
Species, Profunctors and Taylor Expansion Weighted by SMCC
A Uni�ed Framework for Modelling Nondeterministic, Probabilistic and �antum Programs

Takeshi Tsukada
�e University of Tokyo

Kazuyuki Asada
�e University of Tokyo

C.-H. Luke Ong
University of Oxford

Abstract
Motivated by a tight connection between Joyal’s combinatorial
species and quantitative models of linear logic, this paper intro-
duces weighted generalised species (or weighted profunctors), where
weights are morphisms of a given symmetric monoidal closed cat-
egory (SMCC). For each SMCCW, we show that the category of
W-weighted profunctors is a Lafont category, a categorical model
of linear logic with exponential. As a model of programming lan-
guages, the construction of this paper gives a uni�ed framework
that induces adequate models of nondeterministic, probabilistic,
algebraic and quantum programming languages by an appropriate
choice of the weight SMCC.

CCS Concepts •�eory of computation →Linear logic; Deno-
tational semantics;

Keywords quantitative model, quantum computation, generalised
species, weighted species, rigid resource calculus
ACM Reference format:
Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. 2018. Species,
Profunctors and Taylor Expansion Weighted by SMCC. In Proceedings of
LICS ’18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
Oxford, United Kingdom, July 9–12, 2018 (LICS ’18), 25 pages.
DOI: 10.1145/3209108.3209157

1 Introduction
Semantics of programming languages with branching constructs
such as nondeterministic, probabilistic, algebraic and quantum
programming languages (e.g. [8, 11, 18, 36, 43]) is an important
area of current interest. �e aim of this paper is to give a uni�ed
framework for modelling these languages.

�is paper is, of cause, not the �rst work that addresses this prob-
lem. Among others, several models (e.g. [8, 11, 28, 36]) have been
constructed using the techniques of quantitative models of linear
logic. For example, the probabilistic coherence space model [8, 11]
is a fully abstract model for probabilistic PCF; the weighted re-
lational model [28] gives a uni�ed account of nondeterministic,
probabilistic and algebraic programs; and Pagani et al. [36] give a
model of higher-order quantum programs.

�is paper proposes a general model construction of which [28]
and [36] are instances in a certain sense. A notable conceptual
di�erence is that, building on [12, 13, 42], our construction is a
cross-fertilization between combinatorial species and (quantitative)
models of λ-calculus.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or
a fee. Request permissions from permissions@acm.org.
LICS ’18, Oxford, United Kingdom
© 2018 ACM. 978-1-4503-5583-4/18/07. . .$15.00
DOI: 10.1145/3209108.3209157

1.1 Why combinatorics matters?
Let us �rst explain why combinatorics ideas would be useful at the
intuitive level. We shall see that a combinatorics problem naturally
arises in the operational semantics of programs.

Consider, for example, a programming language with probabilis-
tic branching.

Given a closed term P of the unit type, the probability of conver-
gence is usually de�ned as follows. First we de�ne the set Eval(P)
of reduction sequences π : P −→∗ (), where () is the unique
value of the unit type and π is the name of this reduction sequence.
Because of the branching construct, P may have many reduction
sequences. Each reduction sequence π ∈ Eval(P) is associated with
a real numberϖ(π) between 0 and 1, called its probability or weight.
Hence Eval(P) is not merely a set but a weighted set. �en the prob-
ability of convergence is de�ned as the sum

∑
π ∈Eval(P)ϖ(π). We

aim to apply combinatorics techniques to enumerate the elements
of Eval(P) and to compute their weights.

�e di�erence of the branching constructs (i.e. di�erences of
nondetermisitic, probabilistic, algebraic or quantum programs) is
understood as the di�erence of the domains of weights. For example,
for a nondeterministic program, a weight is an element of the two-
valued Boolean algebra; the weight function is de�ned by ϖ(π) =
true for every reduction sequence π and the sum is the disjunction;
then

∑
π :M−→∗V ϖ(π) = true if and only if ∃π .π : M −→∗ V . �is

framework applies also to quantum programs as we shall see.

1.2 Two extensions of Joyal’s combinatorial species
�e combinatorics tool that we employ for computing Eval(P) is
based on Joyal’s combinatorial species [22] (see also a textbook [6]),
which is a functor F : P → Set from the category P of �nite car-
dinals and bijections. �is notion is, indeed, closely related to
Girard’s normal functor semantics [15], pioneering work on quanti-
tative models (see, e.g., [19] for the relationship). To the purpose
of this paper, we need its weighted and higher-order extension:
the weight is used to handle weights ϖ(π) of π ∈ Eval(P) and
higher-order feature is used to deal with higher-order constructs
of programs.

�ere have been extensions in each direction.
Given a setW of weights, aW -weighted species (see, e.g., a text-

book [6]) is a species F : P→ Set together with a family of functions
ϖn : F (n) →W that respect the action of permutation. Many ideas
and operations for species can be naturally extended to weighted
species. UsuallyW is assumed to have an algebraic structure such
as ring; we shall discuss below an appropriate algebraic structure
forW in our se�ing.

Generalised species [12, 13] is a higher-order extension: Joyal’s
species can be seen as generalised species of type I → I (where
I is the unit type). Formally it is a profunctor F : !A →+ B (i.e. a
functor F : Bop × !A → Set), where ! is a linear exponential
comonad on the bicategory Prof of profunctors. �is can be seen
as a “proof-relevant version” of the relational model of linear logic.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong

Our previous work [42] shows that the interpretation of a program
P in Prof is the set Eval(P) (without weights).

�is paper develops a common extension of the two, which we
call weighted generalised species or weighted profunctor.

1.3 Key notion: weighted generalised species
�e naı̈ve combination of the above ideas leads us to consider a
profunctor F : A →+ B with a family ϖb,a : F (b,a) → W of
functions parameterised by objects a ∈ ob(A),b ∈ ob(B), where
W is a �xed set of weights. However this simple notion does not
seem to su�ce for modelling quantum programs.

�is paper considers the situation in which the weightW varies
with a and b. �e weight is not a set but a categoryW; an object
is not a category but a functor A : A → Wop, and a morphism
from A : A →Wop to B : B →Wop is what we call a weighted
profunctor from A to B, which consists of a pair of a profunctor
F : A →+ B and a family ϖb,a : F (b,a) → Wop(B(b),A(a)). To
understand this construction, we note that an element x ∈ F (b,a)
of a profunctor can be seen as a “morphism” from b to a (see, e.g.,
[5]); then the above construction associates a “morphism” from b
to a with a real morphism ϖb,a (x) : B(b) → A(a) inWop (i.e. a
real morphism A(a) → B(b) inW). Another syntactic exposition
based on a rigid variant [42] of the Taylor expansion [10] will be
given in Sections 3 and 4.

�e relevance of this construction is justi�ed by the following
facts: (1) �e resulting category has a good structure, namely, Lafont
category with biproducts if the weight categoryW is an SMCC. (2)
�e construction has a concise categorical de�nition, as (the classi-
fying 1-category of) a full sub-bicategory of the lax slice bicategory
Prof//Wop. (3) �e construction gives us an adequate model of a
programming language, in which the interpretation of a program
has a syntactic counterpart, the rigid Taylor expansion, by which a
program is interpreted as a collection of its linear approximations.

1.4 Generating series and matrices
Calculation of species and profunctors is o�en cumbersome. To
ease the computation, in the context of weighted species, one can
use the generating series. Let R be a ring and assume a weighted
species F : P→ Set with ϖn : F (n) → R such that F (n) is �nite for
every n. Its (exponential) generating series is de�ned as ‖(F ,ϖ)‖ =∑∞
n=0 ‖(F ,ϖ)‖n z

n , where z is the indeterminant and the coe�cient
is de�ned by ‖(F ,ϖ)‖n := (1/n!)

∑
x ∈F (n)ϖn (x). Many operations

can be carried out in this generating series representation.
Motivated by this idea, this paper develops a concise representa-

tion for (a subclass of) weighted profunctors. It is a matrix in-
dexed by objects of A and B whose (a,b)-entry is de�ned by
‖(F ,ϖ)‖b,a := (1/#G)

∑
x ∈F (b,a)ϖb,a (x) where G is a group de-

scribing symmetries of a and b.
�is construction is applicable only if the weight categoryW

has su�cient structure. For example, the sum
∑
x ∈F (b,a)ϖb,a (x)

of morphisms inW(A(a),B(b)) must be de�ned in order for the
above de�nition to make sense. We characterise su�ciency of
structure in terms of enriched category theory, namely, enrichment
by Σ-monoids (a class of algebras with countable sum): if the SMCC
structure ofW is enriched by Σ-monoids and satis�es an additional
requirement, then all computation of the Lafont category can be
carried out in the matrix representation.

1.5 Contributions
�is paper introduces weighted generalised species and weighted
profunctors parametrised by the weight SMCCW. �e category
Pr//Cat
Wop of W-weighted profunctors is a model of linear logic

(namely a Lafont category with biproducts) and an adequate model
of a calculus λW , into which nondeterministic, probabilistic, al-
gebraic and quantum programs can be embedded whenW is ap-
propriately chosen. Assuming additional structures forW, this
paper de�nes a category of matrices Mat(W) overW, which is
also a model of linear logic and an adequate model of λW . �is
construction generalises that of a weighted relational model [28]
and of a model of quantum programs by Pagani et al. [36] (see
Remark 5.12).

1.6 Related work
�e relational model MRel [15] is perhaps the prototypical quan-
titative model of the lambda calculus. In an e�ort to generalise
Girard’s quantitative domains [15], Lamarche introduced an im-
portant extension of the relational model, namely, the category
of weighted relations over a complete commutative semiring [29].
Characterised as the free biproduct completion of the weight semir-
ing, the weighted relational model was further developed by Laird
et al. in a series of papers [26–28]. By an appropriate choice of the
weight semiring, these weighted relational models give an adequate
semantics of nondeterministic and probabilistic PCF, with scalar
weights from the semiring.

For modelling probabilistic PCF, a related semantics, based on
probabilistic coherence spaces [8], was shown to be fully abstract by
Ehrhard et al. [11]. In the la�er paper (§5.1), the authors drew a com-
parison between the probabilistic coherence spaces interpretation
and the sum of weights of intersection type derivations. Since linear
approximations (of our present paper) can be viewed as derivations
in an intersection type system, summation of the weights of all
derivations can be related to the generating series (or the matrix
representation) of a weighted profunctor (or the rigid Taylor expan-
sion). In this sense, our paper con�rms the observation of Ehrhard
et al. in [11] from a somewhat more general perspective. A connec-
tion [11, Footnote 7, p. 313] between the probabilistic coherence
spaces and the combinatorial species interpretation [19, 22, 23] is
similarly clari�ed by our work.

In [36], Pagani et al. applied the free biproduct construction to
the known model of completely positive maps to obtain an adequate
semantics of an expressive quantum lambda calculus. A notable
advance in the denotational semantics of higher-order quantum
computation, their model can interpret not just in�nitary compu-
tation (both in�nite data types and recursion), but also general
entanglement, a de�ning feature of quantum computation. In the
Conclusion section of the paper [36], the authors observed that
their model “demonstrates that the quantum and the classical ‘uni-
verses’ work well together, but also—surprisingly—that they do not
mix too much, even at the higher-order types.” Our work clari�es
this phenomenon mathematically by organising the modelling pro-
cess into two phases, namely, enumeration and summation. �e
reason why the model supports a certain clean separation of the
two worlds (always yielding “an in�nite list of �nite-dimensional
CPMs”) can be traced to the fact that the category CPMs is ΣMon-
enriched, and, in particular, to the presence of the element “1/n”
in the monoid, for every natural number n (see Section 5 for the

Species, Profunctors and Taylor Expansion Weighted by SMCC LICS ’18, July 9–12, 2018, Oxford, United Kingdom

precise formulation). In fact, in the semantics, di�erent control
�ows (that we do not need to distinguish) are merged.

�e relational model may be generalised in quite a di�erent way,
namely, to a 2-dimensional level categorically. As set out by Fiore
[12], the conceptual basis for this class of 2-categorical models of
higher-order computation lies in combinatorics and its methods. In
a follow-up paper [13], Fiore et al. introduced the cartesian closed bi-
category of generalised species of structures, which generalises both
Joyal’s combinatorial species [22, 23] and Girard’s normal functors
semantics [15], and may be viewed as a proof-relevant extension
of the relational model. In recent work [42], we introduced rigid
resource calculus, and showed that the Taylor expansion seman-
tics (within the rigid calculus) of the nondeterministic λY-calculus
coincides with the generalised species interpretation.

Building on the correspondence between linear approximations
and non-idempotent intersection types, Mazza et al. [31, 37] have
recently developed a general 2-operadic framework for deriving
systems of intersection types that characterise normalisation prop-
erties, based on a Rel-valued profunctorial semantics of programs.
It would be interesting to clarify how their semantics relates to the
generalised species interpretation [13] (or equivalently the rigid
Taylor expansion semantics [42]), and to generalise their main re-
sult [31, �eorem 4.7] to programs with such branching constructs
as nondeterministic and probabilistic choice.

Melliès [32] has analysed the group-theoretic nature of the PER
construction in the AJM game model [1]: his orbital game is a refor-
mulation of HO-style arena games [21] with justi�cation pointers
replaced by thread indexing, modulo certain le� and right group
actions. A similar idea appears in our Section 5. Symmetry in a
similar spirit can also be found in the model of quantum computa-
tion by Pagani et al. [36], whose construction requires invariance
under certain group actions.

2 A Lambda Calculus with SMCC Data
Assume a symmetric monoidal closed category (W, ⊗,(, I), which
we call the weight category. Based on the typed calculus in Pagani et
al. [36], this section introduces a lambda calculus λW parameterised
by SMCCW, which has the objects ofW as base types and the
morphisms as constants. �e standard constructs of the lambda
calculus describes “classical” control, whereas constants fromW
manipulates “non-classical” data. A goal of Sections 3, 4 and 5 is to
give an adequate model of λW .

�e calculus λW is used as a metalanguage, which is not neces-
sarily of practical interest but �ts our model well. Its usefulness is
demonstrated by embedding calculi of interest into λW with appro-
priateW, adequately though not necessarily fully. A key example
ofW is the category CPMs , which is a model of a linear and �nite
quantum programming language (see [38, 39] for an account of
this category as a model of quantum programs). �e higher-order
quantum calculus of [36] can be embedded into λCPMs .

For space reason, we omit some rules and de�nitions; see Ap-
pendix A. For brevity, we o�en treatW as if it were a strict SMCC.

2.1 Syntax
Figure 1 shows the syntax of the calculus. �e type constructors
of the calculus are those of intuitionistic linear logic with the list
type list S and base types a, which are objects ofW. �e term
constructors are the standard ones of a λ-calculus with coprod-
uct types, constructors and a destructor of lists, nondeterministic

branching M �N , sequential execution (M ;N), recursion YV and
constants cS fromW; here either S = a1⊗· · ·⊗an (b1⊗· · ·⊗bm
and c ∈ W(a1 ⊗ · · · ⊗ an , b1 ⊗ · · · ⊗ bm), or S = b1 ⊗ · · · ⊗ bm
and c ∈ W(I , b1 ⊗ · · · ⊗ bm). For technical convenience, the ar-
guments of many constructs are restricted to values. �is does
not lose generality; for example, the term inl(M) can be wri�en
as letx = M in inl(x) for fresh x . We use MV as the syntactic
sugar of letx = M inx V for fresh x . We shall o�en omit type
annotations.

�e calculus has a type system based on the dual context linear
logic . A judgement has the form ∆ | Γ ` M : S , where ∆ and Γ
are �nite sequences of type bindings of the form x : T called type
environments. �e variables in ∆ and in Γ are non-linear and linear
ones, respectively. �e typing rules are standard, some of which
are listed in Fig. 2.

2.2 Operational semantics
A con�guration (typically C,C ′ etc.) is a triple of sequences ®x =
x1, . . . ,xn of variables and ®a = a1, . . . , an of atomic types, a mor-
phism e : I → a1 ⊗ · · · ⊗ an inW and a term | x1 : a1, . . . ,xn :
an ` M : I (note that xi is a linear variable). We write such a triple
as [®x = e,M], which intuitively means let ®x = e inM .

�e set of evaluation contexts is de�ned by the following gram-
mar: E ::= [] | E;M | letx = E inM . �e one-step evaluation
relation on con�gurations is given by the rules in Fig. 3. For a
sequence π ∈ {0, 1, 2}∗, we writeC π

−→ C ′ if there is a sequence of
the form C = C0

d1
−→ C1

d2
−→ · · ·

dn
−→ Cn = C

′ and π = d1 d2 . . .dn
where n ≥ 0 (ϵ is the empty sequence and hence the length of π
may be less than n).

A program P is a closed term of the unit I . We de�ne

Eval(P) := { π | [ϵ = idI , P]
π
−→ [ϵ = e, ()] }.

For π ∈ Eval(P), its weight w(π) is (necessarily unique) e ∈ W(I , I)
such that [ϵ = idI , P]

π
−→ [ϵ = e, ()]. Let us call a set X equipped

with a functionw : X →W aW -weighted set (or simply a weighted
set). In this terminology Eval(P) is aW(I , I)-weighted set.

In a typical situation, we are not interested in the weighted set
Eval(P) itself but its summary. For example, ifW(I , I) has sums, it
may be more appropriate to consider the sum

∑
π ∈Eval(P)ϖ(π); see

the examples in the next subsections.

2.3 Examples
Example 2.1 (Nondeterministic calculus). LetW be the terminal
category 1 consisting of one object I and one morphism (i.e. the
identity on I), which has the trivial SMCC structure. �e calculus
λ1 has nothing special except for the nondeterministic branching.
A closely related variant is given by a category B consisting of
one object I and two morphisms 0, 1 ∈ B(I , I), regarded as the
two-value boolean algebra, with composition given by the meet.
May-convergence of P is de�ned as

∨
π ∈Eval(P)ϖ(π). �e calculus

λ1 can be embedded into λB.

Example 2.2 (Probabilistic calculus). If the calculus has a proba-
bilistic branching, each reduction sequence is associated with its
probability, i.e. a real numberp with 0 ≤ p ≤ 1. �is observation mo-
tivates us to consider the weight categoryW[0,1] consisting of one
object I andW(I , I) = [0, 1], where [0, 1] = {x ∈ R | 0 < x ≤ 1}
is the interval of real numbers, with composition de�ned by the
multiplication. In this calculus one can express, for example, the

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong

S,T ::= a | S (T | I | S ⊗ T | !S | S ⊕ T | list S

M,N ,L ::= x | cS | λxS .M | V W | M �N | YV | () | M ;N | letx = M inN | !V | let !x = V inM | V ⊗W | letx ⊗ y = V inM

| inlS,T (V) | inrS,T (V) | caseV of (inl(x) : N | inr(y) : L) | NilS | V ::W | caseV of (Nil : N | x ::y : L)

V ,W ::= x | c | λxA .M | V ⊗W | !V | inlS,T (V) | inrS,T (V) | NilS | V ::W
Figure 1. Syntax of types, terms and values (syntactic sugar: MV means letx = M inx V for fresh x)

∆ | ` cS : S
∆ | Γ,x : S ` M : T

∆ | Γ ` λx .M : S (T

∆ | Γ ` M : T ∆ | Γ ` N : T
∆ | Γ ` M �N : T

∆ | ` V : !(S (T)(S (T

∆ | ` YV : S (T

∆ | Γ1 ` M : I ∆ | Γ2 ` N : T
∆ | Γ1, Γ2 ` M ;N : T

Figure 2. Simple typing rules (excerpt)

(a) Classical control �ow [®x = e,E[(λy.M)V]]
0
−→ [®x = e,E[M{V /y}]] [®x = e,E[M1 �M2]]

i
−→ [®x = e,E[Mi]]

[®x = e,E[YV]]
0
−→ [®x = e,E[V !(λx .YV x)]] [®x = e,E[case inl(V) of (x : M | y : N)]] 0

−→ [®x = e,E[M{V /x}]]

(b) “Non-classical” data [®x®a ®y
®b = e,E[c®a(®a

′

(®x)]]
0
−→ [®z®a

′

®y
®b = ((c ⊗ id®b) ◦ e),E[®z]] [x1 . . . xn = e, P]

ϵ
−→ [xσ (1) . . . xσ (n) = σ ◦ e, P]

Figure 3. Operational semantics (excerpt). Here σ is a permutation σ ∈ Sn of n elements, identi�ed with the structural isomorphism
a1 ⊗ · · · ⊗ an → aσ (1) ⊗ · · · ⊗ aσ (n) inW.

probabilistic choice of M and N as (12 ;M) � (12 ;N), where 1
2 : I is

the constant corresponding to 1/2 ∈ W(I , I). A con�guration is
(essentially) a pair of p ∈ [0, 1] and M , and [1,M] π

−→ [p,N] means
that the probability of this reduction sequence is p. �e probability
of convergence of P can be de�ned by

∑
π ∈Eval(P)w(π). If P is really

“probabilistic”, i.e. it has only nondeterministic branches of the form
(p;M)�(1 − p;N), then the sum must converge. Otherwise the sum
can be in�nite. If we want to ensure that the above sum is always
de�ned, we should replace [0, 1]with R∞

≥0 := {x ∈ R | 0 ≤ x}∪{∞}
(with 0 ×∞ = 0).

