Yoshifumi Kitamura*
Andrew Smitht

Haruo Takemurazt

and

Fumio Kishinox

ATR Communication Systems
Research Laboratories

2-2 Hikaridai, Seika-cho, Soraku-gun
Kyoto 617-02 Japan
kitamura@eie.eng.osaka—u.ac.jp

Presence, Vol. 7, No. 1, February 1998, 36-52
© 1998 by the Massachusetts Institute of Technology

36 PRESENCE: VOLUME 7, NUMBER 1

A Real-Time Algorithm for
Accurate Collision Detection for
Deformable Polyhedral Objects

Abstract

We propose an accurate collision detection algorithm for use in virtual reality applica-
tions. The algorithm works for three-dimensional graphical environments where mul-
tiple objects, represented as polyhedra (boundary representation), are undergoing
arbitrary motion (translation and rotation). The algorithm can be used directly for
both convex and concave objects and objects can be deformed (nonrigid) during mo-
tion. The algorithm works efficiently by first reducing the number of face pairs that
need to be checked accurately for interference, by first localizing possible collision
regions using bounding box and spatial subdivision techniques. Face pairs that remain
after this pruning stage are then accurately checked for interference. The algorithm is
efficient, simple to implement, and does not require any memory-intensive auxiliary
data structures to be precomputed and updated. The performance of the proposed
algorithm is compared directly against other existing algorithms, e.g., the separating
plane algorithm, octree update method, and distance-based method. Results are given
to show the efficiency of the proposed method in a general environment.

1 Introduction

Collision detection is one of the central problems in many application
fields. In virtual environment research, for example, it is necessary to avoid in-
terpenetration among objects and to accurately simulate several kinds of physi-
cal phenomena to enhance the reality of a virtual environment. For this pur-
pose, it is necessary to detect the ““collisions’” among polyhedral objects in the
environment. In addition, it is important to determine more precisely the col-
liding part of the object (e.g., colliding pair of faces and their normal vectors)
to accurately simulate the physical phenomena. Furthermore, it is vital to be
able to update the virtual environment at real-time rates to provide an impres-
sion of realism. Unfortunately, current collision detection algorithms, if used,
are an enormous bottleneck and make real-time update impossible (Pentland,
1990; Hahn, 1988).

The difficulty in detecting the collision of polyhedral objects can be seen by
examining the basic, naive way of performing it. The basic method works by
performing static intersection tests at discrete time instants; the time interval
between tests is assumed small enough that collisions are not missed. Then,

* Currently with the Graduate School of Engineering, Osaka University.
T Currently in the Ph.D. program at the Department of Computer Science, Yale University.
* Currently with the Nara Institute of Science and Technology, Japan.

Kitamuraetal. 37

interference among polyhedral objects at a time instant
is detected by testing all combinations of faces and edges
for the presence of an edge of one object piercing the
face of another object; if such an edge-face pair exists
then there is a collision (Boyse, 1979). The average time
complexity for this test (for n objects) is O(n?EF), where
E and F are the number of edges and faces in the average
object. As can be seen from this complexity figure, the
problem lies in the necessity of having to perform such a
large number of computationally expensive intersection
tests at every time instant, where the number of such
tests increases quadratically as the number and complex-
ity of objects increase. For anything more than a simple
world with a few objects of a few hundred faces each,
this method is untenable in terms of maintaining real-
time performance.

The main problem with the basic, naive collision de-
tection method is that it requires such a large number of
computationally expensive edge-face intersection checks.
In an actual virtual world, the number of edge-face pairs
that intersect at any time instant is a small percentage of
the total number of possible pairs (in fact, much of the
time there are no intersections). Thus, it is desirable to
have a collision detection algorithm that checks the
number of edge-face pairs proportional to the number
that actually intersect. In this paper, we present an algo-
rithm that does this and can be used for general (i.e.,
both convex and concave), deformable polyhedral ob-
jects undergoing arbitrary motion.

The next section discusses other research efforts to-
ward efficient collision detection. After that, the details
of our collision detection algorithm are described. Next,
experiments carried out using our algorithm are de-
scribed, and performance results, showing the efficiency
of the approach, are given. The performance of the pro-
posed algorithm is compared directly against other exist-
ing algorithms.

2 Efficient Collision Detection
Approaches

There is much literature devoted to efficient colli-
sion detection approaches and this section discusses

some of them. The first subsection simply describes
other approaches to efficient collision detection. The last
two subsections evaluate these approaches, describing
problems preventing them from being entirely suitable
for practical, large-scale virtual environments and how
our algorithm addresses these problems.

