof. (Sketch) By induction on the structure of M using
Lemma 19. For example, JYMKESP = YESP

A ◦ JMKESP
∼=

JY fK◦ JMK ∼= J{M/f} (Y f)K = JYMK. A key observation
is that evalJBK,JCK is equivalent to the rigid Taylor expansion
of (the η-long form of) f : B → C, x : B ` f x : C.

VI. REASONING ABOUT STANDARD RESOURCE TERMS

This section studies the rigid Taylor expansion of standard
resource terms—in which application arguments are bags
(i.e. finite multisets)—and compares the rigid and standard
Taylor expansions. As an application, we show the commu-
tation between computing Böhm trees and Taylor expansions
for the λndY-calculus (although some coefficients may be∞).
The proof is an extension of the combinatorial arguments in
[16] showing the commutation property of the deterministic
case. In this subsection, resource terms always mean standard
resource terms, and rigid terms are always called rigid.

7There is another definition of YESP
A that does not relies on the rigid

Taylor expansion. We omit it because of the space limitation.

A. Preliminary: The resource calculus and Taylor expansions

The syntax of simple terms and simple bags is given by:

v, w ::= x | λx.v | v ξ ξ ::= [v1, . . . , vn]

where n ≥ 0 and [. . . ] is a finite multiset. A term is a (possibly
infinite) formal sum of simple terms with coefficients in R+,
where R+ := {x ∈ R | x ≥ 0}. A simple term can appear
(possibly infinitely) many times in a term. See, e.g., [16] for
a more detailed definition.

Remark 21. Given a set D and a countable set I , we identify
a formal sum

∑
i∈I ridi where ri ∈ R+ and di ∈ D with

a mapping (d ∈ D) 7→ (
∑
i∈I,di=d ri) ∈ R+ ∪ {∞}. The

equality of formal sums is that of the associated mappings.

We shall consider only simply-typed resource terms. The
typing rules are the standard ones: for example, [v1, . . . , vn]
has type A if vi has type A for every i ∈ [n]. The notion of
η-long form is defined in the straightforward way.

The reduction is defined as follows. If t has n free occur-
rences of x, we have

(λx.t) [u1, . . . , un] −→
∑
σ∈Sn

{uσ(1)/x1, . . . , uσ(n)/xn}t

where x1, . . . , xn are the names of the free occurrences of x
in t. If the number of free occurrence of x in t is not n, then
the above term is reduced to the empty sum.

Intermediate representations (or simply representations) of
simple terms and bags are the same as simple terms and bags
except that (i) simple terms have new constructors v ⊕ • and
• ⊕ v, and (ii) elements of each bag are linearly ordered
(i.e. a bag ξ is represented by a list). A representation v
induces a simple term |v| obtained by forgetting the branching
information (i.e. |v ⊕ •| = | • ⊕v| = |v|) and the order of
elements in a bag. Representations are used as an intermediate
data structure during the Taylor expansion.

Figure 4 defines the approximation relation v JM , where
v ranges over representations, and M over λndY-terms. We
define the function w(−) by

w(x) = 1 w(λx.v) = w(v ⊕ •) = w(• ⊕ v) = w(v)

w(v ξ) = w(v)× w(ξ) w([v1, . . . , vn]) = n!×
∏
i∈[n]

w(vi).

Definition 22. The Taylor expansion of a λndY-term M is

M∗ :=
∑
vJM

1

w(v)
|v|

where v ranges over representations.

It is not difficult to see that this coincides with the standard
definition. The definition can be easily extended to Böhm trees.
The above formal sum may not converge for Böhm trees.
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x J x

v JM

λx.v J λx.M

v JM ξ J N

v ξ JM N

v JM1

v ⊕ • JM1 ⊕M2

v JM2

• ⊕ v JM1 ⊕M2

v JM ξ J YM

v ξ J YM

∀i ∈ [n]. vi J N

[v1, . . . , vn] J N

Fig. 4. Approximation relation

B. Marked rigid resource terms

Interestingly, in order to describe the rigid Taylor expansion
(or the ESP interpretation) of a standard resource term, we
need to use a variant of rigid resource calculus that we call
the marked rigid resource calculus. This reflects a difference
between the symmetries associated to the standard resource
calculus and the symmetries associated to the λY-calculus:
see Remark 23.

In the new syntax, a list is annotated with a permutation:
µ := 〈t1, . . . , tn〉σ where σ ∈ Sn. This annotation σ does
not affect the operational semantics, which simply ignores
σ, but the action of a type isomorphism. Consider the list
µ = 〈(λx.x), (λy.y)〉 in the old syntax, whose elements are
identical (as we identify α-equivalent terms), and a = 〈?〉(
?. Let ϕ : 〈a, a〉 ∼= 〈a, a〉 be the type isomorphism swapping
the elements. Then [ϕ]µ = 〈λy.y, λx.x〉 = µ (using α-
conversion), so µ is a fixed-point of [ϕ](−). In other words the
old syntax cannot notice if the elements were really swapped.
The aim of the new syntax is to detect such swapping:
[ϕ](〈(λx.x), (λy.y)〉id) is defined as 〈(λy.y), (λx.x)〉σ (where
σ swaps 1 and 2), which has a different annotation.

We use (−)◦ to express that it is marked. For example, a
marked rigid resource raw term is written as u◦.