Example 2.3 (Algebraic calculus). �e commutative monoid ([0, 1],×)
in the previous example can be replaced with any other commuta-
tive monoid. Indeed a categoryW with one object I is an SMCC
if and only ifW(I , I) is a commutative monoid. Let R be a com-
mutative monoid and WR be a category with one object I and
WR (I , I) = R. In λWR , one can write a sum of terms with coe�-
cients from R, e.g. (r ;M) � (r ′;N) where r , r ′ ∈ WR (I , I) = R, as in
the algebraic lambda calculus [44]. If R has the addition operation
(i.e. R is a commutative semiring), one can de�ne the weight of con-
vergence of P by

∑
π ∈Eval(P)w(π). Here the sum may be unde�ned

since Eval(P) can be a countably in�nite set. It is always de�ned if,
for example, R is a continuous semiring as in [28].

Example 2.4 (�antum calculus 1). LetW = FdHilb be the cate-
gory of �nite dimensional Hilbert spaces, whose object is a natural
number and whose morphism f : n → m is a complex linear
function f : Cn → Cm . �is is a compact closed category with
tensor product n ⊗m := n ×m. �e quantum lambda calculus of
[36] can be embedded into λFdHilb. �e calculus λFdHilb has the
atomic type qubit := 2 and every unitary map U on qubit⊗n

as constants. �e creation new : I ⊕ I → qubit of new qubit is
given by new := λx .casex of (inl(y) : (y; |0〉) | inr(z) : (z; |1〉))

where |0〉 and |1〉 be the standard basis vectors
(

1
0

)
and

(
0
1

)
of

qubit regarded as morphisms I → qubit. �e measurement meas :
qubit→ I ⊕ I can be de�ned as the nondeterministic branching fol-
lowed by projections: meas := λx .((〈0| x); inl(I)) � ((〈1| x); inr(I))

where 〈0| = (1 0) and 〈1| = (0 1) are projections. A (typical) con-
�guration is [x1, . . . ,xn = e,M] where e is a vector in the Hilbert
space of dimension 2n (i.e. the Hilbert space qubit⊗n); note that
e is not normalised but the length indicates the probability of the
reduction, that means, the probability of [ϵ = 1, P] π

−→ [®x = e,Q]
is ‖e‖2. Hence the probability of convergence of P is de�ned as∑
π ∈Eval(P)w(π)w(π)

∗ where (−)∗ is the complex conjugate.
�is de�nition of the probability of convergence gives the same

value as in [36]. Actually there exists a bijection between the
reduction sequences in [36] and those of our calculus, which maps
[e, | ®x〉,M]

p
−→ [e ′, | ®y〉,M ′] in [36] (where e and e ′ are normalised

vectors and p is the probability of this reduction sequence) to [®x =
e,M] −→ [®y =

√
pe ′,M ′] in λFdHilb.

Example 2.5 (�antum calculus 2). LetW be the category CPMs
of completely positive maps, whose object is a natural number and
whose morphism д : n →m is a special kind of linear function from
(n×n)-matrices to (m×m)-matrices called completely positive maps
(see, e.g., [38] and [39]). Here we use only the following fact: given
a linear function f : n →m, the mapping A 7→ f Af ∗ (A an n × n-
matrix) is completely positive (where (−)∗ is the adjoint operator)
and thus a morphism n → m in CPMs . �is induces a functor
FdHilb→ CPMs preserving the compact closed structure , as well
as a translation from λFdHilb to λCPMs . �e quantum calculus of [36]
can be embedded into λCPMs via this translation. A con�guration
[®x = e, P] of λFdHilb corresponds to [®x = ee∗, P] of λCPMs . An
advantage of this is that now the probability of convergence of P is
de�ned as the standard sum

∑
π ∈Eval(P)w(π) in CPMs (I , I) � R≥0.

�is advantage is signi�cant; see Remark 5.17.

2.4 Categorical interpretation
A λW -model is a category equipped with the following structures:
(1) a linear-non-linear category [33], (2) �nite biproducts ⊕, (3) the
initial algebra of La (X) = I ⊕ (a ⊗X) for each object a, and (4) inter-
pretations of base types and constants, including Y of each type. It
is straightforward to give an interpretation of λW -terms in a λW -
model (the biproduct induces a canonical commutative-monoid

Species, Profunctors and Taylor Expansion Weighted by SMCC LICS ’18, July 9–12, 2018, Oxford, United Kingdom

enrichment, by which nondeterministic branching is interpreted).
Note that the �xed-point combinator is treated as a constant and
thus there is no guarantee that this interpretation is adequate. Ade-
quacy shall be discussed for individual models.

�ere is an appropriate notion of λW -model morphisms, which
strongly preserves the above structure. An important property
is that a λW-model morphism preserves the interpretation of a
program (up to the structural isomorphism).

3 Rigid Taylor Expansion
�is section reviews a theory of linear approximations of λW -terms,
a variant of the Taylor expansion [10] that we call the rigid Taylor
expansion [42]. �e aim of this section is to give a syntactic justi�-
cation (or understanding) of the de�nition of weighted profunctors,
which is introduced in the next section. Since most results of this
section are an adaptation of our previous work [42], we give only
a quick overview; see [42] or Appendix B for details.

3.1 Re�nement types
We �rst introduce re�nement intersection types (or re�nement types
for short), which properly describe classical control �ows of a
given term. �e syntax of re�nement types is shown in Fig. 4(a). It
parallels the syntax of simple types: each simple-type constructor
has one or two corresponding re�nement-type constructors. �e
intuitive “correspondence” of type constructors is formally de�ned
by the re�nement relation, which is a binary relation a C S between
re�nement types and simple types. Some rules are listed in Fig. 4(b).

We comment on some notable points. A re�nement of the ex-
ponential type !S is a list 〈a1, . . . ,an〉 of re�nement types ai of S .
�is re�nement type should be read as a (non-idempotent) inter-
section type a1 ∧ · · · ∧ an ; a value of this type shall be made n
copies, used in accord with a1, . . . ,an respectively. A re�nement
of the sum type S ⊕ T is either a ⊕ • or • ⊕ b. A value of type
a ⊕ • must be of the form inl(V) and a describes the usage of the
value V . A re�nement of the list type list S must be of the form
a1::a2::. . . an ::nil. It tells us the length of the list as well as the
usage of each element. Note that a re�nement type of the value V
in a case analysis caseV of (· · ·) tells us the actual branch.

�e re�nement types 〈a1,a2〉 and 〈a2,a1〉 are di�erent but closely
related. �ey both say that the value of these types shall be dupli-
cated, one copy is used as of type a1 and the other is as of type
a2. �is similarity is captured by the notion of type isomorphisms.
We write φ : a � a′ to mean that re�nements a and a′ of S are
isomorphic, of which φ is a witness (or a proof). It is de�ned by
fairly straightforward rules, some of which are found in Fig. 4(c).
Note that re�nement types are isomorphic in more than one way.
For example, consider 〈a, a〉, which is isomorphic to itself in two
ways; one relates the le� component to the le� component, and the
other relates the le� component to the right component.

For each simple type S , the collection of re�nement types of S
and isomorphisms between them forms a groupoid, which means
the existence of the following: (1) identity ida : a � a for every
a CS , (2) composite (ψ ◦φ) : a � c for every φ : a � b andψ : b � c
and (3) inverse φ−1 : b � a for every φ : a � b. We write this
groupoid as JSK.

We say that an isomorphism φ is positive if, for each negative
(i.e. contravariant) occurrence of 〈σ ;ψ1, . . . ,ψn〉 in φ, we have σ =
id. It is negative if every permutation in a covariant position is
the identity. �e groupoid JSK has a strict factorisation system:

positive (resp. negative) isomorphisms form a subcategory and
each isomorphism φ can be uniquely decomposed as φ = φ+ ◦ φ−
where φ+ is a positive isomorphism and φ− is negative. We write
JSK+ (resp. JSK−) as the positive (resp. negative) subcategory, which
is a groupoid.

3.2 Re�nement typing rules and its term representation
�e syntax of rigid resource raw-terms is given in Fig. 5. �ey are
used to represent re�nement type derivations. It has basically the
same term constructors as λW but three crucial di�erences: (1) A
rigid resource raw-term has only one branch of nondeterministic
choiceM�N and case analyses caseV of (inl(x) : M | inr(y) : N)
and caseV of (Nil : M | x ::y : N); (2) A rigid resource raw-term
has a list 〈v1, . . . ,vn〉 instead of the exponential !V ; and (3) A rigid
resource raw-term has no recursion. �anks to these changes, rigid
resource raw-terms have desirable properties: a rigid resource raw-
term has a unique reduction sequence, which must terminate; and it
is linear, i.e. each variable in a resource term is used exactly once.

We de�ne a set of rules relating resource terms and λW -terms. A
re�nement non-linear type environment, ranged over by Θ, is a �nite
sequence of type bindings of the from 〈x1, . . . ,xn〉 : 〈a1, . . . ,an〉.
We writeO for re�nement non-linear type environments consisting
of 〈〉 : 〈〉. A re�nement linear type environment, ranged over by Ξ, is
a �nite sequence of type bindings of the from x : a. �e re�nement
relations are de�ned by the following rules

ai C S (∀i ≤ n) Θ C ∆

(〈x1, . . . ,xn〉 : 〈a1, . . . ,an〉,Θ) C (y : S,∆)
a C S Ξ C Γ

(x : a,Ξ) C (y : S, Γ)
in addition to a rule relating empty environments. Note that we
only compare types but not variable names. We write (Θ | Ξ)C (∆ |
Γ) if Θ C ∆ and Ξ C Γ. A re�nement type judgement is a tuple
Θ C ∆ | Ξ C Γ ` t : a C M : S with (Θ | Ξ) C (∆ | Γ) and a C S .
We omit Ξ C Γ (resp. Θ C ∆ | Ξ C Γ) if both Ξ and Γ (resp. the four
environments) are the empty sequence. Figure 6 shows important
rules. Here ∧ is the component-wise concatenation, e.g.,
(〈x1,x2〉 : 〈a1,a2〉, 〈y1〉 : 〈b1〉) ∧ (〈〉 : 〈〉, 〈z1, z2〉 : 〈c1, c2〉)

= (〈x1,x2〉 : 〈a1,a2〉, 〈y1, z1, z2〉 : 〈b1, c1, c2〉).

By dropping some components, the rules can be seen as three
di�erent typing systems. First, by removing the le�-hand-sides
of C, the rules are a variant of those of the simple type system of
λW . Second, dropping the resource calculus part and the simple
type part results in a non-idempotent intersection type system: for
example, an instance of the exponential rule is

x : 〈®a1〉 | ` V : b1 . . . x : 〈®an〉 | ` V : bn
x : 〈®a1, . . . , ®an〉 | ` !V : 〈b1, . . . ,bn〉

.

�ird, by ignoring the right-hand-sides of C, the resulting system
can be seen as the standard type system for the linear lambda calcu-
lus without exponentials; we shall discuss this point in Section 4.2.

Although we do not have the general type isomorphism rule in
the type system, it is derivable in a sense. For example, assume
Θ C ∆ | ` 〈v1, . . . ,vn〉 : 〈a1, . . . ,an〉 C !V : S and consider the
type isomorphism φ = 〈σ ; ®id〉 : 〈a1, . . . ,an〉 � 〈aσ (1), . . . ,aσ (n)〉,
determined by a permutation σ ∈ Sn . Although we do not have
Θ C ∆ | ` 〈v1, . . . ,vn〉 : 〈aσ (1), . . . ,aσ (n)〉 C !V : S , by apply-
ing the permutation σ to the term as well as the re�nement type,
we obtain a derivable judgement Θ C ∆ | ` 〈vσ (1), . . . ,vσ (n)〉 :
〈aσ (1), . . . ,aσ (n)〉 C !V : S . A generalisation of this idea is the ac-
tion of an isomorphism φ : a � a′ to a rigid resource raw-term t ; we

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong

(a) Syntax a,b ::= a | a(b | () | a ⊗ b | 〈a1, . . . ,an〉 | a ⊕ • | • ⊕ a | nil | a::b

(b) Re�nement relation
a1 C S . . . an C S

〈a1, . . . ,an〉 C !S
a C S

a ⊕ • C S ⊕ T

b CT

• ⊕ b C S ⊕ T nil C list S

a C S b C list S

a::b C list S

(c) Type isomorphisms
φ : a′ � a ψ : b � b ′

φ(ψ : a(b � a′(b ′

σ ∈ Sn φ1 : aσ (1) � b1 . . . φn : aσ (n) � bn

〈σ ;φ1, . . . ,φn〉 : 〈a1, . . . ,an〉 C 〈b1, . . . ,bn〉

φ : a � a′ ψ : b � b ′

φ::ψ : a::b � a′::b ′

Figure 4. Syntax, re�nement relation and isomorphisms of re�nement intersection types (excerpt)

s, t ,u ::= [φ]x | cS | λxa .t | vw | t � • | • � t | () | s; t | letx = s in t | 〈v1, . . . ,vn〉 | let 〈x1, . . . ,xn〉 = v in t | v ⊗w | letx ⊗ y = s in t

| inl(v) | inr(v) | let inl(x) = v in t | let inr(x) = v in t | nil | v ::w | let nil = v in t | letx ::y = v in t

v,w ::= [φ]x | c | λxa .t | () | v ⊗w | 〈v1, . . . ,vn〉 | inl(v) | inr(v) | nil | v ::w .
Figure 5. Syntax of rigid resource raw-terms

φ : a � a′ O1 C ∆1 a C S O2 C ∆2

(O1, 〈x〉 : 〈a〉,O2) C (∆1,y : S,∆2) | ` [φ]x : a′ C y : S
φ : a � a′ O C ∆ a C S

O C ∆ | (x : a) C (y : S) ` [φ]x : a′ C y : S
O C ∆

O C ∆ | ` cS : S C cS : S

Θ C ∆ | Ξ C Γ ` t : a CM : S
Θ C ∆ | Ξ C Γ ` t � • : a CM �N : S

Θi C ∆ | ` vi : ai CV : S (∀i ≤ n)
(Θ1 ∧ · · · ∧ Θn) C ∆ | ` 〈v1, . . . ,vn〉 : 〈a1, . . . ,an〉 C !V : !S

Θ0 C ∆ | ` v : 〈b1, . . . ,bn〉(a CV : !T (T Θi C ∆ | ` wi : bi C λx .YV x : T (1 ≤ ∀i ≤ n)
(Θ0 ∧ · · · ∧ Θn) C ∆ | ` ((); (v 〈w1, . . . ,wn〉)) : a C YV : T

Θ1 C ∆ | Ξ1 C Γ1 ` v : inl(a) CV : S ⊕ T Θ2 C ∆ | (Ξ2,y : a) C (Γ2, z : T) ` t : c CM : U
(Θ1 ∧ Θ2) C ∆ | (Ξ1,Ξ2) C (Γ1, Γ2) ` let inl(y) = v in t : c C caseV of (inl(z) : M | inr(z′) : N) : U

Figure 6. Rules relating rigid resource raw-terms and λW -terms (excerpt)

write [φ] · t for the term obtained by acting φ to t . It is de�ned by
induction on t ; examples of rules are

[〈σ ;φ1, . . . ,φn〉] · 〈v1, . . . ,vn〉 := 〈[φ1] · vσ (1), . . . , [φn] · vσ (n)〉

[(φ(ψ)] · (λx .t) := λx .([ψ] · t){[φ]x/x}
[φ] · (vw) := ([(id(φ)] · v)w .

�e substitution t{v/x} is de�ned as usual except for the base case
where ([φ]x){v/x} := [φ] · v .

Lemma 3.1. �e type isomorphism rules are derivable, e.g.,

Θ C ∆ | Ξ C Γ ` t : a CM : S φ : a � a′

Θ C ∆ | Ξ C Γ ` [φ] · t : a′ CM : S and

φ : a � a′ Θ C ∆ | (Ξ,x : a′) C Γ ` t : b CM : S
Θ C ∆ | (Ξ,x : a) C Γ ` t{[φ]x/x} : b CM : S .

Let us de�ne an isomorphism φ : (Θ | Ξ) � (Θ′ | Ξ′) as a
sequence of component-wise isomorphisms. �e previous lemma
can be generalised to

φ : (Θ′ | Ξ′) � (Θ | Ξ) Θ C ∆ | Ξ C Γ ` t : b CM : S
Θ C ∆ | Ξ C Γ ` t{φ} : b CM : S

where t{φ} denotes the appropriate resource raw-term.

3.3 Enumeration of reduction sequences
�e operational semantics of the rigid calculus is de�ned analo-
gously to that of λW . A con�guration is a triple [®x = e, t] that is
well-typed in an appropriate sense, and the reduction is a relation

on con�gurations. Examples of rules are

[®x = e,E[t � •]]
1
−→ [®x = e,E[t]]

[®x = e,E[let 〈y1, . . . ,yn〉 = 〈v1, . . . ,vn〉 in t]]

0
−→ [®x = e,E[t{v1/y1, . . . ,vn/yn }]]

where E is an evaluation context, de�ned by the grammar: E ::=
[] | E; t | letx = E in t . Problematic con�gurations such as [®x =
e, let inr(x) = inl(v) in t] are �ltered out by the type system.

�e next lemma follows from the fact that a rigid resource raw-
term has neither nondeterministic branching nor recursion.

Lemma 3.2. For each con�guration [®x = e, t], there exists a unique
pair (π , e ′) such that [®x = e, t]

π
−→ [ϵ = e ′, ()].

For a program ` P : I , let us consider the set {t | ` t() C P : I }.
For each element t ∈ X of this set, we write π (t) and ϖ(t) to mean
the unique π and e such that [ϵ = idI , t]

π
−→ [ϵ = e, ()]. �e next

theorem says that the mapping t 7→ π (t) is a weight-preserving
surjection to Eval(P).

�eorem 3.3. Let P be a program. If ` t : () C P : I and [ϵ =
idI , t]

π
−→ [ϵ = e, ()], then [ϵ = idI , P]

π
−→ [ϵ = e, ()]. Conversely,

if [ϵ = idI , P]
π
−→ [ϵ = e, ()], then there exists t such that ` t :

() C P : I and [ϵ = idI , t]
π
−→ [ϵ = e, ()].