2.1 Related Collision Detection
Research

A lot of research on collision detection for polyhe-
dra aims to drastically reduce the number of edge-face
pairs that need to be checked for intersection. A com-
mon first step in many collision detection routines is an
approximate bounding region (usually an axis-aligned/
box or a sphere) overlap test to quickly eliminate many
objects as not interfering. An extension of this idea is to
use a hierarchy of bounding regions to localize collision
regions quickly (Hahn, 1988). Gottschalk, Lin, and
Manocha (1996) use precomputed OBBTrees (oriented
bounding box trees). Related methods use octrees and
voxel sets. Garcia-Alonso, Serrano, and Flaquer (1994)
store a voxel data structure with each object, along with
the pointers (from the voxels to polyhedra faces) that
intersect them. Collision is localized by testing for inter-
section of voxels between two objects. Kitamura, Take-
mura, and Kishino (1994) store an octree for each ob-
ject and, at each time instant, check for interference of
updated octrees; face pairs from the inside of interfering
octree nodes are then checked for collision. Other voxel
and octree methods have been proposed by Moore and
Wilhelms (1988), Turk (1989), Zyda et al. (1993), Shaf-
fer and Herb (1992), and Hayward (1986).

Another method of collision detection involves keep-
ing track of the distance between each pair of objects in
the world; if the distance between a pair goes below
some small threshold then the pair has collided. A note-
worthy use of this idea for the collision detection of
rigid, convex objects was proposed by Lin and Canny
(1991), Lin, Manocha, and Canny (1994), and Cohen
et al. (1995). In this approach, the coherence of objects
between time instants (i.e., object positions change only
slightly) and the property of convex polyhedra are used
to detect collisions among objects in a roughly constant

38 PRESENCE: VOLUME 7, NUMBER 1

time per object pair. Other researchers who have used
this distance-based approach include Gilbert, Johnson,
and Keerth (1988), Quinlan (1994), and Chung and
Wang (1996).

Briefly, some other approaches to collision detection
are as follows. Bouma and Vanecek (1991) use a data
structure called a ““BRep-Index’’ (an extension of the
well-known BSPTree) for quick spatial access of a poly-
hedron in order to localize contact regions between two
objects. Baraff (1990) finds separating planes for pairs of
objects; using object coherence, these separating planes
are cached and then checked at succeeding time instants
to yield a quick reply of noncollision most of the time.
Shinya and Forgue (1991) use ideas from the z-buffer
visible surface algorithm to perform interference detec-
tion through rasterization. Vanecek (1994) uses back-
face culling to prevent roughly half of the faces of ob-
jects from being checked for detailed interference; the
basic idea is that polygons of a moving object that do
not face in the general direction of motion cannot possi-
bly collide. Foisy, Hayward, and Aubry (1990) use a
scheduling scheme whereby object pairs are sorted by
distance and only close objects are checked at each time
instance. Hubbard (1993) uses four-dimensional space-
time bounds to determine the earliest time that each pair
of objects could collide and does not check the pair until
then. Pentland (1990) models objects as superquadrics
and shows how collision detection can be done effi-
ciently using the inside/outside function of a super-
quadric. For coarse collision detection, Fairchild, Pos-
ton, and Bricken (1994) store bounding regions of
objects in a stack of 2D structures similar to quadtrees
(to reduce memory use) and uses only bit manipulations
to add or delete objects to/from this stack (to reduce
computation).

Finally, our algorithm uses ideas from methods for
localized set operations on polyhedra (Mantyla and
Tamminen, 1983; Fujimura and Kunii, 1985). These
methods attempt to efficiently perform set operations,
such as intersection, union, etc., on polyhedra by localiz-
ing regions where faces use spatial subdivision tech-
niques; a set operation for a face then only needs to be
done against the other faces inside the region that the
face is in. As a particular example, the idea of intersect-

ing faces with overlap regions of bounding boxes in or-
der to localize the interference region of two objects was
first described in Maruyama (1972), and we use this idea
effectively in our algorithm.

2.2 Evaluation

We evaluate the above algorithms on the basis of
four properties a collision detection algorithm needs for
effective use in a practical, large-scale virtual environ-
ment inhabited by humans. The properties are the abil-
ity to handle deformable (nonrigid) objects, the ability
to handle concave objects, the use of an inexcessive
amount of memory for storing auxiliary data structures,
and a better than O(n?) complexity for n objects in the
world. None of the algorithms surveyed in the previous
subsection have all four properties and some do not even
have one of them. Our algorithm can satisfy all four of
these properties.

2.2.1 Deformable Objects. In a virtual environ-
ment inhabited by humans, it is very important to be
able to perform collision detection for objects that de-
form during motion. For example, in physical-based
simulations, forces between colliding objects are deter-
mined and the colliding objects are then deformed based
on these forces. In general, a user should be allowed to
deform objects in a virtual environment, necessitating
collision detection for deformable objects. Many of the
above algorithms require precomputation and computa-
tionally expensive updating of auxiliary data structures
(e.g., octrees, voxel sets, OBBTrees, BRep-indices) for
each object. This limits their usefulness because it means
that objects are essentially limited to being rigid; this is
because when an object deforms, its auxiliary data struc-
tures must be recomputed and this is usually an expen-
sive operation. Our collision detection algorithm
handles deformable objects.