Remark 23. The necessity of the marks can be intuitively un-
derstood as follows. The marks are needed because a resource
term distinguishes different occurrences of the same term in
a bag. For example, consider (λf.f [f [z]]) [λx.x, λx.x]. This
is reduced to (λx.x)[(λx.x)[z]] + (λx.x)[(λx.x)[z]]. The one
is obtained by substituting the left occurrence of λx.x to the
left occurrence of f , and the other is by the left occurrence
of λx.x to the right occurrence of f ; here we distinguish the
occurrences of λx.x.

C. ESP interpretation of standard resource terms

Let v be a representation of a resource term in η-long form
with no ⊕. As before, we write ~z for a prefix of a fixed infinite
sequence z1, z2, . . .. The rigid Taylor expansion JvK of v is
defined by the rules in Fig. 5 and

JvK(∆, a) := { t̃◦ | ~z C ~x ` t◦ C v and ~z : ~b ` t◦ : a }

where ∆ = (~z : ~b). This is a generalised species by the action
of isomorphisms to rigid resource terms defined in Section IV.

It is obvious to see that the permutation of elements induces
a natural isomorphism: if v and v′ represent the same resource
term, then JvK ∼= Jv′K. So J·K is well-defined for resource
terms (provided that we do not refer to the annotations; it
is possible to check if the two annotations are equivalent,
since the equivalence of annotations is preserved by the natural
isomorphism mentioned above).

This interpretation is sound with respect to the reduction of
the resource term. Similarly to the case of λndY, a marked
rigid resource term ũ◦Cv resolves nondeterminism by, in this
case, a mapping from elements in a bag to occurrences of a
variable.

Lemma 24. Let v be a resource term and assume that nf(v) =∑
k wk. Then there exists a natural isomorphism

α∆,a : JvK(∆, a)
∼=−→
∐
k

JwkK(∆, a)

such that α∆,a(s̃◦) = ιk(ũ◦) implies nf(s̃◦) = ũ◦. Here ιk is
the k-th injection.

Let (|−|)X be the map from rigid resource terms to standard
resource terms, which replaces a list 〈u1, . . . , un〉 with a
bag [(|u1|)X , . . . , (|un|)X ], an abstraction λx1 . . . xn.t with
λy.(|t|)X,x1Cy,...,xnCy and a variable x with y s.t. (xCy) ∈ X .
We write #iso(∆, a) for the number of isomorphisms, i.e. the
number of elements in {(ψ,ϕ) | ψ : ∆ ∼= ∆′ and ϕ : a ∼= a′}.

Lemma 25. Let v be a resource term in normal form.

v =
∑

(~x:~b`ũ◦:a)∈JvK

1

#iso((~x : ~b), a)
(|ũ◦|)~zC~x

Proof. (Sketch) This follows from the following observations:
(i) if v is normal, JvK has a single orbit (i.e. any marked rigid
approximations in JvK are related by an isomorphism) and (ii)
isomorphisms (except for the identity) do not have a fixed-
point because of the annotations on ũ◦.

The next result follows from Lemmas 24 and 25.

Corollary 26. For every simple resource term v,

nf(v) =
∑

(~x:~b`ũ◦:a)∈JvK

1

#iso((~x : ~b), a)
(|nf(ũ◦)|)~zC~x.

D. Reasoning about the standard Taylor expansion
The following lemma is an explicit computation of the

Taylor expansion of the Böhm tree of a given term.

Lemma 27.

BT (M)
∗

=
∑

(~x:~b`t̃:a)∈JBT(M)K

1

#iso((~x : ~b), a)
(|t̃|)~zC~x

Proof. The claim is essentially the same as [16, Lemma 13]
because the action of an isomorphism on rigid terms in normal
form is a combination of swapping of variable occurrences and
permutation of lists.

The next theorem follows from Corollary 26, Lemma 27 and
Theorem 17 with a careful calculation; the proof is omitted
because of the page limit.

Theorem 28. nf(M∗) = BT (M)
∗
.
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y C x ` y C x
X, ~y C x ` t◦ C v x /∈ X

X ` λ~y.t◦ C λx.v
X1 ` t◦ C v X2 ` µ◦ C ξ

X1, X2 ` t◦ µ◦ C v ξ
σ ∈ Sn ∀i ∈ [n]. Xi ` t◦i C vσ(i)

X1, . . . , Xn ` 〈t◦1, . . . , t◦n〉σ C [v1, . . . , vn]

Fig. 5. The rules of the rigid Taylor expansion of the standard resource terms. Exchange rule of the assumptions in X is omitted.

VII. FUTURE WORK

For future work, we aim to develop a theory of “weighted
generalised species”. For example, an R-weighted generalised
species, where R is the ring of real numbers, is a generalised
species f : PA×Bop → Set together with the weight function
wa,b : f(a, b) → R (a ∈ PA, b ∈ B) that is preserved by the
action of morphisms in PA and B. It is natural to expect
that a probabilistic programming language can be modelled
by using R-weighted generalised species, where the weight
function associates a run of a program to its probability, and
this idea is a reminiscent of the existing models (e.g. [8, 9, 17,
38]). Furthermore we think that any SMCC can be used as
the domain of weights. In fact, the rigid Taylor expansion can
be seen as generalised species with weights from the linear
λ-calculus and this observation suggests to us the possibility
of replacing the rigid resource terms by morphisms of the
chosen SMCC. We are interested in the SMCC CPM [36]
and conjecture that CPM-weighted generalised species serve
as a model of a quantum programming language, which should
be closely related to [34].
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