Unfortunately this is not a bijection: di�erent approximants may
induce the same computation. For example, consider re�nements

let 〈x1,x2〉 = 〈v1,v2〉 inx1⊗x2 let 〈x2,x1〉 = 〈v2,v1〉 inx1⊗x2

of let !x = !V inx⊗x (see [42] for further discussion).

Species, Profunctors and Taylor Expansion Weighted by SMCC LICS ’18, July 9–12, 2018, Oxford, United Kingdom

We have proposed in our previous work [42] a way to avoid
this redundancy by using the action of isomorphisms. Let ∼ be a
congruence on rigid resource raw-terms subsuming

v ([φ] ·w) ∼ ([(φ(id)] · v)w
letx = [φ] · t inu ∼ letx = t in (u{[φ]x/x})

let 〈x1, . . . ,xn〉 = ([〈σ ;φ1, . . . ,φn〉] · v) in t

∼ let 〈xσ −1(1), . . . ,xσ −1(n)〉 = v in t{[φ1]x1/x1, . . . , [φn]xn/xn }

and similar rules for other let-constructs. Note that ∼ is de�ned for
terms of higher-order types as well.

�eorem 3.4 ([42]). Let P be a program and assume ` ti : ()CP : I
for i = 1, 2. �en t1 ∼ t2 if and only if π (t1) = π (t2).

Given a λW-term, its rigid Taylor expansion is de�ned as the
collection of well-typed approximations of it. We write t̃ for the
equivalence class of ∼ to which t belongs.

De�nition 3.5 (Rigid Taylor expansion). Given ∆ | Γ ` M : S and
(Θ | Ξ) C (∆ | Γ), we de�ne

JMK(b, (Θ | Ξ)) := { t̃ | Θ C ∆ | Ξ C Γ ` t : b CM : S }

We call JMK the rigid Taylor expansion of M . We write (Θ | Ξ ` t̃ :
b) ∈ JMK to mean t̃ ∈ JMK(b, (Θ | Ξ)).

�eorems 3.3 and 3.4 give a bijective correspondence between
Eval(P) and JPK(ϵ, ()), which furthermore preserves the weights.
�is allows us to enumerate Eval(P) by induction on the structure
of P , even though Eval(P) is not inductively de�ned.

4 Weighted Generalised Species
We have seen in the previous section that the rigid Taylor expansion
of a program P is a weighted set equivalent to Eval(P) up to a
weight-preserving bijection, and hence in a sense adequate. �is
section gives a more “semantic” description of this result, based on
weighted generalised species (or weighted profunctors). �e result of
this section extends [42], which studies a weight-free se�ing.

4.1 Preliminary: profunctors
We brie�y recall profunctors and introduce notations. A profunctor
F from a category A to a category B (wri�en F : A →+ B) is a
functor F : Bop × A → Set. For д ∈ B(b ′,b), x ∈ F (b,a) and
f ∈ A(a,a′), we write x · f for F (b, f)(x) and д · x for F (д,a)(x).
Since F is a bifunctor, (д · x) · f = д · (x · f), which we simply write
as д · x · f .1 �e composite G ◦ F : A →+ C of F : A →+ B and
G : B →+ C can be de�ned by

(G ◦ F)(c,a) :=
(∐
b ∈B

G(c,b) × F (b,a)
)
/∼

where
∐

is the coproduct in Set and ∼ is the least equivalence
relation containing (y, f · x) ∼ (y · f ,x) for each y ∈ G(c,b ′),
f ∈ B(b ′,b) and x ∈ F (b,a). We write Prof for the bicategory of
categories, profunctors and natural transformations.

1In this paper, the action of profunctors is wri�en in the diagrammatic order in the
sense that д′ · (д · x · f) · f ′ = (д′;д) · x · (f ; f ′), where д′;д , д ◦ д′.

4.2 Properties of the rigid Taylor expansion
�is subsection studies the properties of the rigid Taylor expansion,
which shall be abstracted to the notion of weighted profunctors.

As pointed out in our previous work [42], the rigid Taylor ex-
pansion JMK of a term ∆ | Γ ` M : S is a profunctor J∆ | ΓK→+ JSK.
Here J∆ | ΓK and JSK are groupoids of re�nements and isomor-
phisms. Lemma 3.1 shows that φ : a′ � a, t̃ ∈ JMK(a, (Θ | Ξ)) and
ψ : (Θ | Ξ) � (Θ′ | Ξ′) imply �[φ−1] · t{ψ−1} ∈ JMK(a′, (Θ′ | Ξ′)).

In the situation of this paper, one can furthermore interpret the
re�nement types and rigid resource (raw-)terms inW.

�e interpretation of a simple type induces a functor S : JSK→
Wop, i.e. re�nement types and type isomorphisms can be seen as
objects and morphisms inW, respectively. Its action on objects
are de�ned via the following syntactic translation
\(a) = a \(a ⊗ b) = \(a::b) = \(a) ⊗ \(b)
\(()) = \(nil) = I \(inl(a)) = \(inr(a)) = \(a)

\(a(b) = \(a)(\(b) \(〈a1, . . . ,an〉) = \(a1) ⊗ · · · ⊗ \(an)

of a re�nement type to an IMLL formula. Its action on morphisms
is de�ned by induction on the derivation of φ : a � a′, using only
the structural isomorphisms inW.

A rigid resource (raw-)term induces a term of a linear lambda
calculus without exponential, by ignoring inl and inr and identi-
fying v ::w (resp. 〈v1, . . . ,vn〉) with v ⊗ w (resp. v1 ⊗ · · · ⊗ vn) as
well as the corresponding pa�erns. For example, letx ::y = v in t
is regarded as letx ⊗ y = v in t . �us we have an interpretation
of rigid resource (raw-)terms in the SMCCW; we write 〈|t |〉 for
this interpretation.
Lemma 4.1. Let ∆ | Γ ` M : S . (1) �e simple type S induces
a functor S : JSK → Wop from the groupoid of re�nement types
and isomorphisms. Similarly the simple type environment induces
a functor E : J(∆ | Γ)K → Wop. (2) �e rigid Taylor expansion
is a profunctor JMK : J∆ | ΓK →+ JSK of which each element t̃ ∈
JMK(a, (Θ | Ξ)) is associated with a morphism 〈|t |〉 : E(Θ | Ξ) → S(a)
inW. Furthermore 〈|·|〉 respects the action of maps in J∆ | ΓK and
JSK, i.e. S(φ) ◦ 〈|t |〉 ◦ E(ψ) = 〈|[φ−1] · t{ψ−1}|〉.

�e above syntactic translation of terms maps the reduction
rules to valid equations of the standard linear lambda calculus, by
regarding [®x = e, t] as let ®x = e in t . �anks to the well-known
soundness result of SMCCs for the linear lambda calculus, 〈|·|〉
is preserved by reduction. Hence the weight of a rigid resource
(row-)term coincides with the interpretation inW.

�eorem 4.2. If [ϵ = idI , t]
π
−→ [ϵ = e, ()], then e = 〈|t |〉.

�is theorem together with �eorems 3.3 and 3.4 provides us
with a compositional way for calculating the weighted set Eval(P).

4.3 Weighted profunctors
We introduce the notion of weighted profunctors as an abstraction
of the properties shown in Lemma 4.1.
De�nition 4.3 (Weighted category, weighted profunctor). AW-
weighted category is a pair (A,A) of a category A and a functor
A : A →Wop. AW-weighted profunctor from (A,A) to (B,B) is a
pair (F ,ϖ) of a profunctor F : A →+ B (i.e. a functor F : Bop×A →
Set) and a family of functions ϖ(b,a) : F (b,a) → W(A(a),B(b))
(a ∈ A,b ∈ B) that respects the action of A and B, i.e.,

B(д) ◦ϖ(b,a)(e) ◦A(f) = ϖ(b′,a′)(д · e · f)

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong

for every д : b ′ → b, e ∈ F (b,a) and f : a → a′. A 2-cell
α : (F ,ϖF) ⇒ (G,ϖG) is a natural transformation α : F ⇒ G
preserving weights, i.e. ϖF

(b,a)(e) = ϖ
G
(b,a)(αb,a (e)) for every e ∈

F (b,a). We o�en omit “W-” if it is clear from the context.
Weighted categories, weighted profunctors and 2-cells in Def-

inition 4.3 can be organised into a bicategory, which we write as
Prof//Cat

Wop : �e composite (G,ϖG) ◦ (F ,ϖF) of weighted profunc-
tors (F ,ϖF) : (A,A) →+ (B,B) and (G,ϖG) : (B,B) →+ (C,C)
consists of the composite profunctorG ◦F with the weight function
ϖ(c,a) : (G ◦ F)(c,a) →W(A(a),C(c)) de�ned by

ϖc,a ([(y,x)]∼) := ϖGc,b (y) ◦ϖ
F
b,a (x)

where (y,x) ∈ G(c,b) × F (b,a). �is is well-de�ned since ϖG and
ϖF respect the action of B morphisms.

We shall mainly use a 1-categorical version of the bicategory
Prof//Cat

Wop , wri�en Pr//Cat
Wop . �is is de�ned as the classifying cate-

gory Cl(Prof//Cat
Wop) [4, Section 7] of Prof//Cat

Wop , whose object is a
0-cell of Prof//Cat

Wop and whose morphism is an equivalence class
of 1-cells of Prof//Cat

Wop modulo the existence of an iso-2-cell.

4.4 Pr//Cat
Wop as a λW-model

We �rst discuss the Lafont structure of Pr//Cat
Wop . For space reasons,

we give only the overview; see Appendix C and D for the details.
�e SMCC structure of Pr//Cat

Wop follows from the SMCC structure
of Prof andW. LetA : A →Wop and B : B →Wop be weighted
categories. �e tensor product is de�ned by (A,A) ⊗̂ (B,B) ,
(A × B,A ⊗̂ B) where A ⊗̂ B , (⊗op) ◦ (A × B), i.e. (A ⊗̂ B)(a,b) =
A(a) ⊗ B(b) and (A ⊗̂ B)(f ,д) = A(f) ⊗ B(д). �is de�nition uses
the tensor products × and ⊗ of Prof andW, respectively. Its action
on morphisms (Fi ,ϖi) : (Ai ,Ai) →+ (Bi ,Bi) (i = 1, 2) is given by
(F1 ⊗̂ F2)((b1,b2), (a1,a2)) , F1(b1,a1) × F2(b2,a2) with the weight
function F1(b1,a1) × F2(b2,a2) 3 (x1,x2) 7→ ϖ1(x1) ⊗ ϖ2(x2) ∈
W(A1(a1)⊗A2(a2),B1(b1)⊗B2(b2)). �e closed structure is de�ned
similarly: (A,A) (̂ (B,B) , (Aop × B, ((op) ◦ (Aop × B)).

For any categoryW, the category Pr//Cat
Wop has (small) biprod-

ucts given by the biproduct of Prof .
We can show that Pr//Cat

Wop has free commutative comonoids, and
thus a linear exponential comonad, following the recipe of [28, 35].
It su�ces to show that Pr//Cat

Wop has symmetric tensor powers [35], i.e.
the equaliser Pn (A,A) → (A,A) of n! symmetries from (A,A)⊗̂n
to itself, and show that the equaliser is preserved by the tensor
product. �e underlying category of Pn (A,A) has as an object a
sequence (ai)i≤n of objects of A and as a morphism (ai)i → (a′i)i
a pair of permutation σ and (fi : ai → a′σ (i))i≤n .

�eorem 4.4. Pr//Cat
Wop is a Lafont category with biproducts.

Remark 4.5. In the proof of �eorem 4.4 (in Appendix C), we employ
an equivalent but categorically simpler de�nition of the bicategory
Prof//Cat

Wop , as a full sub-bicategory of the lax-slice bicategory of
Prof overWop. �ere we prove that Prof//Cat

Wop has the symmet-
ric monoidal closed structure, biproducts and symmetric tensor
powers in 2-dimensional category theory; hence if we can extend
the construction of Lafont categories in [28, 35] to 2-dimensional
category theory, we obtain a Lafont bicategory. �

�e interpretation of base type a is a functor? 7→ a : 1→Wop.
�erefore the interpretation of type a1⊗· · ·⊗an is? 7→ a1⊗· · ·⊗an :

1 → Wop. �e interpretation of constant ca1⊗···⊗an(b1⊗···⊗bm

consists of the profunctor F (?,?) := {∗} with the weight function
∗ 7→ c ∈ W(a1 ⊗ · · · ⊗ an , b1 ⊗ · · · ⊗ bm). �e interpretation of Y
is de�ned as the rigid Taylor expansion of x : !T (T ` Yx : T , in
order to establish �eorem 4.6. We expect this to coincide with the
�xed-point operator of Laird’s theorem [26, �m. 4.20], though a
proper comparison is le� for future work.

�e concrete de�nition of the λW -model structure of Pr//Cat
Wop

is tightly related to the rigid Taylor expansion. For example, for
| Γi ` Vi : Si (i = 1, 2), it is fairly easy to see that JV1K ⊗̂ JV2K

de�nes the same 1-cell of Pr//Cat
Wop as JV1 ⊗ V2K. A notable point is

that the equivalence relation ∼ in the de�nition of the composition
of profunctors (Section 4.1) coincides with the relation ∼ on rigid
resource raw-terms (Section 3.3). Hence it is also easy to show that
JN K ◦ JMK = Jletx = M inN K for | Γ ` M : S and | x : S ` N : T .

�eorem 4.6. �e interpretation of a term M in Pr//Cat
Wop coincides

with the rigid Taylor expansion JMK.

Corollary 4.7 (Adequacy). �e interpretation of a program P in
Pr//Cat
Wop coincides with the weighted set Eval(P).

5 Associated Matrix as Generating Series
�is section introduces a concise representation for (a subclass
of) weighted profunctors, inspired by the generating series of a
weighted species (see e.g. [6]). Recall that the (exponential) generat-
ing series of a weighted species (F : P→ Set, {ϖn : F (n) →W }n)
is de�ned as ‖(F ,ϖ)‖ =

∑∞
n=0 ‖(F ,ϖ)‖n z

n , where z is the indeter-
minant and the coe�cient ‖(F ,ϖ)‖n is de�ned by

‖(F ,ϖ)‖n ,
1
n!

∑
x ∈F (n)

ϖn (x)

provided that this expression makes sense (e.g. W ⊇ Q is a ring
and F (n) is �nite for every n).

Since a profunctor F : A →+ B is a functor Bop × A → Set,
the ordinary species is a special case of A = J!IK and B = JIK as
observed in [13]. �is motivates us to de�ne

‖(F ,ϖ)‖b,a := 1
#B−(b,b) #A+(a,a)

∑
x ∈F (b,a)

ϖb,a (x) (1)

(#X is cardinality of the set X ; A and B will be strict factorisation
systems, and the superscripts (−,+) refer resp. to the two classes
(E,M) of morphisms). We call ‖(F ,ϖ)‖ the associated matrix, as
it can be seen as a matrix indexed by ob(B) and ob(A), whose
elements are morphisms ofW. A remarkable di�erence from the
ordinary matrix is that the domains of elements vary with indexes.

�e weight categoryW should have additional structures for
Equation (1) to make sense. In particular, each hom-setW(A(a),B(b)),
to which ϖb,a (x) belongs, should have the summation operation∑

, as well as the multiplication with 1/(#B−(b,b) #A+(a,a)). Sec-
tion 5.1 de�nes the requirements ofW in terms of enrichment.

Section 5.2 de�nes the category of matrices with elements from
W and gives a formal de�nition of ‖·‖. Unfortunately ‖·‖ is not
even functorial. Section 5.3 introduces a subclass of profunctors,
called P-visible profunctors, on which ‖·‖ behaves well.

5.1 Σ-monoids and ΣMon-categories
Since Eval(P) can be countably in�nite, the sum in (1) can also
be countably in�nite. �is subsection introduces an algebra with

Species, Profunctors and Taylor Expansion Weighted by SMCC LICS ’18, July 9–12, 2018, Oxford, United Kingdom

countable sum, known as Σ-monoids [16, 17, 20], and the notion of
SMCCs whose hom-sets are Σ-monoids.

Let e and e ′ be expressions possibly having partial operations.
We write e v e ′ to mean that, if e is de�ned, then e ′ is also de�ned
and the values are the same; e l e ′ is a shorthand for e v e ′∧e ′ v e .

Let X be a set. A countable family in X is a pair (I ,x) of a
countable set I of indexes and a function x : I → X . We write xi for
x(i) and {xi }i ∈I for a countable family. Countable families {xi }i ∈I
and {yj }j ∈J are equivalent if there exists a bijection f : I → J such
that xi = yf (i) for every i ∈ I . Given a set X , let Fam(X) be the set
of all countable families {xi }i ∈I in X indexed by a subset of natural
numbers (i.e. I ⊆ N).

De�nition 5.1 (Σ-monoids). A pair (M,
∑
) of a nonempty setM

and a partial function
∑

: Fam(M) ⇀ M is a Σ-monoid if it satis-
�es the following conditions: (1) for every I , J ⊆ N and partition
{Ij }j ∈J of I , we have

∑
{xi }i ∈I l

∑
{
∑
i ∈Ij xi }j ∈J , and (2) for a

singleton I = {j}, we have
∑
{xi }i ∈I l x j . We say {xi }i ∈I is sum-

mable if
∑
{xi }i ∈I is de�ned. A Σ-monoid is total (aka complete)

if all countable families are summable. We o�en write
∑
i ∈I xi for∑

{xi }i ∈I . A total Σ-monoid is a commutative monoid in the usual
sense, with binary sum x1 + x2 :=

∑
i ∈{1,2} xi .

Example 5.2. Recall examples in Section 2.3. �e two-valued
Boolean algebra B(I , I) in Example 2.1 is a total Σ-monoid by dis-
junction. Both [0, 1] and R∞

≥0 in Example 2.2 are Σ-monoids by the
standard sum of reals (in R∞

≥0,
∑
i ∈I xi = ∞ if it does not converge).

�e la�er is total though the former is not. Continuous semirings
used in [28] and (countably) complete semirings used in [26] are ex-
amples of total Σ-monoids by summation. As for Examples 2.4 and
2.5, both FdHilb(n,m) and CPMs (n,m) are non-total Σ-monoids.

De�nition 5.3 (Category ΣMon). A homomorphism of Σ-monoids
is a function f : M → N such that f (

∑
i ∈I xi) v

∑
i ∈I f (xi) for

every {xi }i ∈I ∈ Fam(M). �e category ΣMon has Σ-monoids as
objects and homomorphisms of Σ-monoids as morphisms. We write
ΣMont for the full subcategory of total Σ-monoids.

We review the structure of ΣMon and ΣMont following [20].

De�nition 5.4 (Bilinear map). LetM, N and L be Σ-monoids. A
bilinear map f ∈ Bilin(M,N;L) is a functionM ×N→ L such that

f (
∑
i ∈I

xi ,y) v
∑
i ∈I

f (xi ,y) and f (x ,
∑
i ∈I

yi) v
∑
i ∈I

f (x ,yi).

�e functor Bilin(M,N;−) : ΣMon → Set is representable [20,
Proposition 3.5]; we writeM⊗N for the representation, and identify
ΣMon(M ⊗ N,L) with Bilin(M,N;L).

�e category ΣMon is an SMCC with ⊗ as the monoidal product.
�e unit is I = {0, 1} with 1+ 1 unde�ned. We have ΣMon(I ,M) �
M as sets. �e linear function space M (N is the set of homo-
morphisms with the sum de�ned by the point-wise sum.

