
An Efficient
Non-Moving Garbage Collector
for Functional Languages

Katsuhiro Ueno
Atsushi Ohori
Toshiaki Otomo

, Tohoku University

ICFP 2011,
20 May 2011

1 / 20

2 / 20

2 / 20

2 / 20

2 / 20

2 / 20

2 / 20

2 / 20

2 / 20

2 / 20

2 / 20

2 / 20

2 / 20

2 / 20

2 / 20

2 / 20

2 / 20

2 / 20

2 / 20

Viva! Non-moving
Very easy to share heap objects.

No need to do pinning when interacting
with C and other languages.

Very easy to maximize concurrency.

No need to stop threads for managing
shared objects.

These are free when you choose
non-moving!

3 / 20

4 / 20

4 / 20

4 / 20

The topic of this talk

We propose
a non-moving GC

which is as efficient as
Cheney’s copying GC.

5 / 20

Weakness of mark-and-sweep GC
Fragmentation, and slow allocation
High sweep cost (O(heapSize))
No known method for extending it to
non-moving generational GC

We choose a well-known idea of bitmap
marking as our start point to overcome
these weaknesses...

6 / 20

Strategy
But bitmap marking strategy alone does
not yield an efficient GC.
We re-organize the bitmap marking with

fragmentation avoiding heap
organization
tree structured bitmap
automatic heap size adjustment
non-moving generational extension

with a series of optimized bit manipulation
algorithms.

7 / 20

Fragmentation
Varied size objects incur fragmentation.

If all objects were same size, heap could
be a fixed size array without incurring
fragmentation.

8 / 20

Avoid fragmentation
Separate the heap for each object size.

9 / 20

Avoid fragmentation
Separate the heap for each object size.

9 / 20

Tree-structured bitmaps
For fast allocation and collection

10 / 20

Tree-structured bitmaps
For fast allocation and collection

10 / 20

Tree-structured bitmaps
For fast allocation and collection

10 / 20

Tree-structured bitmaps
For fast allocation and collection

10 / 20

Tree-structured bitmaps
For fast allocation and collection

10 / 20

Tree-structured bitmaps
For fast allocation and collection

10 / 20

Tree-structured bitmaps
For fast allocation and collection

10 / 20

Tree-structured bitmaps
For fast allocation and collection

10 / 20

Tree-structured bitmaps
For fast allocation and collection

10 / 20

Tree-structured bitmaps
For fast allocation and collection

10 / 20

Tree-structured bitmaps
For fast allocation and collection

10 / 20

Sub-heap size adjustment

Which layout is appropriate?
... cannot determine it in advance.

11 / 20

Sub-heap size adjustment

12 / 20

Generational extension
Refining the idea of partial GC (Demers et al 1990)

generations = disjoint sets of objects

sets of objects = bitmaps

13 / 20

Generational extension
Refining the idea of partial GC (Demers et al 1990)

generations = disjoint sets of objects

sets of objects = bitmaps

13 / 20

Performance evaluation
We compared

our method,

Cheney’s copying collector,

our method with 2 generations, and

generational copying (based on Reppy 1994)

by extensive benchmarks on our SML#
compiler.

14 / 20

Memory usage

benchmark size our method copying
(MB) live occ. live occ.

count_graphs 2 6.02 55.4 6.02 48.7
cpstak 2 5.56 51.6 5.55 48.9

knuth_bendix 12 10.45 61.1 10.17 46.1
ratio_regions 20 11.97 62.3 11.95 47.4
gcbench 65 10.61 65.9 10.25 42.9
perm9 190 22.36 57.6 16.91 41.6

live : ratio of survivals against GC

occ. : ratio of memory amount filled with data
15 / 20

Benchmark : GC time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

G
C

 T
im

e
[s

ec
]

Heap Size [MB]

cheney gc
bitmap gc

copy(2g) gc
bitmap(gen) gc

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 8 10 12 14 16 18 20 22 24

G
C

 T
im

e
[s

ec
]

Heap Size [MB]

cheney gc
bitmap gc

copy(2g) gc
bitmap(gen) gc

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 60 80 100 120 140 160 180 200

G
C

 T
im

e
[s

ec
]

Heap Size [MB]

cheney gc
bitmap gc

copy(2g) gc
bitmap(gen) gc

16 / 20

Benchmark : mutator time

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 15

 1 2 3 4 5 6 7 8

M
ut

at
or

 T
im

e
[s

ec
]

Heap Size [MB]

cheney mutator
bitmap mutator

copy(2g) mutator
bitmap(gen) mutator

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 8 10 12 14 16 18 20 22 24

M
ut

at
or

 T
im

e
[s

ec
]

Heap Size [MB]

cheney mutator
bitmap mutator

copy(2g) mutator
bitmap(gen) mutator

 2.5
 2.6
 2.7
 2.8
 2.9

 3
 3.1
 3.2
 3.3
 3.4

 60 80 100 120 140 160 180 200

M
ut

at
or

 T
im

e
[s

ec
]

Heap Size [MB]

cheney mutator
bitmap mutator

copy(2g) mutator
bitmap(gen) mutator

17 / 20

Benchmark : total exec time

 12

 13

 14

 15

 16

 17

 1 2 3 4 5 6 7 8

To
ta

l T
im

e
[s

ec
]

Heap Size [MB]

cheney exec
bitmap exec

copy(2g) exec
bitmap(gen) exec

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 8 10 12 14 16 18 20 22 24

To
ta

l T
im

e
[s

ec
]

Heap Size [MB]

cheney exec
bitmap exec

copy(2g) exec
bitmap(gen) exec

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 60 80 100 120 140 160 180 200

To
ta

l T
im

e
[s

ec
]

Heap Size [MB]

cheney exec
bitmap exec

copy(2g) exec
bitmap(gen) exec

18 / 20

Ratio of total time (ours / copying)

19 / 20

Ratio of total time (ours / copying)

19 / 20

Ratio of total time (ours / copying)

19 / 20

Ratio of total time (ours / copying)

19 / 20

Ratio of total time (ours / copying)

19 / 20

Ratio of total time (ours / copying)

19 / 20

Conclusion
We have developed an efficient non-moving GC.

avoid fragmentation by separating the heap.

fast allocation and GC through bitmap trees.

generational GC through multiple bitmaps.

A viable alternative to copying GC for functional
languages.

Further Development
non-moving concurrent GC

20 / 20

	Introduction