De�nition 5.5 (ΣMon-category, ΣMon-SMCC). A ΣMon-category
is a locally small categoryW such that (1) each hom-setW(a,b)
is equipped with a Σ-monoid structure, and (2) the composition is
bilinear. A ΣMon-category is a ΣMon-SMCC if (1) the underlying
categoryW is an SMCC, (2) the action of the tensor product on
morphisms, (f ,д) 7→ (f ⊗ д), is bilinear, and (3) the bijections
W(a ⊗ b, c) � W(a,b (c) are homomorphisms of Σ-monoid.
A ΣMont -SMCC is a ΣMon-SMCCW all of whose hom-objects
W(a,b) are total Σ-monoids.

Example 5.6. �e category B(I , I) in Example 2.1 is a ΣMont -
SMCC. �e categoryW[0,1] and its variantWR∞

≥0
in Example 2.2

are ΣMon-SMCCs; the la�er is also an example of ΣMont -SMCC.
In general, one-object ΣMont -SMCCs coincide with (countably)
complete semirings in the sense of [26, De�nition 2.5]. A continuous
semiring used in [28] is an example of total Σ-monoid by summation.
FdHilb and CPMs are ΣMon-SMCCs but not ΣMont -SMCCs.

De�nition 5.7 (Reciprocal for natural numbers). LetW be a ΣMon-
category and a ∈ ob(W). Given a natural number n, we say
r ∈ W(a,a) is a reciprocal for n if

∑n
i=1 r = ida . A reciprocal

for n is unique if it exists. We write 1/n for the reciprocal for n.

Lemma 5.8. LetW be a ΣMon-category. IfW(I , I) has reciprocals
for n, then so doesW(a,a) for every a ∈ ob(W).

5.2 Associated Matrices of Weighted Profunctors
Let W be a ΣMont -SMCC, �xed below. Assume that, for each
n ∈ N, the Σ-monoidW(I , I) has the reciprocal for n.

A categoryA is countable if the collection of morphisms is count-
able (then ob(A) is also countable). It is locally-�nite if A(a,a′) is
�nite for every a,a′ ∈ ob(A). We write ob(A)/iso for the collec-
tion of isomorphic classes of objects in A.

De�nition 5.9 (Matrix category). �e matrix category Mat(W)
is de�ned by the following data. An object is a weighted category
A : A →Wop such that A is a countable, locally-�nite groupoid
with a strict factorisation system. A morphism f : (A,A) → (B,B)
is a family { fa,b : A(a) → B(b)}(a,b)∈ob(A)×ob(B) of morphisms in
W that respects the action ofA- andB-morphisms (i.e. B(д)◦ fa,b ◦
A(h) = fa′,b′ for every h : a → a′ and д : b ′ → b). Composition of
f = { fb,a } : (A,A) → (B,B) and д = {дc,b } : (B,B) → (C,C) is
de�ned by

(д ◦ f)c,a :=
∑

[b]∈ob(B)/iso
дc,b ◦ fb,a

where the sum is that ofW(A(a),C(c)). �e identity id : (A,A) →
(A,A) is de�ned by ida,a′ := 1/#A(a,a′)

∑
h∈A(a,a′)A(h).

Now we are ready to de�ne the associated matrix formally. A
profunctor F : A →+ B is said to be countable if F (a,b) is countable
for every a ∈ ob(A) and b ∈ ob(B).

De�nition 5.10 (Associated matrix). Let A,B ∈ ob(Mat(W)).
Given a W-weighted countable profunctor F : A →+ B with
weight function ϖa,b : F (a,b) → W(A(a),B(b)), the associated
matrix is a morphism ‖(F ,ϖ)‖ : A → B in Mat(W) given by (1).

A morphism f = { fa,b }a,b : (A,A) → (B,B) in Mat(W)
bijectively corresponds to a weight function ϖf for the locally-
terminal profunctor F : A →+ B (i.e. F (b,a) = {∗} for every a and
b): let us de�ne ϖf

b,a (∗) = fa,b . Although this correspondence is
not functorial, the SMCC structure of Mat(W) can be de�ned via
the correspondence. �e biproducts and symmetric tensor powers
are obtained from Pr//Cat

Wop by applying ‖·‖.

�eorem 5.11. Mat(W) is a Lafont category with countable biprod-
ucts.

Remark 5.12. �e countable biproduct completionW
∏

(cf. [26–28])
is a full subcategory of Mat(W) consisting of objects A : A →W
with A discrete. (I.e. objects ofW

∏
are countable lists of objects

ofW.) A notable di�erence is that Mat(W) is a Lafont category,

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong

whereasW
∏

is not. �e objects A of Mat(W) with nontrivial
isomorphisms (i.e. those not inW

∏
) are essential for Mat(W) to

be a Lafont category. In a related construction in [36], a morphism
is required to be invariant under the action of chosen permutations
of basis vectors. �is can be seen as a special case of requirements
for morphisms (i.e. B(д)◦ fa,b ◦A(h) = fa′,b′) in Mat(W): if (A,A)
is an interpretation of a simple type, then A(φ) is composed of
structural isomorphisms inW, which are permutations of basis
vectors ifW = CPMs . �

5.3 P-visible Weighted Profunctors
Unfortunately, as mentioned at the beginning of this section, ‖·‖ is
not functorial. �is subsection introduces a subcategory of Pr//Cat

Wop ,
which contains the interpretations of λW -terms, and to which the
restriction of ‖·‖ is a functor.

De�nition 5.13 (P-visible profunctor). Let S andT be simple types.
A countable profunctor F : JSK →+ JT K is P-visible if, for each
a ∈ JSK, b ∈ JT K and x ∈ F (b,a), there exists a rigid resource
term x : a ` t̃ : b such that �x(x) ⊆ �x(̃t) (here �x(x) = {(φ,ψ) |
φ · x · ψ = x}). A weighted profunctor is P-visible if so is the
underlying profunctor. We write (Pr//Cat

Wop)�V for the subcategory
whose objects are the interpretations of simple types and whose
morphisms are the P-visible ones.

By de�nition, the interpretation of a λW -term in Pr//Cat
Wop lives

in (Pr//Cat
Wop)�V. It has the structure of a λW-model induced by

that of Pr//Cat
Wop . �e embedding (Pr//Cat

Wop)�V → Pr//Cat
Wop strictly

preserves this structure.

Lemma 5.14. ‖·‖ : (Pr//Cat
Wop)�V → Mat(W) is a λW -model mor-

phism.

Proof. (Sketch) �e most nontrivial part is the functoriality of ‖·‖.
Let (F ,ϖF) : (A,A) →+ (B,B) and (G,ϖG) : (B,B) →+ (C,C) be
P-visible profunctors. �e key observation is that, thanks to P-
visibility, for every (y,x) ∈ G(c,b) × F (b,a) and f : b → b, we have
(y, f · x) = (y · f ,x) implies f = id. �en each equivalence class of
G(c,b) × F (b,a) by ∼ (where ∼ is that appears in the composition
of profunctors) has exactly #B(b,b) elements. Hence∑

[(y,x)]∼∈(G(c,b)×F (b,a))/∼

ϖG (y) ◦ϖF (x)

=
1

#B(b,b)
∑

(y,x)∈G(c,b)×F (b,a)

ϖG (y) ◦ϖF (x).

A calculation using this fact and #B(b,b) = #B+(b,b) × #B−(b,b)
shows ‖G ◦ F ‖c,a = (‖G‖ ◦ ‖F ‖)c,a . �

Corollary 5.15. For every program P , the interpretation of P in
Mat(W) is

∑
π ∈Eval(P)ϖ(π) where the sum is that inW(I , I).

So far, we have assumed that W is a ΣMont -SMCC with re-
ciprocals n−1 for every natural number n. We can also deal with
ΣMon-SMCCs such as FdHilb and CPMs as follows. First ΣMont
is a re�exive full subcategory of ΣMon (see [20]) and it is an ex-
ponential ideal (i.e., for every N ∈ ΣMont and M ∈ ΣMon, we
haveM(N ∈ ΣMont). A general result shows that ΣMont is an
SMCC and the adjunction between ΣMon and ΣMont is symmetric
monoidal [20, Corollary 3.9]. Let us write T : ΣMon → ΣMont
for the le� adjoint of the inclusion ΣMont → ΣMon. �anks to
a result in [30], a ΣMon-SMCCW induces a ΣMont -SMCC TW

obtained by applyingT to each hom-object. Let ηW(I, I) be the unit
W(I , I) → T (W(I , I)) = (TW)(I , I), which is injective.
�eorem 5.16 (Adequacy). Assume that W is a ΣMon-SMCCs
with reciprocals for natural numbers. For every λW program P , we
have

∑
π ∈Eval(P)ϖ(π) v ηW(I, I)(JPKMat(TW)).

Remark 5.17. Taking W = T (CPMs), this theorem shows that
Mat(W) is adequate for the calculus in [36]; indeed the model
Mat(W) is essentially the same model as in [36], at least on the in-
terpretation of types, except that [36] applies a di�erent completion
to CPMs . Although FdHilb is also ΣMon-SMCC and their calculus
can be embedded into λFdHilb, the category Mat(T (FdHilb)) is not
an adequate model. �is is because the sum in FdHilb(I , I) = C
di�ers from what we needed; recall that the meaning of a λFdHilb
program P is

∑
π ∈Eval(P)ϖ(π)ϖ(π)

∗, not
∑
π ∈Eval(P)ϖ(π). �

Acknowledgments
�e authors would like to thank Marcelo Fiore for insightful dis-
cussions. �is work was supported by JSPS KAKENHI 15H05706,
16K16004 and 18K11156, and EPSRC grant EP/M023974/1.

References
[1] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full Abstraction

for PCF. Information and Computation, 163(2):409–470, dec 2000.
[2] John C. Baez and James Dolan. Higher dimensional algebra III: n-categories and

the algebra of opetopes. Adv. Math, 135:145–206, 1998.
[3] Marek A. Bednarczyk, Andrzej M. Borzyszkowski, and Wieslaw Pawlowski.

Generalized congruences – epimorphisms in cat. �eory and Applications of
Categories, 5:266–280, 1999.

[4] Jean Bénabou. Introduction to bicategories, pages 1–77. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1967.

[5] Jean Bénabou. Distributors at work. Course notes, TU Darmstadt, 2000.
[6] François Bergeron, Gilbert Labelle, and Pierre Leroux. Combinatorial Species and

Tree-like Structures. Cambridge Univ. Press, 1997.
[7] Mario Jose Cáccamo, Martin Hyland, and Glynn Winskel. Lecture notes in

category theory. 2005.
[8] Vincent Danos and �omas Ehrhard. Probabilistic coherence spaces as a model

of higher-order probabilistic computation. Inf. Comput., 209(6):966–991, 2011.
[9] Brian Day and Ross Street. Monoidal bicategories and hopf algebroids. Advances

in Mathematics, 129(1):99 – 157, 1997.
[10] �omas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of

ordinary lambda-terms. �eor. Comput. Sci., 403(2-3):347–372, 2008.
[11] �omas Ehrhard, Christine Tasson, and Michele Pagani. Probabilistic coherence

spaces are fully abstract for probabilistic PCF. In POPL, pages 309–320, 2014.
[12] Marcelo P. Fiore. Mathematical models of computational and combinatorial

structures. In FoSSaCS, pages 25–46, 2005.
[13] Marcelo P. Fiore, Nicola Gambino, J. Martin E. Hyland, and Glynn Winskel. �e

cartesian closed bicategory of generalised species of structures. J. London Maths.
Soc., 77:203–220, 2007.

[14] Richard Garner and Michael Shulman. Enriched categories as a free cocompletion.
Advances in Mathematics, 289:1 – 94, 2016.

[15] Jean-Yves Girard. Normal functors, power series and λ-calculus. Ann. Pure Appl.
Logic, 37(2):129–177, 1988.

[16] Esfandiar Haghverdi. Partially additive categories and fully complete models of
linear logic. In TLCA, pages 197–216, 2001.

[17] Esfandiar Haghverdi and Philip J. Sco�. A categorical model for the geometry
of interaction. �eor. Comput. Sci., 350(2-3):252–274, 2006.

[18] Russell Harmer and Guy McCusker. A fully abstract game semantics for �nite
nondeterminism. In LICS, pages 422–430. IEEE Comput. Soc, 1999.

[19] Ryu Hasegawa. Two applications of analytic functors. �eor. Comput. Sci.,
272(1-2):113–175, 2002.

[20] Naohiko Hoshino. A representation theorem for unique decomposition cate-
gories. Electr. Notes �eor. Comput. Sci., 286:213–227, 2012.

[21] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III.
Information and Computation, 163(2):285–408, 2000.

[22] Andre Joyal. Une théorie combinatoire des séries formelles. Adv. Math., 42:1��82,
1981.

[23] Andre Joyal. Foncteurs analytiques et espèces de structures. In Combinatoire
Énumérative, volume 1234 of Lecture Notes in Mathematics, page 126��159.
Springer, Berlin, 1986.

[24] G. M. Kelly and Ross Street. Review of the elements of 2-categories. In Gregory M.
Kelly, editor, Category Seminar, pages 75–103, Berlin, Heidelberg, 1974. Springer
Berlin Heidelberg.

Species, Profunctors and Taylor Expansion Weighted by SMCC LICS ’18, July 9–12, 2018, Oxford, United Kingdom

[25] Stephen Lack. A 2-Categories Companion, pages 105–191. Springer New York,
2010.

[26] James Laird. Fixed points in quantitative semantics. In LICS, 2016.
[27] James Laird. From qualitative to quantitative semantics - by change of base. In

FoSSaCS, pages 36–52, 2017.
[28] Jim Laird, Giulio Manzone�o, Guy McCusker, and Michele Pagani. Weighted

relational models of typed lambda-calculi. In 28th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013,
pages 301–310, 2013.

[29] François Lamarche. �antitative domains and in�nitary algebras. �eor. Comput.
Sci., 94(1):37–62, 1992.

[30] R. B. B. Lucyshyn-Wright. Relative symmetric monoidal closed categories I:
Autoenrichment and change of base. �eory and Applications of Categories,
31:138–174, 2016.

[31] Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, �bra-
tions and intersection types. PACMPL, 2(POPL):6:1–6:28, 2018.

[32] Paul-André Melliès. Asynchronous games 1: Uniformity by group invariance.
unpublished manuscript, 2003.

[33] Paul-André Melliès. Categorical Semantics of Linear Logic. Panoramas et
Synthèses 27. 2009.

[34] Paul-André Melliès. Dialogue categories and chiralities. Publ. Res. Inst. Math.
Sci., (52):359–412, 2016.

[35] Paul-André Melliès, Nicolas Tabareau, and Christine Tasson. An explicit formula
for the free exponential modality of linear logic. In ICALP, pages 247–260, 2009.

[36] Michele Pagani, Peter Selinger, and Benoı̂t Valiron. Applying quantitative se-
mantics to higher-order quantum computing. In POPL, pages 647–658, 2014.

[37] Luc Pellissier. Réduction et Approximation Linéaires. PhD thesis, Université Paris
13, 2017.

[38] Peter Selinger. Towards a quantum programming language. Mathematical
Structures in Computer Science, 14(4):56, 2004.

[39] Peter Selinger and Benoı̂t Valiron. On a fully abstract model for a quantum
linear functional language. Electronic Notes in �eoretical Computer Science,
210(C):123–137, jul 2008.

[40] Michael Shulman. Framed bicategories and monoidal �brations. �eory and
Applications of Categories, 20(18):650–738, 2008.

[41] Michael Stay. Compact closed bicategories. �eory and Applications of Categories,
31(26):755–798, 2016.

[42] Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Generalised species of
rigid resource terms. In 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12, 2017.

[43] Takeshi Tsukada and C.-H. Luke Ong. Nondeterminism in game semantics via
sheaves. In LICS, 2015.

[44] Lionel Vaux. �e algebraic lambda calculus. Mathematical Structures in Computer
Science, 19(5):1029–1059, 2009.

[45] R.J. Wood. Abstract proarrows. I. Cah. Topologie Géom. Di�ér. Catégoriques,
23:279–290, 1982.

[46] R.J. Wood. Proarrows. II. Cah. Topologie Géom. Di�ér. Catégoriques, 26:135–168,
1985.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong

A Supplementary Materials for Section 2
A.1 Language De�nition
Figure 7 is the complete list of typing rule of the simple type system
for λW . One-step reduction relation is de�ned by the rules in Fig. 8.

Con�gurations [®x1 = e1,M1] and [®x2 = e2,M2] are α -equivalent
if M1 = M2{®x2/®x1} and e1 = e2. Given a con�guration [®x = e,M],
a path π determines uniquely up to α-equivalence a con�guration
[®y = e,N] such that [®x = e,M]

π
−→ [®y = e,N] (if exists).

Lemma A.1. Assume [®x = e,M]
π
−→ [®yi = ei ,Ni] for i = 1, 2.

�en there exists [®y′1 = e ′1,N
′
1] such that

• [®y1 = e1,N1]
ϵ
−→ [®y′1 = e ′1,N

′
1] and

• [®y′1 = e ′1,N
′
1] is α-equivalent to [®y2 = e2,N2].

Corollary A.2. If [ϵ = idI , P]
π
−→ [ϵ = ei , ()] for i = 1, 2, then

e1 = e2.

A.2 Morphisms of λW-models
De�nition A.3 (λW-model morphism). For λW-models C and
C′, a λW -model morphism F from C to C′ is a functor F : C → C′
with the following structures/properties:
• F is a linear functor, i.e.,

– F is a strong monoidal functor
– the canonical morphism F (a (b) → F (a) (′ F (b) is

isomorphic,
– F is a comonad morphism
– the comonad-morphism structure ζ : F !⇒!′F is a monoidal

natural isomorphism.
• F preserves �nite biproducts.
• F preserves the initial algebra of La (X) , I ⊕ (a ⊗ X), i.e., F

induces a functor LF from the category of La -algebras to that
of LF (a)-algebras (by the preservation of monoidal products
and coproducts), and then LF preserves the initial object.

• F preserves the interpretation of base types up to iso, and
preserves constants (inserting the canonical iso).

In this paper, we obtain not merely linear-non-linear but Lafont
categories. Between Lafont categories C and C′, one might de�ne
the following notion of morphism.

De�nition A.4 (Lafont morphism). A strong monoidal closed
functor F : C → C′ induces a strong monoidal functor CoMon(F) :
CoMon(C) → CoMon(C′) such that F ◦U = U ′ ◦ CoMon(F) (as
monoidal functors) where U and U ′ are the forgetful functors in
the following diagram:

C

F
��

R //
> CoMon(C)

CoMon(F)
��

U
oo

C′
R′ //
> CoMon(C′)
U ′
oo

�en by the bijective correspondence induced by the adjunctions
U a R and U ′ a R′ (see “internal adjunctions” in Section C.1), we
obtain a canonical natural transformation φ : CoMon(F) ◦ R ⇒
R′ ◦ F from the identity id : U ′ ◦ CoMon(F) ⇒ F ◦U . �en F is a
Lafont functor if this φ is isomorphic.

Note that, for a strong monoidal closed functor, being a linear
functor (as in De�nition A.3) requires a structure (i.e., ζ), while

being a Lafont functor is a property. Still, in fact, the two notions
are equivalent for functors between Lafont categories:

Proposition A.5. For a functor F between Lafont categories C and
C′, if F is a linear functor, then the comonad-morphism structure
ζ : F !⇒!′F is necessarily the canonical one, i.e. ζ = U ′ ◦ φ where φ
is de�ned in De�nition A.4. �en F is a Lafont functor.

Conversely, any Lafont functor is a linear functor (with the canon-
ical structure ζ = U ′ ◦ φ).

Proof. We �rst show the former statement. By ζ : F ◦ U ◦ R ⇒
U ′◦R′◦F , we can construct a natural isomorphismφ ′ : CoMon(F)◦
R ⇒ R′ ◦ F such that

U ′ ◦ φ ′ = ζ .

(To construct a comonoid homomorphism φ ′A : CoMon(F)(RA) →
R′FA, the underlying morphism is given by ζ , as required. �en this
is comonoid homomorphism because ζ is by de�nition a monoidal
natural transformation and hence respects the comonoid struc-
tures.) �en, recall that the canonical natural transformation φ is
de�ned from the identity id : U ′ ◦ CoMon(F) ⇒ F ◦U , and hence

(ε ′ ◦ F) • (U ′ ◦ φ) = F ◦ ε : U ′ ◦ CoMonF ◦ R ⇒ F .

Also, by de�nition of comonad morphism ζ , we have
F ◦ ε = (ε ′ ◦ F) • ζ = (ε ′ ◦ F) • (U ′ ◦ φ ′).

Since the mapping (ε ′ ◦ F) • (U ′ ◦ (−)) is bijective, we have φ = φ ′,
and hence

ζ = U ′ ◦ φ ′ = U ′ ◦ φ.

Since U ′ re�ects isormophism, φ is isomorphic and hence F is a
Lafont functor.

On the converse statement, the canonical natural transformation
φ is necessarily a monoidal natural transformation (to calculate
this, use the bijection (ε ′ ◦ F) • (U ′ ◦ (−))), and hence we have the
monoidal comonad-morphism structure ζ = U ′ ◦ φ. �

B Supplementary Materials for Section 3
B.1 On re�nement types
Figure 9 is the list of rules for the re�nement relation. Figure 10
de�nes isomorphisms between re�nement types. Here we write φ :
a
+
� a′ (resp. φ : a

−
� a′) to mean that φ is a positive (resp. negative)

isomorphism. We write φ : a � a′ if the polarity of φ is not
important.

For φ : a � a′ andψ : a′ � a′′, their composite (ψ ◦ φ) : a � a′′

is de�ned in a natural way. For example,

(ψ1 ⊗ψ2) ◦ (φ1 ⊗ φ2) , (ψ1 ◦ φ1) ⊗ (ψ2 ◦ φ2)

and
〈σ ′; (ψj)j 〉 ◦ 〈σ ; (φi)i 〉 , 〈σ ◦ σ ′; (ψj ◦ φσ ′(j))j 〉.

�e de�nition of the inverse is also straightforward, e.g.,

(φ ⊗ψ)−1 , φ−1 ⊗ψ−1

and
〈σ ;φ1, . . . ,φn〉

−1 , 〈σ−1;φσ −1(1), . . . ,φσ −1(n)〉.

�e de�nition of the identity is obvious.

Lemma B.1. Every φ : a � a′ can be uniquely factorised as φ =

ψ+1 ◦ψ
−
1 withψ−1 : a

−
� a′′ andψ+1 : a′′

+
� a′ for some a′′. Similarly

every φ : a � a′ can also be uniquely factorised as φ = ψ−2 ◦ψ
+
1 .

Species, Profunctors and Taylor Expansion Weighted by SMCC LICS ’18, July 9–12, 2018, Oxford, United Kingdom

∆ | x : S ` x : S ∆,x : S | ` x : S
c ∈ W(a1 ⊗ · · · ⊗ an , a

′
1 ⊗ · · · ⊗ a′m)

∆ | ` c : a1 ⊗ · · · ⊗ an (a′1 ⊗ · · · ⊗ a′m

∆ | Γ,x : S ` M : T
∆ | Γ ` λx .M : S (T

∆ | Γ1 ` V : S (T ∆ | Γ2 `W : S
∆ | Γ1, Γ2 ` V W : T

∆ | Γ ` M : T ∆ | Γ ` N : T
∆ | Γ ` M �N : T

∆ | ` V : !(S (T)(S (T

∆ | ` YV : S (T

∆ | ` () : I
∆ | Γ1 ` M : I ∆ | Γ2 ` N : T

∆ | Γ1, Γ2 ` M ;N : T
∆ | Γ1 ` M : S ∆ | Γ2,x : S ` N : T

∆ | Γ1, Γ2 ` letx = M inN : T

∆ | ` V : T
∆ | ` !V : !T

∆ | Γ1 ` V : !S ∆,x : S | Γ2 ` N : T
∆ | Γ1, Γ2 ` let !x = V inN : T

∆ | Γ1 ` V : S ∆ | Γ2 `W : T
∆ | Γ1, Γ2 ` V ⊗W : S ⊗ T

∆ | Γ1 ` V : S ⊗ S ′ ∆ | Γ2,x : S,x ′ : S ′ ` M : T
∆ | Γ1, Γ2 ` letx ⊗ x ′ = V inM : T

∆ | Γ ` V : S
∆ | Γ ` inl(V) : S ⊕ T

∆ | Γ `W : T
∆ | Γ ` inr(W) : S ⊕ T

∆ | Γ1 ` V : S ⊕ S ′ ∆ | Γ2,x : S ` M : T ∆ | Γ2,x ′ : S ′ ` N : T
∆ | Γ1, Γ2 ` caseV of (inl(x) : M | inr(x ′) : N) : T

∆ | ` Nil : listT
∆ | Γ1 ` V : T ∆ | Γ2 `W : listT

∆ | Γ1, Γ2 ` V ::W : listT

∆ | Γ1 ` V : list S ∆ | Γ2 ` M : T ∆ | Γ2,x : S,y : list S ` N : T
∆ | Γ1, Γ2 ` caseV of (Nil : M | x ::y : N) : T

∆ | x1 : S1, . . . ,xn : Sn ` M : T σ ∈ Sn

∆ | xσ (1) : Sσ (1), . . . ,xσ (n) : Sσ (n) ` M : T
x1 : S1, . . . ,xn : Sn | Γ ` M : T σ ∈ Sn

xσ (1) : Sσ (1), . . . ,xσ (n) : Sσ (n) | Γ ` M : T

Figure 7. Simple typing rules (Sn is the set of permutations of n elements)

Proof. By induction on the size of a. (We need the induction hy-
pothesis of the la�er claim to prove the former when a = a1 (a2.)

�e only nontrivial case is thatφ = 〈σ ;φ1, . . . ,φn〉 : 〈a1, . . . ,an〉 �
〈a′1, . . . ,a

′
n〉. Let us decompose it into ψ+ ◦ψ−; the other case is

similar. �en φi : aσ (i) � a′i . By the induction hypothesis, we have
φi = ψ

+
i ◦ψ

−
i for each i . Let

φ+ , 〈σ ;ψ+1 , . . . ,ψ
+
n 〉

φ− , 〈id;ψ−σ −1(1), . . . ,ψ
−
σ −1(n)〉.

�en

φ+ ◦ φ− = 〈σ ; (ψ+i ◦ψ
−
σ (σ −1(i)))i 〉 = φ.

�

Isomorphisms between re�nement type environments is de�ned
as follows. For type bindings of non-linear type environments, we
de�ne

σ ∈ Sn φi : aσ (i) � a′ (∀i ≤ n)

〈σ ;φ1, . . . ,φn〉 : (〈®x〉 : 〈®a〉) � (〈®y〉 : 〈 ®a′〉)
.

�en we de�ne

φi : (〈®xi 〉 : 〈®ai 〉) � (〈®yi 〉 : 〈 ®a′i 〉) (∀i ≤ n)

(φ1, . . . ,φn) : (〈®x1〉 : 〈®a1〉, . . . , 〈®xn〉 : 〈®an〉)
� (〈®y1〉 : 〈 ®a′1〉, . . . , 〈®yn〉 : 〈 ®a′n〉)

and
φi : ai � a′i (∀i ≤ n)

(φ1, . . . ,φn) : (x1 : a1, . . . ,xn : an) � (y1 : a′1, . . . ,yn : a′n)
.

Finally
φ : Θ � Θ′ ψ : Ξ � Ξ′

(φ,ψ) : (Θ | Ξ) � (Θ′ | Ξ′) .

B.2 On the rigid resource calculus
Figures 11 and 12 give the complete list of rules relating rigid
resource raw-terms and λW -terms.

We de�ne substitution and action of isomorphisms. We �rst
de�ne a special kind of substitution, t{[φ]x/y}: it is the same as
the standard substitution but

([ψ]y){[φ]x} , [ψ ◦ φ]x .

�e action of isomorphism is de�ned by the rules in Fig. 13. �en we

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong

(a) Classical control �ow

[®x = e,E[(λy.M)V]]
0
−→ [®x = e,E[M{V /y}]]

[®x = e,E[M1 �M2]]
i
−→ [®x = e,E[Mi]]

[®x = e,E[YV]]
0
−→ [®x = e,E[V !(λx .YV x)]]

[®x = e,E[();M]] 0
−→ [®x = e,E[M]]

[®x = e,E[lety = V inM]]
0
−→ [®x = e,E[M{V /y}]]

[®x = e,E[let !y = !V inM]]
0
−→ [®x = e,E[M{V /y}]]

[®x = e,E[lety ⊗ z = V ⊗W inM]]
0
−→ [®x = e,E[M{V /y,W /z}]]

[®x = e,E[case inl(V) of (x : M | y : N)]] 0
−→ [®x = e,E[M{V /x}]]

[®x = e,E[case inr(V) of (x : M | y : N)]] 0
−→ [®x = e,E[N {V /x}]]

[®x = e,E[case Nil of (Nil : M | y::z : N)]] 0
−→ [®x = e,E[M]]

[®x = e,E[caseV ::W of (Nil : M | y::z : N)]] 0
−→ [®x = e,E[N {V /y,W /z}]]

(b) “Non-classical” data [®x®a ®y
®b = e,E[c®a(®a

′

(®x)]]
0
−→ [®z®a

′

®y
®b = ((c ⊗ id®b) ◦ e),E[®z]]

[x1 . . . xn = e, P]
ϵ
−→ [xσ (1) . . . xσ (n) = σ ◦ e, P].

Figure 8. Operational semantics. Here σ is a permutation σ ∈ Sn of n elements, identi�ed with the structural isomorphism a1 ⊗ · · · ⊗ an →
aσ (1) ⊗ · · · ⊗ aσ (n) inW.

a C a

a C S b CT

a(b C S (T () C I

a C S b CT

a ⊗ b C S ⊗ T

a1 C S . . . an C S

〈a1, . . . ,an〉 C !S

a C S

a ⊕ • C S ⊕ T

b CT

• ⊕ b C S ⊕ T nil C list S

a C S b C list S

a::b C list S
Figure 9. Re�nement relation

ida : a
±
� a

φ : a′
∓
� a ψ : b

±
� b ′

φ(ψ : a(b
±
� a′(b ′ id() : ()

±
� ()

φ : a
±
� a′ ψ : b

±
� b ′

φ ⊗ψ : a ⊗ b
±
� a′ ⊗ b ′

φ : a
±
� a′

φ ⊕ • : a ⊕ •
±
� a′ ⊕ •

ψ : a
±
� a′

• ⊕ψ : • ⊕ a
±
� • ⊕ a′ idnil : nil

±
� nil

φ : a
±
� a′ ψ : b

±
� b ′

φ::ψ : a::b
±
� a′::b ′

σ ∈ Sn φ1 : aσ (1)
+
� b1 . . . φn : aσ (n)

+
� bn

〈σ ;φ1, . . . ,φn〉 : 〈a1, . . . ,an〉
+
� 〈b1, . . . ,bn〉

φ1 : aσ (1)
−
� b1 . . . φn : aσ (n)

−
� bn

〈id;φ1, . . . ,φn〉 : 〈a1, . . . ,an〉
−
� 〈b1, . . . ,bn〉

Figure 10. Isomorphisms between re�nement types with polarity annotation (double sign in same order)

de�ne the general substitution t{u/x} as the standard substitution
but

([φ]x){u/x} , [φ] · u .

�e two de�nitions of t{[φ]x/y} coincide.
�e action of φ : (Θ | Ξ) � (Θ′ | Ξ′) to rigid resource raw-terms

is de�ned as follows.

• Assume (Θ, 〈x1, . . . ,xn〉 : 〈a1, . . . ,an〉,Θ′) C ∆ | Ξ C Γ ` t :
b CM : S .

– Let σ ∈ Sn , which induces an isomorphism

φ : (Θ, 〈y1, . . . ,yn〉 : 〈aσ (1), . . . ,aσ (n)〉,Θ′ | Ξ)
� (Θ, 〈x1, . . . ,xn〉 : 〈a1, . . . ,an〉,Θ

′ | Ξ).

For this case, we de�ne t{φ} , t{y1/xσ (1), . . . ,yn/xσ (n)}.

Species, Profunctors and Taylor Expansion Weighted by SMCC LICS ’18, July 9–12, 2018, Oxford, United Kingdom

φ : a � a′ O1 C ∆1 a C S O2 C ∆2

(O1, 〈x〉 : 〈a〉,O2) C (∆1,y : S,∆2) | ` [φ]x : a′ C y : S
φ : a � a′ O C ∆ a C S

O C ∆ | (x : a) C (y : S) ` [φ]x : a′ C y : S
O C ∆

O C ∆ | ` cS : S C cS : S

Θ C ∆ | (Ξ,x : a) C (Γ,x : S) ` t : b CM : T
Θ C ∆ | Ξ C Γ ` λx .t : a(b C λx .M : S (T

Θ1 C ∆ | Ξ1 C Γ1 ` v : a(b CV : S (T Θ2C | Ξ2 C Γ2 ` w : a CW : S
(Θ1 ∧ Θ2) C ∆ | (Ξ1,Ξ2) C (Γ1, Γ2) ` vw : b CV W : T

Θ C ∆ | Ξ C Γ ` t : a CM : S
Θ C ∆ | Ξ C Γ ` t � • : a CM �N : S

Θ C ∆ | Ξ C Γ ` t : a C N : S
Θ C ∆ | Ξ C Γ ` • � t : a CM �N : S O C ∆ | ` () : () C () : I

Θ0 C ∆ | ` v : 〈b1, . . . ,bn〉(a CV : !T (T Θi C ∆ | ` wi : bi C λx .YV x : T (1 ≤ ∀i ≤ n)
(Θ0 ∧ · · · ∧ Θn) C ∆ | ` ((); (v 〈w1, . . . ,wn〉)) : a C YV : T

Θ1 C ∆ | Ξ1 C Γ1 ` s : () CM : I Θ2 C ∆ | Ξ2 C Γ2 ` t : a C N : S
(Θ1 ∧ Θ2) C ∆ | (Ξ1,Ξ2) C (Γ1, Γ2) ` s; t : a CM ;N : S

Θ1 C ∆ | Ξ1 C Γ1 ` s : a CM : S Θ2 C ∆ | (Ξ2,x : a) C (Γ2,y : S) ` t : b C N : T
(Θ1 ∧ Θ2) C ∆ | (Ξ1,Ξ2) C (Γ1, Γ2) ` letx = s in t : b C lety = M inN : T

Θi C ∆ | ` vi : ai CV : S (∀i ≤ n)
(Θ1 ∧ · · · ∧ Θn) C ∆ | ` 〈v1, . . . ,vn〉 : 〈a1, . . . ,an〉 C !V : !S

Θ1 C ∆ | Ξ1 C Γ1 ` v : 〈a1, . . . ,an〉 CV : !S (Θ2, 〈x1, . . . ,xn〉 : 〈a1, . . . ,an〉) C (∆,y : S) | Ξ2 C Γ2 ` t : b C N : T
(Θ1 ∧ Θ2) C ∆ | (Ξ1,Ξ2) C (Γ1, Γ2) ` let 〈x1, . . . ,xn〉 = v in t : b C let !y = M inN : T

Θ1 C ∆ | Ξ1 C Γ1 ` v : a CV : S Θ2 C ∆ | Ξ2 C Γ2 ` w : b CW : T
(Θ1 ∧ Θ2) C ∆ | (Ξ1,Ξ2) C (Γ1, Γ2) ` v ⊗w : a ⊗ b CV ⊗W : S ⊗ T

Θ1 C ∆ | Ξ1 C Γ1 ` v : a ⊗ a′ CV : S ⊗ S ′ Θ2 C ∆ | (Ξ2,x : a,y′ : a′) C (Γ1,y : S,y′ : S ′) ` t : b CM : T
(Θ1 ∧ Θ2) C ∆ | (Ξ1,Ξ2) C (Γ1, Γ2) ` letx ⊗ x ′ = v in t : c C lety ⊗ y′ = V inM : T

Θ C ∆ | Ξ C Γ ` v : a CV : S
Θ C ∆ | Ξ C Γ ` inl(v) : a ⊕ • C inl(V) : S ⊕ T

Θ C ∆ | Ξ C Γ ` v : b CV : T
Θ C ∆ | Ξ C Γ ` inr(v) : • ⊕ b C inr(V) : S ⊕ T

Θ1 C ∆ | Ξ1 C Γ1 ` v : a ⊕ • CV : S ⊕ T Θ2 C ∆ | (Ξ2,x : a) C (Γ2,y : S) ` t : c C N : U
(Θ1 ∧ Θ2) C ∆ | (Ξ1,Ξ2) C (Γ1, Γ2) ` let inl(x) = v in t : c C caseV of (inl(y) : N | inr(y′) : N ′) : U

Θ1 C ∆ | Ξ1 C Γ1 ` v : • ⊕ b CV : S ⊕ T Θ2 C ∆ | (Ξ2,x ′ : b) C (Γ2,y′ : T) ` t ′ : c C N ′ : U
(Θ1 ∧ Θ2) C ∆ | (Ξ1,Ξ2) C (Γ1, Γ2) ` let inr(x ′) = v in t ′ : c C caseV of (inl(y) : N | inr(y′) : N ′) : U

O C ∆ | ` nil : nil C Nil : list S
Θ1 C ∆ | Ξ1 C Γ1 ` v : a CV : S Θ2 C ∆ | Ξ2 C Γ2 ` w : b CW : list S

(Θ1 ∧ Θ2) C ∆ | (Ξ1,Ξ2) C (Γ1, Γ2) ` v ::w : a::b CV ::W : list S

Θ1 C ∆ | Ξ1 C Γ1 ` v : nil CV : list S Θ2 C ∆ | Ξ2 C Γ2 ` t : b CM : T
(Θ1 ∧ Θ2) C ∆ | (Ξ1,Ξ2) C (Γ1, Γ2) ` let nil = v in t : b C caseV of (Nil : M | y::y′ : N) : T

Θ1 C ∆ | Ξ1 C Γ1 ` v : a::a′ CV : list S Θ2 C ∆ | (Ξ2,x : a,x ′ : a′) C (Γ2,y : S,y′ : list S) ` t : b C N : T
(Θ1 ∧ Θ2) C ∆ | (Ξ1,Ξ2) C (Γ1, Γ2) ` letx ::y = v in t : b C caseV of (Nil : M | y::y′ : N) : T

Figure 11. Rules relating rigid resource raw-terms and λW -terms

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong

(Θ1, 〈x1, . . . ,xn〉 : 〈a1, . . . ,an〉,Θ2) C ∆ | Ξ C Γ ` t : b CM : T σ ∈ Sn

(Θ1, 〈xσ (1), . . . ,xσ (n)〉 : 〈aσ (1), . . . ,aσ (n)〉,Θ2) C ∆ | Ξ C Γ ` t : b CM : T

Θ C ∆ | (Ξ1,x : a,x ′ : a′,Ξ2) C (Γ1,y : S,y′ : S ′, Γ2) ` t : b CM : T Ξ1 C Γ1 Ξ2 C Γ2

Θ C ∆ | (Ξ1,x ′ : a′,x : a,Ξ2) C (Γ1,y′ : S ′,y : S, Γ2) ` t : b CM : T

(Θ1, 〈®x〉 : 〈®a〉, 〈®x ′〉 : 〈®a′〉,Θ2) C (∆1,y : S,y′ : S ′,∆2) | Ξ C Γ ` t : b CM : T Θ1 C ∆1 Θ2 C ∆2

(Θ1, 〈®x ′〉 : 〈®a′〉, 〈®x〉 : 〈®a〉,Θ2) C (∆1,y′ : S ′,y : S,∆2) | Ξ C Γ ` t : b CM : T
Figure 12. Rules relating rigid resource raw-terms and λW -terms (structural rules)

[φ] · ([ψ]x) := [φ ◦ψ]x
[φ] · c := c

[(φ(ψ)] · (λx .t) := λx .([ψ] · t){[φ]x/x}
[φ] · (vw) := ([(id(φ)] · v)w

[φ] · (t � •) := ([φ] · t) � •
[φ] · (• � t) := • � ([φ] · t)
[φ] · () := ()

[φ] · (s; t) := s; ([φ] · t)
[φ] · (letx = s in t) := letx = s in ([φ] · t)

[〈σ ;φ1, . . . ,φn〉] · 〈v1, . . . ,vn〉 := 〈[φ1] · vσ (1), . . . , [φn] · vσ (n)〉

[φ] · (let 〈x1, . . . ,xn〉 = v in t) := let 〈x1, . . . ,xn〉 = v in ([φ] · t)

[(φ ⊗ψ)] · (v ⊗w) := ([φ] · v) ⊗ ([ψ] ·w)
[φ] · (letx ⊗ y = v in t) := letx ⊗ y = v in ([φ] · t)

[inl(φ)] · inl(v) := inl([φ] · v)

[inr(φ)] · inr(v) := inr([φ] · v)

[φ] · (let inl(x) = v in t) := let inl(x) = v in ([φ] · t)

[φ] · (let inr(x) = v in t) := let inr(x) = v in ([φ] · t)

[φ] · (let nil = v in t) := let nil = v in ([φ] · t)

[φ] · nil := nil

[(φ::ψ)] · (v ::w) := ([φ] · v)::([ψ] ·w)
[φ] · (letx ::y = v in t) := letx ::y = v in ([φ] · t)

Figure 13. Action of isomorphisms to rigid resource raw-terms

– Assume φi : a′i � ai for each i ≤ n. �is family induces an
isomorphism

φ : (Θ, 〈x ′1, . . . ,x
′
n〉 : 〈a′1, . . . ,a

′
n〉,Θ

′ | Ξ)

� (Θ, 〈x1, . . . ,xn〉 : 〈a1, . . . ,an〉,Θ
′ | Ξ).

We de�ne t{φ} , t{[φ1]x ′1/x1, . . . , [φn]x ′n/xn }.
• Assume ΘC∆ | (Ξ,x : a,Ξ′)CΓ ` t : bCM : S . �en φ : a′ � a

induces an isomorphism

φ : (Θ | Ξ,x ′ : a′,Ξ′) � (Θ | Ξ,x : a,Ξ′).

We de�ne t{φ} , t{[φ]x ′/x}.

Every isomorphism φ : (Θ | Ξ) � (Θ′ | Ξ′) can be wri�en as a
composition of above ones.

�e one-step reduction relation is de�ned by the rules in Fig. 14,
where the evaluation context is given by the grammar: E ::= [] |
E; t | letx = E in t .

�e equivalence relation ∼ is de�ned as the least congruence
that contains the rules in Fig. 15.

As the re�nement system can be seen as an intersection type
system, it enjoys Subject Reduction (Lemma B.2) and Subject Ex-
pansion (Lemma B.3). �eorem 3.3 follows from these results.

Lemma B.2. Let | (x1 : a1, . . . ,xn : an) C (y1 : a1, . . . ,yn : an) `
t : () C M : I . Suppose [®x = e, t]

π
−→ [®x ′ = e ′, t ′] and let a′i for

the type of x ′i . �en there exists M ′ and ®y′ such that [®y = e,M]
π
−→

[®y′ = e ′,M ′] and | (x ′1 : a′1, . . . ,x
′
m : a′n)C (y′1 : a′1, . . . ,y

′
m : a′m) `

t ′ : () CM ′ : I .

Proof. Similar to the standard proof of Subject Reduction. �e claim
is proved by induction on the length of the reduction sequence. �e
base case can be proved by using a kind of Substitution Lemma. �

Lemma B.3. Let | (x1 : a1, . . . ,xn : an) C (y1 : a1, . . . ,yn :
an) ` t : () C M : I . Suppose [®y′ = e ′,M ′]

π
−→ [®y = e,M]

and let a′i for the type of y′i . �en there exists t ′ and ®x ′ such that

[®y′ = e ′,M ′]
π
−→ [®y = e,M] and | (x ′1 : a′1, . . . ,x

′
m : a′n) C (y′1 :

a′1, . . . ,y
′
m : a′m) ` t ′ : () CM ′ : I .

Proof. Similar to the standard proof of Subject Expansion; De-
substitution Lemma is the key to the base cases. �

Careful inspection of the proof of Subject Expansion (Lemma B.3)
leads to �eorem 3.4. De-subsbitution Lemma says that, if t C
M{V /x}, then t can be decomposed as t = t ′{v/x} so that t ′ CM
and v CV . To prove �eorem 3.4, it su�ces to show that such a
decomposition is unique up to (an extension of) ∼.

C Proof of �eorem 4.4
Here we give a complete de�nition of the Lafont category Pr//Cat

Wop

and its proof. In Appendix D, we give a concrete description of the
structure given here. A reader who is not familiar with (2-)category
theory can skip this section or see Appendix D at the same time.

To de�ne our Lafont category, we shall use the construction
in [35][28, Proposition II.3], which says that a Lafont category C
can be constructed from:
• an SMCC structure (⊗, I ,() of C
• countable biproducts in C

Species, Profunctors and Taylor Expansion Weighted by SMCC LICS ’18, July 9–12, 2018, Oxford, United Kingdom

[®x = e,E[(λx .t)v]]
0
−→ [®x = e,E[t{v/x}]]

[®x = e,E[t � •]]
1
−→ [®x = e,E[t]]

[®x = e,E[• � t]]
2
−→ [®x = e,E[t]]

[®x = e,E[(); t]] 0
−→ [®x = e,E[t]]

[®x = e,E[lety = v in t]]
0
−→ [®x = e,E[t{v/y}]]

[®x ®y = e,E[c ®x]]
0
−→ [®z ®y = (c ⊗ id) ◦ e,E[®z]]

[®x = e,E[let 〈y1, . . . ,yn〉 = 〈v1, . . . ,vn〉 in t]]
0
−→ [®x = e,E[t{v1/y1, . . . ,vn/yn }]]

[®x = e,E[lety ⊗ z = v ⊗w in t]]
0
−→ [®x = e,E[t{v/y,w/z}]]

[®x = e,E[let inl(y) = inl(v) in t]]
0
−→ [®x = e,E[t{v/y}]]

[®x = e,E[let inr(y) = inr(v) in t]]
0
−→ [®x = e,E[t{v/y}]]

[®x = e,E[let nil = nil in t]]
0
−→ [®x = e,E[t]]

[®x = e,E[lety::z = v ::w in t]]
0
−→ [®x = e,E[t{v/y,w/z}]]

[®x = e, t]
ϵ
−→ [σ ®x = σ ◦ e, t]

Figure 14. Operational semantics of the rigid resource calculus

v ([φ] ·w) ∼ ([(φ(id)] · v)w
letx = [φ] · t inu ∼ letx = t in (u{[φ]x/x})

let 〈x1, . . . ,xn〉 = ([〈σ ;φ1, . . . ,φn〉] · v) in t ∼ let 〈xσ −1(1), . . . ,xσ −1(n)〉 = v in t{[φ1]x1/x1, . . . , [φn]xn/xn }

letx ⊗ y = ([φ ⊗ψ] · v) in t ∼ letx ⊗ y = v in t{[φ]x/x , [ψ]y/y}

let inl(x) = ([inl(φ)] · v) in t ∼ let inl(x) = v in t{[φ]x/x}

let inr(x) = ([inr(φ)] · v) in t ∼ let inr(x) = v in t{[φ]x/x}

letx ::y = ([φ::ψ] · v) in t ∼ letx ::y = v in t{[φ]x/x , [ψ]y/y}

Figure 15. Base cases of the relation ∼

• symmetric tensor powers (i.e., equalisers of “symmetry” arrows
in C that are preserved by (−) ⊗ b for any object b in C).

�e underlying category of our Lafont model is induced by a bicate-
gory, so below we shall give the above structures for the bicategory.

C.1 Preliminaries on 2-(bi)category theory
Here we give some basic on bicategories, for which a reader may
consult [4, 24, 25].

Terminology and notation In this paper, we use the notion of
(2-dimensional) biproduct (i.e. “product that is also coproduct”),
and so we use the terminology 2-limit in order to refer what is
historically called bilimit (i.e. (pseudo) “limit-for-bicategories”);
but we keep to use “bi-” to refer non-universality notions such as
bicategory.

For simplicity of presentation, we omit obvious canonical iso-2-
cells; for example, we treat a bicategory as if it were a 2-category,
i.e. we omit the iso-2-cells of unitality and associativity.

For a bicategory, we write ◦ for the horizontal composition of
1-cells and of 2-cells, and write • for the vertical composition of
2-cells; we omit ◦ and • if it is clear from the context. We write
B1-op, B2-op, and B1,2-op for the opposite bicategories of B on
1-cells, on 2-cells, and on both 1-cells and 2-cells, respectively.

We write⇒ for the (cartesian) closed structure of Set.

Internal Adjunction For a bicategory B, an internal adjunction
L a R : B → A is 1-cells L : A → B and R : B → A equipped
with 2-cells η : IdA ⇒ RL and ε : LR ⇒ IdB called unit and counit

satisfying the following triangular identities:2

B

R
��

⇑ε
B

A

L
AA

⇑η
A

L

AA

= idL

A

L
��
⇓η

A

B

R
AA

⇓ε
B

R

AA

= idR

As expected, an internal adjunction induces a bijection as follows:
2-cells φ of the form on the le� below bijectively corresponds to
2-cells φ ′ of the form below

C
F //

G ��
⇓φ
A

L��
B

↔

C
F //

G ��
⇓φ ′

A

B

R

DD
©«
,

C
F //

G ��
⇓φ
A

L
��

B
R
//

⇓η
B

ª®®®®¬
�e inverse can be de�ned similarly by ε , and the triangular identi-
ties ensure the bijectivity. Furthermore, it is important that there is
also a “dual” of the above bijection:

C
⇓φ
A

Foo

B

R

DD

G

YY
↔

C
⇓φ ′

A
Foo

L��
B

G

YY
©«
,

C
⇓φ
A

Foo

B

⇓ηG

YY

R
DD

B
L
oo

ª®®®®¬
Lax-slice and Pseudo-slice Bicategory Let B be a bicategory
andW be a 0-cell. �e lax-slice bicategory B//W of B overW is
de�ned as follows:
• A 0-cell is a 1-cell of the form A : A →W,

2As we said, we have omi�ed canonical iso-2-cells; precisely we have to insert L �
L ◦ IdA and IdB ◦ L � L for the LHS of the le� equation, and similarly for the LHS of
the right equation.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong

• A 1-cell from A : A →W to B : B →W is a pair of a 1-cell
F : A → B and a 2-cell φ : B ◦ F ⇒ A as below3:

A
F //

A ��
⇓φ

B

B��
Wop

• a 2-cell from (F ,φ) to (G,ψ) is a 2-cell α : F ⇒ G such that
φ = (B ◦ α) •ψ as below:

A
F //

A ��
⇓φ

B

B��
Wop

=

A

F
!!⇓α

G
//

A ��⇓ψ

B

B��
Wop

�e pseudo-slice bicategory B/W of B overW is de�ned as the
(locally-full) subbicategory of B//W where 0-cells and 2-cells are
the same and 1-cells are 1-cells (F ,φ) in B//W where φ is an iso-
2-cell.

Classifying Category For a bicategory B, there is a general
way for obtaining a 1-category, the classifying category Cl(B) [4,
Section 7], which is, shortly speaking, “local-skeleton”. �e objects
of Cl(B) are the same as those of B, and for objects A and B, the
homset Cl(B)(A,B) is de�ned as the quotient of B(A,B)modulo
the existence of an iso-2-cell. �e identity onA is [idA] : A → A
and the composition of [F] : A → B and [G] : B → C is [G ◦ F] :
A → C.

End, coend, and (co)Yoneda lemma A reader may consult [7]
for the facts in this paragraph. For functors F ,G : Aop × A → B,
we have ∫

a
B(F (a,a),G(a,a)) = Dinat(F,G) (2)

where Dinat(F,G) is the set of all the dinatural transformations
from F to G. �is is used in calculation of 2-cells in Prof . Also,
we o�en use the Yoneda lemma in the end form: for a functor
F : C → Set, we have

F (a) �

∫
b
C(a,b) ⇒ F (b)

where recall that⇒ is the closed structure of Set. In calculation of
the composition of profunctors, we use the coYoneda lemma (a.k.a.
the density formula): for a functor F : C → Set,

F (a) �

∫ b
C(b,a) × F (b).

Note that the above Yoneda and coYoneda lemmas contain that for
a functor F : Cop → Set, we have∫

b
C(b,a) ⇒ F (b) � F (a) �

∫ b
C(a,b) × F (b).

Basic notions on profunctors �ere are two ways for transform-
ing a functor to a profunctor. For a functor F : A → B, its direct
image F∗ : A →+ B is de�ned as:

F∗(b,a) , B(b, F (a))

and its inverse image F ∗ : B →+ A is de�ned as:

F ∗(a,b) , B(F (a),b).

3If we reverse the direction of φ , we obtain the de�nition of an oplax-slice bicategory;
note that some authors call an oplax-slice bicategory a lax-slice bicategory.

�e direct image extends to a pseudofunctor (−)∗ : Cat → Prof
that maps 0-cell A to itself, and 2-cell α : F ⇒ G to

Bop × A 3 (b,a) 7→ B(b,αa) : B(b, F (a)) → B(b,G(a)).

Similarly, the inverse image extends to a pseudofunctor (−)∗ :
Cat→ Prof1,2-op that maps 0-cellA to itself, and 2-cell α : F ⇒ G
to

Aop × B 3 (a,b) 7→ B(αa ,b) : B(G(a),b) → B(F (a),b).

We identify a functor F with the direct image profunctor F∗, if
no confusion arises. A functor F : A → B occurring in a diagram
in Prof should be regarded as F∗ : A →+ B.

For a functor F : A → B, we have an internal adjunction F∗ a F
∗

in Prof . �e unit η is given by:

η : IdA ⇒ F ∗ ◦ F∗ : A →+ A

ηa′,a : A(a′,a) F
−→ B(F (a′), F (a)) �

∫ b
B(F (a′),b) × B(b, F (a))

where we used the coYoneda lemma, and the counit ε is given by:

ε : F∗ ◦ F ∗ ⇒ IdB : B →+ B

εb′,b :
∫ a
B(b ′, F (a)) × B(F (a),b) → B(b ′,b)

[a, (f ,д)] 7→ д ◦ f .

For a profunctor F : A →+ B, i.e., a functor F : Bop × A → Set,
we de�ne a profunctor Fop : Bop →+ Aop as the functor

(Aop)op × Bop �
−→ Bop × A

F
−→ Set

�is extends to a pseudofunctor (−)op : Prof → Prof1-op that maps
a 0-cell, category, A to Aop, and 2-cell α : F ⇒ G : A →+ B to
α ◦ (�) where (�) : (Aop)op × Bop → Bop × A. We have the
following commutativity:

Cat
(−)∗ ��

(−)op
// Cat2-op

(−)∗��

Prof
(−)op
// Prof1-op

C.2 (Bi)category of Weighted Profunctors
�e following de�nition ofW-weighted profunctors (and hence
2-cells between them) are (equivalent but) di�erent from the def-
inition given in De�nition 4.3. It will be explained just a�er the
de�nition.

De�nition C.1 ((Bi)category of weighted profunctors). LetW be
a category. We de�ne a bicategory Prof//Cat

Wop as a “fullsub” bicate-
gory of the lax-slice bicategory Prof//Wop determined by 0-cells
of the pseudo-slice bicategory Cat/Wop. Speci�cally, Prof//Cat

Wop

is as follows:
• a 0-cell, aW-weighted category, is a 0-cell of Cat/Wop, i.e. a

pair (A,A) of a category A and a functor A : A →Wop,
• a 1-cell, aW-weighted profunctor, from (A,A) to (B,B) is a pair
(F ,φ) of a profunctor F : A →+ B and a natural transformation
φ : B ◦ F ⇒ A as below:

A
�F //

A ��
⇓φ

B

B��
Wop

Species, Profunctors and Taylor Expansion Weighted by SMCC LICS ’18, July 9–12, 2018, Oxford, United Kingdom

• a 2-cell, aW-weighted natural transformation (W-2-cell for
short), from (F ,φ) to (G,ψ) is a natural transformation α from
F to G that satis�es the following equation (which means φ =
ψ • (idB ◦ α) : B ◦ F ⇒ A):

A
�F //

A ��
⇓φ

B

B��
Wop

=

A

�F
!!⇓α�

G
//

A ��⇓ψ

B

B��
Wop

�e horizontal identity on (A,A) is (IdA , idA) as on the le� below,
and the horizontal composition of (F ,φ) : A → B and (G,ψ) :
B → C is de�ned by the diagram on the right below:

A
�IdA //

A ��
⇓idA

A

A��
Wop

A
�F //

A &&
⇓φ
B

��
B

�G // C

Cxx
⇓ψ

Wop

�e vertical composition is naturally de�ned so that there is a
forgetful functor from Prof//Cat

Wop to Prof that maps (A,A), (F ,φ),α
to A, F ,α , respectively.

We de�ne Pr//Cat
Wop, Cl(Prof//Cat

Wop).

We sometimes write (A,A) and (F ,φ) simply as A and F , re-
spectively, when no confusion arises. We omit “W-” from “W-
weighted” ifW is clear from the context.

�e two style of weighted profunctors (De�nitions 4.3 and C.1)
bijectively correspond to each other by: (i) the following bijective
correspondence induced by B∗ a B

∗

A
�F //

A ��
⇓φ

B

B��
Wop

↔
A

�F //

A ��
⇓ϖ

B

Wop
D
B∗
AA

and then (ii) composing the following natural isomorphism (by the
coYoneda lemma):

(B∗ ◦A∗)(b,a) =

∫ w
W(w,B(b)) ×W(A(a),w) �W(A(a),B(b)).

Lemma C.2. Let B be a bicategory,W be a 0-cell in B, and F a
G : B be an adjunction in B with unit η and counit ε . Given two
1-cells in B//W of the form:

A

A ��

F //
⇓φ
B

B��
W

B

B ��

G //
⇓ψ
A

A��
W

let ψ ′ : A ⇒ B ◦ F be the 2-cell given from ψ by F a G, i.e. ψ ′ ,
(ψ ◦ F) • (A ◦ η). �en we have (F ,φ) a (G,ψ) in B//W with unit η
and counit ε provided that φ is iso-2-cell in Prof with the inverseψ ′.

Proof. Straightforward. �

As a corollary, we have:

Proposition C.3. �e embedding Cat/Wop → Prof//Cat
Wop maps

any 1-cell (F ,φ) to an internal le� adjoint in Prof//Cat
Wop whose right

adjoint is given by F ∗ and the unit and counit are those of F∗ a F ∗.

We remark that the above proposition says that the embedding
Cat/Wop → Prof//Cat

Wop equips Cat/Wop with proarrows [40, 45,
46].

C.3 Pr//Cat
Wop is SMCC

�e bicategory Prof has the following SMCC structure4: For cat-
egories Ai (i = 1, 2), their monoidal product is A1 × A2. For
profunctors Fi : Ai →+ Bi (i = 1, 2), their monoidal product
F1 × F2 : (B1 × B2)op × (A1 × A2) → Set is de�ned by: (F1 ×
F2)(b1,b2,a1,a2) , F1(b1,a1) × F2(b2,a2). �e monoidal product
of 2-cells are de�ned in the obvious way. �e monoidal unit is the
one-object one-arrow category 1. �e closed structure is (−)op×(−),
and we have the following isomorphisms between hom-categories:

λ : Prof(A × B,C) �−→ Prof(A,Bop × C) (3)

which are pseudo-natural in A, B, and C. Below we sometimes
write A(B for Aop × B.

Proposition C.4 (Internal de�nition of SMCC). For a monoidal
category (W, ⊗, I) and a functor(:Wop×W →W, (W, ⊗, I ,(
) is an SMCC i� ((op)∗ : (Wop(Wop) →+ Wop is le� adjoint
in Prof to λ((⊗op)∗) :Wop →+ (Wop(Wop).

Proof. First we calculate what the structures η and ε correspond to:

Wop
λ((⊗op)∗)
##

W ×Wop
((op)∗

;;

⇑η
W ×Wop

Wop

λ((⊗op)∗) ##
⇑ε

Wop

W ×Wop
((op)∗

;;

By the formula (2), natural transformations η above belong to the
LHS of the following:∫

a,a′,c,c ′

(
W×Wop) (

(c, c ′), (a,a′)
)
⇒∫ b

λ((⊗op)∗)((c, c
′),b) × ((op)∗(b, (a,a

′))

=

∫
a,a′,c,c ′

(
W(c,a) ×W(a′, c ′)

)
⇒

∫ b
W(b ⊗ c, c ′) ×W(a(a′,b)

�

∫
a,a′
W((a(a′) ⊗ a,a′)

where the isomorphism is due to the Yoneda and coYoneda lemmas.
�us, natural transformations η in the LHS bijectively correspond
to dinatural transformations (eva,a′ : (a(a′) ⊗a → a′)a,a′ . Next
we calculate ε :∫

b,d

(∫ c,c ′

((op)∗(d, (c, c
′)) × λ((⊗op)∗)((c, c

′),b)

)
⇒Wop(d,b)

�

∫
b,d,c,c ′

(
W(c (c ′,d) ×W(b ⊗ c, c ′)

)
⇒W(b,d)

�

∫
b,c
W(b, c ((b ⊗ c))

where the �rst isomorphism is because (−) ⇒ X : Set → Setop

is le� adjoint and hence maps coends to ends, and the second
one is due to the Yoneda lemma. �us, natural transformations
ε in the LHS bijectively correspond to dinatural transformations
(lamb,c : b → c ((b ⊗ c))b,c .

Next we show the equivalence between the triangular identities.
Suppose that we are given η and ε , and hence the corresponding ev

4Prof is a compact closed bicategory [9], and hence a symmetric monoidal closed
bicategory (for the de�nition, see [41]).

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong

and lam. �e following triangular identity for η and ε

Wop

λ((⊗op)∗)
##

⇑ε
Wop

W ×Wop

((op)∗
;;

⇑η
W ×Wop

((op)∗

;;

= id((op)∗

says that the following mapping equals the identity onW(a (
a′,d) for any a, a′ and d . (Below the overline and underline are the
parts mapped by η and ε , respectively.)

W(a(a′,d)

∈

f

�

∫ c,c ′

((op)∗(d, (c, c
′)) ×

(
W×Wop) (

(c, c ′), (a,a′)
)

(
=

∫ c,c ′

W(c (c ′,d) ×W(c,a) ×W(a′, c ′)

)
7→

∈[
(a,a′), (f , ida , ida′)

]
“η”
→

∫ b,c,c ′

((op)∗(d, (c, c
′)) × λ((⊗op)∗)((c, c

′),b) × ((op)∗(b, (a,a
′))(

=

∫ b,c,c ′

W(c (c ′,d) ×W(b ⊗ c, c ′) ×W(a(a′,b)

)
7→

∈[
(a(a′,a,a′), (f , eva,a′ , ida(a′)

]
“ε”
→

∫ b
Wop(d,b) × ((op)∗(b, (a,a

′))(
=

∫ b
W(b,d) ×W(a(a′,b)

)
7→

∈[
a(a′,

(
f ◦ (a(eva,a′) ◦ lama(a′,a , ida(a′

)]
�W(a(a′,d)

7→

∈

f ◦ (a(eva,a′) ◦ lama(a′,a

�us, this triangular identity for η and ε is equivalent to the follow-
ing triangular identity for ev and lam:

(a(eva,a′) ◦ lama(a′,a = ida(a′

(for one implication, consider d and f as a (a′ and ida(a′ ,
respectively).

�e equivalence between the other triangular identities can be
shown similarly. �

Remark C.5. If we use the other style of de�nition of profunctors:
i.e. F : A →+ B i� F : Aop × B → Set, then the statement
above becomes the following: (W, ⊗, I ,() is an SMCC i�(∗ :
(W(W) →+ W is le� adjoint to λ(⊗∗) : W →+ (W(W).
In this statement, we used only the symmetric monoidal closed
structure of the ambient bicategory Prof (rather than, say, compact
closed structure nor even inverse image of a functor). �us this can
be regarded as an instance of the microcosm principle [2][34].

For an SMC (W, ⊗, I), we have the following monoidal structure
on Prof//Cat

Wop : the unit is Î , (1 I
−→Wop); the monoidal product

of (A,A) and (B,B) is:

(A,A) ⊗̂ (B,B) , (A × B
A×B
−−−−→Wop ×Wop ⊗op

−−−→Wop);

and its action on 1-cells is de�ned by:

©«
A

�F //

A ��
⇓φ

A ′

A′��

Wop

ª®®¬ ⊗̂
©«
B

�G //

B ��
⇓ψ

B′

B′��
Wop

ª®®¬ ,
A × B

�F×G //

A×B �� ⇓φ×ψ
A ′ × B′

A′×B′��

Wop×Wop

⊗op ""

Wop×Wop

⊗op||

Wop

Furthermore, given a SMCC (W, ⊗, I ,(), we de�ne:

(B,B) (̂ (C,C) , (Bop × C
Bop×C
−−−−−−→W ×Wop (op

−−−−→Wop),

which becomes the closed structure of Prof//Cat
Wop as follows:

Proposition C.6. If (W, ⊗, I ,() is a symmetric monoidal closed
category, then (Prof//Cat

Wop , ⊗̂, Î , (̂) is a symmetric monoidal closed
bicategory.

Proof. �e closedness follows from the following bijections:

A × B
�F //

A×B �� ⇓φ
C

C��
Wop ×Wop

⊗op
//Wop

↔

A × B
�F //

⇓φ ′
C

C��
Wop ×Wop

⊗op
//

_A∗×B∗
OO

Wop

↔

A
�λF
⇓�
// Bop × C

_(B∗)op×C∗
��

Wop �
λ((⊗op)∗)

//

_A∗

OO

�λ(C∗◦F◦(A∗×B∗))

$$⇓λ(φ ′)
W ×Wop

↔

A
�λF //

⇐_A ��

Bop × C
Bop×C��

Wop W ×Wop�
(op
oo

where the �rst correspondence is due to A∗ a A∗ and B∗ a B∗;
the second one is due to (3) (whose naturality gives � and whose
action on morphisms gives λ(φ ′)); and the third one is due to(opa
λ((⊗op)∗) (by Lemma C.4), A∗ a A∗, and (B∗)op = (Bop)∗. It is
obvious that the bijective correspondence between 2-cells from
(F ,φ) to (G,ψ) and those from (λF , λ(φ ′)′ to (λG, λ(ψ ′)′ is given in
the same way. �

If B is a symmetric monoidal (closed) bicategory, then Cl(B) is
a symmetric monoidal (closed) category, whose structure is de�ned
in the obvious way. �us for symmetric monoidal (closed) category
W, we have obtained a symmetric monoidal (closed) category
Pr//Cat
Wop .

C.4 2-(co)limits of Prof//Cat
Wop

To give the biproducts and the symmetric tensor powers in Prof//Cat
Wop ,

here we consider some general results on 2-(co)limits in/around
Prof//Cat

Wop .
As in the 1-dimensional case, for any bicategory B and its object

B, colimits of the pseudo-slice bicategory B/B are created by the
projection B/B → B [14, Section 14.1].

Lemma C.7. �e embedding Cat/Wop → Prof//Cat
Wop preserves

2-colimits.

Proof. We have the obvious (pseudo) 2-functors as follows:

Cat
(−)∗ // Prof

Cat/Wop G //
P
OO

F ,,

Prof/Wop H //
Q
OO

Prof//Wop

Prof//Cat
Wop

∪

OO

Species, Profunctors and Taylor Expansion Weighted by SMCC LICS ’18, July 9–12, 2018, Oxford, United Kingdom

�e projections P and Q create 2-colimits as mentioned above, and
(−)∗ preserves 2-colimits; hence G preserves 2-colimits. Also, H
preserves 2-colimits and hence so does HG . �us, since Prof//Cat

Wop

is a full sub-bicategory of Prof//Wop, F preserves 2-colimits. �

LemmaC.8. For any categoryW, we have the following 2-isomorphism
Prof//Cat

W
� (Prof//Cat

Wop)
1-op:

• 0-cell A : A →W is mapped to Aop : Aop →Wop

• 1-cell (F ,φ) is mapped as follows:

A

A
⇓φ

!!

�F // B

B
��

W

7→

Aop

Aop
��

Bop�F op

⇓φop
oo Bop

Bop

⇓η

{{

Wop ⇓ε
Wop

(Aop)∗

OO

(Aop)∗

cc

• 2-cells are mapped obviously so that we have the following com-
mutative diagram:

Prof//Cat
Wop

(−)op

�
//

��

(Prof//Cat
W
)1-op

��

Prof
(−)op

�
// Prof1-op

Lemma C.9. Let F a G : A → B be a (pseudo) 2-adjunction
between bicategories, and let η : IdB ⇒ G F and ε : FG ⇒ IdA

be its unit and counit. Also let ε ′ : G F ⇒ IdB and η′ : IdA ⇒ FG
be (internal) right adjoint to η and ε in the bicategories BiCAT(B,B)
and BiCAT(A ,A), respectively. �en, we have also G a F with
unit η′ and counit ε ′.

Proof. By the assumption we have the “triangular” isomodi�cation:

(ε ◦F) • (F ◦ η) � idF . (4)

�en we show that we have a triangular isomodi�cation:

(η′ ◦F) • (F ◦ ε ′) � idF .

Now (−) ◦ F : BiCAT(A ,A) → BiCAT(B,A) and F ◦ (−) :
BiCAT(B,B) → BiCAT(B,A) are pseudo-functors and hence
they map internal adjunction to internal adjunction. �us η′ ◦F
and F ◦ ε ′ are right adjoint to ε ◦F and F ◦ η in BiCAT(B,A),
respectively. �en the composite (η′ ◦F) • (F ◦ ε ′) is right adjoint
to (ε ◦F) • (F ◦η) in BiCAT(B,A). By (4), (η′ ◦F) • (F ◦ ε ′) is
right adjoint to idF , and also trivially idF is right adjoint to idF .
�us, since internal adjoint is unique up to iso-2-cell, there is an
isomodi�cation between (η′ ◦F) • (F ◦ ε ′) and idF .

�e other kind of a triangular isomodi�cation can be given in
the same way. �

C.5 Pr//Cat
Wop has Biproducts

Now we consider biproducts.

De�nitionC.10 (2-biproducts). A bicategory B has 2-biproducts if
for any family (Ai)i ∈I of 0-cells, we have a 0-cell ⊕i ∈IAi equipped
with two families of 1-cells (Pri : ⊕i ∈IAi → Ai)i ∈I and (Ini :
Ai → ⊕i ∈IAi)i ∈I such that
• (⊕i ∈IAi , (Pri)i ∈I) is a 2-product of (Ai)i ∈I ,
• (⊕i ∈IAi , (Ini)i ∈I) is a 2-coproduct of (Ai)i ∈I , and
• for each i, j ∈ I , there exists an iso-2-cell:{

Pri ◦ Ini � IdAi : Ai → Ai (i = j)

Pr j ◦ Ini � ZeroAi ,Aj : Ai → Aj (i , j)

where: when I = ∅, the third condition trivially holds (without
involving the notion ZeroAi ,Aj) and we have zero 0-cell Z ,
⊕i ∈∅Ai ; and when I , ∅, we de�ne ZeroAi ,Aj as the (unique up
to iso-2-cell) zero 1-cell Ai →Z → Aj .

Lemma C.11. If B has 2-biproducts, then Cl(B) has biproducts.

Proof. Trivial. �

Biproducts of Pr//Cat
Wop are given by Lemma C.11 and the next

lemma.

Proposition C.12. For any categoryW, the bicategory Prof//Cat
Wop

has the following 2-biproducts: for a family (Ai ,Ai)i ∈I of 0-cells, the
2-biproduct ⊕i (Ai ,Ai) is the 0-cell ([Ai]i)∗ = [(Ai)∗]i :

∐
i Ai →+

Wop equipped with the following projections and coprojections:∐
i Aiε
⇐

�(Ini)∗ // Ai
Ai�

⇐ ��

,
(Ini)∗vv∐

i Ai
[Ai]i

//Wop

Ai
�(Ini)∗ //

Ai ��
⇓�

∐
i Ai

[Ai]i||

Wop

Further, for 0-cell B : B →Wop and set I , the diagonal and codiago-
nal are given by the following:

B
ε
⇐

�∇∗ // ∐i ∈I B

[B]i∈I�
⇐ ��

-
∇∗vv

B
[B]i∈I

//Wop

∐
i ∈I B

[B]i∈I ""

�∇∗ //
⇓�

B

B��
Wop

We remark that a similar proposition to the above holds for
the lax-slice bicategory Prof//Wop, by essentially the same proof.
Also we remark that, by Proposition C.3, the injections and codi-
agonals are internally le� adjoint to the projections and diagonals,
respectively.

Proof. �e 2-coproduct part follows from Lemma C.7. �en since
the projections and diagonals are given as right adjoint 1-cells to the
injections and codiagonals respectively, the 2-product part follows
from Lemma C.9 applied to

∐
a ∆ : Prof//Cat

Wop→ (Prof//CatWop)
I .

What remains to show is the third condition in the de�nition of
2-biproducts. Let (Ai : Ai →W

op)i ∈I be a family of 0-cells. For
each i ∈ I , we have η : Id ⇒ (Ini)∗ ◦ (Ini)∗ : Ai → Ai , which is an
iso-2-cell because the functor Ini : Ai →

∐
i Ai is fully faithful (in

general, F : A → B is fully faithful i� the unit η is isomorphic).
It is easy to check that this η is in fact a 2-cell in Prof//Cat

Wop of the
required type (ε in the de�nition of projection and this η cancel
each other).

Let i , j ∈ I . Now zero 1-cellZ is the empty category, and the
zero profunctor Zero : Ai →+ Z →+ Aj is the constant functor of
the empty set. On the other hand, the profunctor Inj ∗◦Ini ∗ : Ai →+∐

i Ai →+ Aj maps a ∈ Ai and a′ ∈ Aj to (
∐

i Ai)((j,a
′), (i,a)),

which is the empty set since i , j. �us the required iso-2-cell is
the identity (between the empty profunctors), and checking if this
is in fact a 2-cell in Prof//Cat

Wop is trivial, because maps from the
empty set are unique. �

C.6 Pr//Cat
Wop has Equalisers Su�ciently

Next we consider equalisers.
Let (B, ⊗, I) be a symmetric monoidal bicategory, A be a 0-cell,

and n be a natural number. We write A⊗n for the n-fold monoidal
products A ⊗ · · · ⊗ A. For σ ∈ Sn , we write A⊗σ : A⊗n → A⊗n

for the structural 1-cell induced by σ and the symmetry structure

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong

of the symmetric monoidal bicategory B. We de�ne A⊗n and
A⊗σ similarly for a symmetric monoidal (1-)category. For example,
for the monoidal category (Set,×, 1) and σ ∈ Sn , the function
A×σ : An → An is (ai)i≤n 7→ (aσ (i))i≤n . We omit ⊗ from A⊗σ

and A⊗n and write simply Aσ and An , if no confusion arises.

Proposition C.13. LetW be a symmetric monoidal category. �en
for any 0-cell A : A →Wop in Prof//Cat

Wop and n ∈ N,

1. we have a 2-equaliser (G∗)op : Cop →+ A⊗̂n in Prof//Cat
Wop of the

parallel 1-cells (A⊗̂σ : A⊗̂n → A⊗̂n)σ ∈Sn where the functor G :
(Aop)⊗̂n → C is the 2-coequaliser in Cat/W of

(
(Aop)⊗̂(σ

−1) :
(Aop)⊗̂n → (Aop)⊗̂n

)
σ ∈Sn ,

2. for any 0-cell B : B → Wop in Prof//Cat
Wop , (−) ⊗̂ B preserves

the 2-equaliser in the previous item.

Proof. By Lemmas C.7 and C.8, the composite

F : (Cat/W)1-op → (Prof//Cat
W
)1-op �

−→ Prof//Cat
Wop

preserves 2-limits. Item 1 follows from this, because, for each
σ ∈ Sn , F (Aop ⊗̂σ −1

) is isomorphic to A⊗̂σ .
On Item 2, �rst note that Cat/W has a monoidal structure de-

�ned similarly so that Cat/W → Prof//Cat
W

is strict 2-monoidal.
Hence we have the following commutative diagram:

(Cat/W)1-op

((−)⊗̂Bop)1-op
��

// (Prof//Cat
W
)1-op

((−)⊗̂Bop)1-op
��

� // Prof//Cat
Wop

(−)⊗̂B��

(Cat/W)1-op // (Prof//Cat
W
)1-op � // Prof//Cat

Wop

We only need to show that the composite

(Cat/W)1-op → (Prof//Cat
W
)1-op �

−→ Prof//Cat
Wop

(−)⊗̂B
−−−−−→ Prof//Cat

Wop

preserves 2-limits. Since the two pseudofunctors

(Cat/W)1-op → (Prof//Cat
W
)1-op �

−→ Prof//Cat
Wop

on the bo�om line in above diagram preserve 2-limits, it su�ces
to show that the pseudofunctor ((−) ⊗̂ Bop)1-op on (Cat/W)1-op

preserves 2-limits, i.e. (−) ⊗̂ Bop on Cat/W preserves 2-colimits.
Now we have the following diagram:

Cat/W

��

(−)⊗̂Bop
// Cat/W

��

Cat
(−)×Bop

// Cat

Here since Cat is 2-cartesian 2-closed, (−) × Bop is le� 2-adjoint
and hence preserves 2-colimits. �e projection Cat/W → Cat
creates 2-colimits; hence, especially the projection on the le� above
preserves 2-colimits and the projection on the right above re�ects
2-colimits. �erefore (−) ⊗̂ Bop preserves 2-colimits. �

As an immediate corollary of the above proposition, we have:

Proposition C.14. LetW be a symmetric monoidal category. �en
for any object A : A →Wop in Pr//Cat

Wop and n ∈ N,

1. we have an equaliser in Pr//Cat
Wop of the parallel morphisms (A⊗̂σ :

A⊗̂n → A⊗̂n)σ ∈Sn ,
2. for any object B : B →Wop in Pr//Cat

Wop , (−) ⊗̂ B preserves the
equaliser in the previous item.

C.7 Pr//Cat
Wop is a λW-model

Now we have an SMCC Pr//Cat
Wop with countable biproducts and

equalisers of (A⊗̂σ)σ ∈Sn . Hence by the construction in [35][28,
Proposition II.3], we have a Lafont category Pr//Cat

Wop . See Appen-
dix D for a concrete description of this Lafont structure.

On the list structure, it is well known that, if C has countable
coproducts and an endofunctor F on C preserves countable coprod-
ucts, then

∐
n∈N F

n (I) is an initial algebra of I + F (−). �us, by the
countable biproducts and the SMCC structure of Pr//Cat

Wop , for any
object A in Pr//Cat

Wop , we have an initial algebra of the endofunctor
Î ⊕ (A ⊗̂ (−)), given by ⊕n∈NA⊗̂n .

D Concrete Description of Lafont Model
Pr//Cat

Wop

Here we give a concrete description of the Lafont-structure of the
bicategory Prof//Cat

Wop given in Appendix C. �is concrete descrip-
tion is convenient for showing the equivalence with the Taylor
expansion, and also should be easy to understand for readers who
are not much familiar with (2-)category theory.

On the style of 1-cell of Prof//Cat
Wop , here we use that in De�ni-

tion 4.3 rather than the lax-slice style in Appendix C.

D.1 �e bicategory Prof//Cat
Wop

Let F : A →+ B be a profunctor. For e ∈ F (b,a) and f : a → a′,
we write e · f to mean F (b, f)(e) ∈ F (b,a′) (provided that F is clear
from the context). Similarly, for e ∈ F (b,a) and д : b ′ → b, the
expression д ·e indicates F (д,a)(e) ∈ F (b ′,a). As F is a functor from
Bop × A, we have F (д,a′) ◦ F (b, f) = F (д, f) = F (b ′, f) ◦ F (д,a);
hence the expression f · e · д is unambiguous.

�e concrete de�nition of Prof//Cat
Wop is as follows:

• 0-cell: a weighted category A : A →Wop.
• 1-cell: (F ,ϖ) : (A,A) → (B,B) is a pair of a profunctor F :
A →+ B and a weight functionϖ(b,a) : F (b,a) →W(A(a),B(b))
that respects the action of A and B, i.e.,

A(f) ◦ϖ(b,a)(e) ◦ B(д) = ϖ(b′,a′)(f · e · д)

for every д : b ′ → b, e ∈ F (b,a) and f : a → a′.
• 2-cell: α : (F ,ϖF) ⇒ (G,ϖG) is a 2-cellα : F ⇒ G of Prof (i.e. a

natural transformation α : F ⇒ G of F ,G : Bop × A → Set)
that preserves the weights, i.e.,

ϖF
(b,a)(e) = ϖ

G
(b,a)(αb,a (e))

for every e ∈ F (b,a).
Below we omit the description of 2-cells of Prof//Cat

Wop , since
they do not (explicitly) occur in Pr//Cat

Wop .

D.2 Symmetric Monoidal Structure
Let (W, ⊗, I) be an SMC.
• Let A : A →Wop and B : B →Wop be weighted categories.

We de�ne their tensor product as (A,A) ⊗̂ (B,B) , (A×B,A⊗̂
B) where

A ⊗̂ B , (⊗op) ◦ (A × B),

i.e. (A ⊗̂ B)(a,b) = A(a) ⊗ B(b) and (A ⊗̂ B)(f ,д) = A(f) ⊗ B(д).
• Given 1-cells (Fi ,ϖi) : (Ai ,Ai) → (Bi ,Bi) (i = 1, 2), we de�ne
(F1,ϖ1) ⊗̂ (F2,ϖ2) = (G,ϖ) as follows. �e profunctor G :

Species, Profunctors and Taylor Expansion Weighted by SMCC LICS ’18, July 9–12, 2018, Oxford, United Kingdom

A1 × A2 →+ B1 × B2 is de�ned by

(B1 × B2)
op × (A1 × A2)

�(B
op
1 × A1) × (B

op
2 × A2)

F1×F2
−−−−−→ Set × Set

×
−→ Set.

More explicitly

G((b1,b2), (a1,a2)) , F1(b1,a1) × F2(b2,a2)

G((д1,д2), (f1, f2)) , F1(д1, f1) × F2(д2, f2).

�e weight function
ϖ(b1,b2),(a1,a2) :
G((b1,b2), (a1,a2)) →W(A1(a1) ⊗ A2(a2),B1(b1) ⊗ B2(b2))

is de�ned by

ϖ(b1,b2),(a1,a2)(e1, e2) ,
(
(ϖ1)b1,a1 (e1)

)
⊗

(
(ϖ2)b2,a2 (e2)

)
.

D.3 Closed Structure
Let (W, ⊗, I ,() be an SMCC.

Let A : A →Wop and B : B →Wop be weighted categories.
We de�ne their linear function space as (A,A) (̂ (B,B) , (Aop ×
B,A (̂ B) where

A (̂ B , ((op) ◦ (Aop × B),

i.e. (A (̂ B)(a,b) = A(a)(B(b) and (A (̂ B)(f ,д) = A(f)(B(д).
�e equivalence between

(A,A) ⊗̂ (B,B) →+ (C,C) and (A,A) →+ (B,B) (̂ (C,C)

is given as follows. Assume that (F ,ϖ) : (A,A) ⊗̂ (B,B) →+ (C,C).
�en F : Cop × (A × B) → Set. Hence it can be identi�ed with
F ′ : (Bop × C)op × A → Set. Given e ∈ F ′((b, c),a) = F (c, (a,b)),
we de�ne

ϖ ′(e) , λ(ϖ(e)).

�e pseudo-inverse is obvious.

D.4 Biproducts
We only describe the binary case for simplicity.
• Let A : A →Wop and B : B →Wop be weighted categories.

We de�ne their biproduct as (A,A) ⊕ (B,B) , (A +B, [A,B])
where [A,B] : A + B →Wop is the canonical functor given
by the coproduct structure of Cat.

• Given 1-cells (Fi ,ϖi) : (Ai ,Ai) → (Bi ,Bi) (i = 1, 2), we de�ne
(F1,ϖ1) ⊕ (F2,ϖ2) = (G,ϖ) as follows. �e profunctor G :
(A1 +A2) →+ (B1 + B2) is de�ned by

G(b,a) ,

F1(b,a) (if a ∈ A1 and b ∈ B1)
F2(b,a) (if a ∈ A2 and b ∈ B2)
∅ (otherwise)

G(д, f) ,

F1(д, f) (if f in A1 and д in B1)
F2(д, f) (if f in A2 and д in B2)
id∅ (otherwise).

�e weight functionϖb,a : G(b,a) →W([A1,A2](a), [B1,B2](b))
is de�ned by

ϖb,a (e) =

{
(ϖ1)b,a (e) (if a ∈ A1 and b ∈ B1)
(ϖ2)b,a (e) (if a ∈ A2 and b ∈ B2).

D.5 Symmetric Tensor Powers
Given a weighted category A : A →Wop and n ∈ N, the equaliser
Pn (A,A) of ((A,A)⊗̂σ)σ ∈Sn is called symmetric tensor powers [35],
which is used for de�ning the linear exponential comonad later.

The coequaliser in Cat �e construction of the 2-equaliser in
Appendix C constructs the 2-equaliser in Prof//Cat

Wop by a certain
2-coequaliser that is created �nally in Cat (by the 2-colimit-creation
of the projection Cat/W → Cat). Any 2-coequaliser in Cat can be
calculated by a generalised congruence [3], but in the current case
we have the following simple 2-coequaliser.

Let A be a category and n ∈ N. Recall that the functor Aσ :
An → An induced by a permutation σ ∈ Sn maps (ai)i≤n to
(aσ (i))i≤n .

We de�ne a category P∗n (A), the vertex of the 2-coequaliser of
(Aσ)σ ∈Sn , as follows:

• �e objects of P∗n (A) are lists (a1, . . . ,an) of objects in A of
length n.

• A morphism (a1, . . . ,an) → (a′1, . . . ,a
′
n) in P∗n (A) is a pair

of a permutation σ ∈ Sn and a family (fi : aσ (i) → a′i)
n
i=1 of

arrows in A.

Now we have the obvious embedding functor EA : An →

P
∗
n (A), which does not change objects, and maps morphism (fi)i

to (id, (fi)i). �en it can be easily checked that this functor EA
is an 2-coequaliser of (Aσ)σ ∈Sn . (For example, this coequalises
Aσ and IdAn as follows: Aσ ((ai)i) = (aσ (i))i is isomorphic to
IdAn ((ai)i) = (ai)i by (σ−1, (idai)i) : (aσ (i))i → (ai)i and its
inverse (σ , (idaσ (i))i) : (ai)i → (aσ (i))i .)

�en by the construction in Appendix C, we have an equaliser
((EAop)∗)

op = (Eop
Aop)

∗ : (P∗n (Aop))op →+ ((Aop)n)op = An of
parallel arrows ((A,A)⊗̂σ)σ in Prof//Cat

Wop . Below we give a con-
crete description of this 2-equaliser.

The equaliser Pn (A,A) of parallel morphisms ((A,A)⊗̂σ)σ
We de�ne the weighted category as Pn (A,A) , (Pn (A),Pn (A))

where Pn (A) , (P∗n (A
op))op, which is speci�cally as follows:

• �e objects of Pn (A) are lists (a1, . . . ,an) of objects in A of
length n.

• A morphism (a1, . . . ,an) → (a′1, . . . ,a
′
n) in Pn (A) is a pair

of a permutation σ ∈ Sn and a family (fi : ai → a′σ (i))
n
i=1 of

arrows in A. In other words,

Pn (A)((ai)i , (a
′
i)i) ,

∐
σ ∈Sn

An ((ai)i , (a
′
σ (i))i)

=
∐
σ ∈Sn

n∏
i=1
A(ai ,a

′
σ (i)).

Also, the functor Pn (A) is de�ned as follows:

• �e functorPn (A) : Pn (A) →W
op maps an object (a1, . . . ,an)

to ⊗ni=1A(ai)
• �e functorPn (A) : Pn (A) →W

op maps an arrow (σ , (fi)i) :
(a1, . . . ,an) → (a′1, . . . ,a

′
n) to

⊗iA(a
′
i)

�
−→ ⊗iA(a

′
σ (i))

⊗iA(fi)
−−−−−−→ ⊗iA(ai).

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong

�e equaliser 1-cell (eqAn ,ϖ) : (Pn (A),Pn (A)) →+ (A,A)
⊗̂n is

given by:

eqAn ((a
′
1, . . . ,a

′
n), (a1, . . . ,an)) =

∐
σ ∈Sn

n∏
i=1
A(a′i ,aσ (i))

and

ϖ(a′i)i ,(ai)i (σ , (fi)
n
i=1) , ⊗iA(ai)

�
−→ ⊗iA(aσ (i))

⊗ni=1A(fi)
−−−−−−−−→ ⊗iA(a

′
i).

The functor by the equaliser �e construction Pn (−) extends
to a functor on Pr//Cat

Wop as follows: Given a weighted profunctor
(F ,ϖ) : (A,A) →+ (B,B), we de�ne

(Pn (F),Pn (ϖ)) : (Pn (A),Pn (A)) →+ (Pn (B),Pn (B))

by

Pn (F)((b1, . . . ,bn), (a1, . . . ,an)) ,
∐
σ ∈Sn

n∏
i=1

F
(
bi ,aσ (i)

)
and

Pn (ϖ)(bi)i ,(ai)i :
Pn (F)

(
(bi)i , (ai)i

)
→W

(
Pn (A)((ai)i),Pn (B)((bi)i)

)
©«=

∐
σ ∈Sn

n∏
i=1

F
(
bi ,aσ (i)

)
→W

(
⊗i A(ai), ⊗iB(bi)

)ª®¬(
σ , (ei)

n
i=1

)
7→

(
⊗iA(ai)

�
−→ ⊗iA(aσ (i))

⊗i (ϖbi ,aσ (i) (ei))
−−−−−−−−−−−−−−→ ⊗iB(bi)

)
where note that ϖbi ,aσ (i) : F

(
bi ,aσ (i)

)
→W

(
A(aσ (i)),B(bi)

)
.

D.6 Linear Exponential Comonad
�e underlying functor of the comonad is de�ned as:

P(A,A) , ⊕n∈NPn (A,A) =
(∐

n
Pn (A), [Pn (A)]n

)
P(F ,ϖ) , ⊕n∈NPn (F ,ϖ).

The comonad structure �e counit ε = (F ,ϖ) : ⊕n∈NPn (A,A) →
(A,A) of the comonad is given by:

F (a′, (n, (ai)i≤n)) =

{
Pn (A)((a

′), (a1)) (n = 1)
∅ (otherwise)

and: ϖa′,(n,(ai)i≤n) is the empty-function when n , 1, and when
n = 1,

ϖa′,(1,(a1)) : Pn (A)((a
′), (a1)) →W(P1(A)(a1),A(a

′))(
= A(a′,a1) →W(A(a1),A(a

′))
)

f 7→ A(f).

�e comultiplication

ν = (F ,ϖ) : ⊕nPn (A,A) → ⊕nPn (⊕mPm (A,A))

of the comonad where

⊕nPn (⊕mPm (A,A)) =

(∐
n
Pn

(∐
m
Pm (A)

)
, [Pn ([Pm (A)]m)]n

)

is given as follows:

F
((
n′,

(
(m′i , (a

′
i, j)j≤m′i)

))
i≤n′ , (n, (ai)i≤n)

)
=

{
Pn (A)

(
(a′i, j)i≤n′, j≤m′i , (ai)i≤n

)
(n =

∑
i≤n′m

′
i)

∅ (otherwise).

When n ,
∑
i≤n′m

′
i , the weight function

ϖ (
n′,

(
(m′i ,(a

′
i, j)j≤m′i

)
))
i≤n′,(n,(ai)i≤n)

from the empty set is unique, and when n =
∑
i≤n′m

′
i , we have:

ϖ (
n′,

(
(m′i ,(a

′
i, j)j≤m′i

)
))
i≤n′,(n,(ai)i≤n)

:

Pn (A)
(
(a′i, j)i≤n′, j≤m′i , (ai)i≤n

)
→

W

(
[Pn (A)]n

(
(n, (ai)i≤n)

)
,

[Pn′([Pm′(A)]
′
m)]
′
n

((
n′,

(
(m′i , (a

′
i, j)j≤m′i)

))
i≤n′

))
©«=

∐
σ ∈Sn

An
(
(a′i, j)i≤n′, j≤m′i , (aσ (i))i≤n

)
→

W

(
⊗i≤nai , ⊗i≤n′ ⊗j≤m′i a

′
i, j

) ª®®®¬(
σ , (fi)i≤n

)
7→(

⊗i≤nai
�
−→ ⊗i≤naσ (i)

⊗i≤nA(fi)
−−−−−−−−→ ⊗i≤n′ ⊗j≤m′i a

′
i, j

)
.

The comonoid structure �e cofree comonoid structure ofP(A,A)
is given as follows: the counit (F ,ϖ) : (

∐
n Pn (A), [Pn (A)]n) →

(1, I) of the comonoid is given by:

F
(
∗, (n, (ai)i≤n)

)
,

{
{∗} (n = 0)
∅ (otherwise)

and

ϖ∗,(n,(ai)i≤n) ,

{
∗ 7→ idI ∈ W(I , I) (n = 0)
the empty-function (otherwise)

�e comultiplication

(F ,ϖ) :
(∐

n
Pn (A), [Pn (A)]n

)
→(∐

n
Pn (A) ×

∐
n
Pn (A), ⊗

op ◦
(
[Pn (A)]n × [Pn (A)]n

))
of the comonoid is given as follows:

F
((
(n′, (a′i)i≤n′), (n

′′, (a′′i)i≤n′′)
)
, (n, (ai)i≤n)

)
,

{
Pn (A)

(
(a′1, . . . a

′
n′ ,a

′′
1 , . . . a

′′
n′′), (ai)i≤n

)
(n = n′ + n′′)

∅ (otherwise)

When n , n′ + n′′, the weight function

ϖ (
(n′,(a′i)i≤n′), (n

′′,(a′′i)i≤n′′)
)
, (n,(ai)i≤n)

Species, Profunctors and Taylor Expansion Weighted by SMCC LICS ’18, July 9–12, 2018, Oxford, United Kingdom

from the empty set is unique, and when n = n′ + n′′, we have:
ϖ (
(n′,(a′i)i≤n′), (n

′′,(a′′i)i≤n′′)
)
, (n,(ai)i≤n)

:

Pn (A)
(
(a′1, . . . a

′
n′ ,a

′′
1 , . . . a

′′
n′′), (ai)i≤n

)
→

W

(
[Pn (A)]n

(
(n, (ai)i≤n)

)
,

[Pn′([Pm′(A)]
′
m)]
′
n
(
(n′, (a′i)i≤n′), (n

′′, (a′′i)i≤n′′)
))

©«=
∐
σ ∈Sn

An
(
(a′1, . . . a

′
n′ ,a

′′
1 , . . . a

′′
n′′), (aσ (i))i≤n

)
→

W
(
⊗i≤nai , (⊗i≤n′a

′
i) ⊗ (⊗i≤n′′a

′′
i)

) ª®®¬(
σ , (fi)i≤n

)
7→(

⊗i≤nai
�
−→ ⊗i≤naσ (i)

⊗i≤nA(fi)
−−−−−−−−→ (⊗i≤n′a

′
i) ⊗ (⊗i≤n′′a

′′
i)

)
.

	Abstract
	1 Introduction
	1.1 Why combinatorics matters?
	1.2 Two extensions of Joyal's combinatorial species
	1.3 Key notion: weighted generalised species
	1.4 Generating series and matrices
	1.5 Contributions
	1.6 Related work

	2 A Lambda Calculus with SMCC Data
	2.1 Syntax
	2.2 Operational semantics
	2.3 Examples
	2.4 Categorical interpretation

	3 Rigid Taylor Expansion
	3.1 Refinement types
	3.2 Refinement typing rules and its term representation
	3.3 Enumeration of reduction sequences

	4 Weighted Generalised Species
	4.1 Preliminary: profunctors
	4.2 Properties of the rigid Taylor expansion
	4.3 Weighted profunctors
	4.4 Pr /-5mu/WopCat as a W-model

	5 Associated Matrix as Generating Series
	5.1 -monoids and Mon-categories
	5.2 Associated Matrices of Weighted Profunctors
	5.3 P-visible Weighted Profunctors

	Acknowledgments
	References
	A Supplementary Materials for Section 2
	A.1 Language Definition
	A.2 Morphisms of W-models

	B Supplementary Materials for Section 3
	B.1 On refinement types
	B.2 On the rigid resource calculus

	C Proof of Theorem 4.4
	C.1 Preliminaries on 2-(bi)category theory
	C.2 (Bi)category of Weighted Profunctors
	C.3 Pr /-5mu/WopCat is SMCC
	C.4 2-(co)limits of Prof/-5mu/WopCat
	C.5 Pr /-5mu/WopCat has Biproducts
	C.6 Pr /-5mu/WopCat has Equalisers Sufficiently
	C.7 Pr /-5mu/WopCat is a W-model

	D Concrete Description of Lafont Model Pr /-5mu/WopCat
	D.1 The bicategory Prof/-5mu/WopCat
	D.2 Symmetric Monoidal Structure
	D.3 Closed Structure
	D.4 Biproducts
	D.5 Symmetric Tensor Powers
	D.6 Linear Exponential Comonad