2.2.2 Auxiliary Data Structures. In addition to
being expensive to recompute, auxiliary data structures
can take up considerable memory when stored for each
object. This limits the number of objects for some algo-
rithms. Our algorithm does not require any auxiliary

Kitamuraetal. 39

data structures beyond simple bounding boxes and ar-
rays.

2.2.3 Concave Objects. Another problem is that
some of the above collision detection algorithms require
objects to be convex (Baraff, 1990; Lin and Canny,
1991; Lin, Manocha, and Canny, 1994; Cohen et al.,
1995; Gilbert, Johnson, and Keerth, 1988; Quinlan,
1994; Chung and Wang, 1996). However, it is clear that
most objects of interest in the real world are concave and
a virtual environment, to be useful, should allow con-
cave objects. To solve this problem, the above authors
argue that a concave object can be modeled as a collec-
tion of convex pieces. While this can in fact be done for
any concave object, it adds many fictitious elements (i.e.,
vertices, edges, etc.) to an object. In addition, breaking a
concave object up into convex pieces means that the one
object becomes many objects; unfortunately, this greatly
worsens the complexity problem described in the next
section (because each convex piece of the concave object
must be treated as a separate object for the purpose of
collision detection). Most importantly, however, any
algorithm that requires objects to be convex or unions of
convex pieces cannot be used to detect collisions for de-
formable objects; this is because, in general, deforma-
tions of an object easily lead to concavities. Our algo-
rithm deals directly with concave objects in the same way
as convex ones, with no extra computational overhead.

2.2.4 Complexity. The O(n2) complexity prob-
lem becomes apparent for large-scale virtual environ-
ments. Pentland (1990) discusses problems due to com-
putational complexity in computer-simulated graphical
environments and notes that collision detection is one
such problem for which, in order to simulate realistically
complex worlds, algorithms that scale linearly or better
with problem size are needed. To understand the prob-
lem concretely, consider a collision detection algorithm
that takes 1 millisecond per pair of objects. While for
very small environments this algorithm is extremely fast,
the algorithm is impractical for large-scale environments.
For example, for an environment with just 50 objects,
1225 pairwise checks between objects must be done,
taking more than a second of computation; in this ex-

ample, real-time performance cannot be maintained for
the environment, should it have more than 14 objects
(being able to compute something in 100 milliseconds
or less is considered to be real-time performance) (Card,
Moran, and Newell, 1983). All of the distance-based
approaches (Lin, Manocha, and Canny, 1994; Gilbert,
Johnson, and Keerth, 1988; Quinlan, 1994) and many
of the others (Baraff, 1990; Pentland, 1990; Garcia-
Alonso, Serrano, and Flaquer, 1994) suffer from this
complexity problem. In our experiments, we did use a
bounding box test among objects, which is O(n2) for n
objects. The bounding box test between two objects was
found to be extremely fast and thus should not become a
bottleneck unless there are many objects in the environ-
ment; for such an environment, the problem can be eas-
ily solved by using a bounding box check with better
complexity (Kirk [1992] describes such a method) or by
skipping the bounding box stage altogether and going
directly to the face octree spatial subdivision stage,
which is O(n?) for n objects.

2.2.5 Other. A few other minor problems with
the surveyed algorithms are as follows. Some of these
algorithms (Turk, 1989; Pentland, 1990) cannot be
used for polyhedra, and this limits their usefulness for
current graphical applications where polyhedra dominate
as the object representation. Kitamura, Yee, and Kishino
(submitted) describe how accurate collision detec-
tion—to identify exactly which objects (i.e., their faces)
are interfering—is useful for manipulation aid in a virtual
environment. Some of the algorithms do not provide
accurate collision detection among objects (Shinya and
Forgue, 1991; Hubbard, 1993; Foisy, Hayward, and
Aubry, 1990; Fairchild, Poston, and Bricken, 1994).
While most of the algorithms described above are clearly
improvements over the basic, naive collision detection
algorithm, none of them provide a solution to the prob-
lem that is as general, efficient, and simple as ours.

2.3 Proposed Algorithm

Our proposed algorithm is an extension of the
methods for localized set operations for use in collision
detection. In particular, we extend the ideas in Mantyla

40 PRESENCE: VOLUME 7, NUMBER 1

and Tamminen (1983), Fujimura and Kunii (1985), and
Maruyama (1972) to a world with multiple objects;
these papers describe algorithms for two objects but
never precisely explain how to extend their algorithms
efficiently to handle multiple objects (thus, direct use of
these algorithms requires O(n?) complexity for n ob-
jects). In addition, these algorithms, in testing for inter-
section between a face and an axis-aligned box (while
performing spatial subdivision), advocate using an ap-
proximate test between the bounding box of the face
and the axis-aligned box; however, in developing our
algorithm we found that using the exact intersection test
described in Section 3.7 gave better performance (be-
cause it reduces the number of edge-face pairs even
more, without much of an added computational cost).
Also, these algorithms are used to perform static set op-
erations; we show how they can be used for collision
detection in a dynamic environment with multiple mov-
ing objects. Finally, we provide empirical evidence to
show the efficiency of the proposed algorithm. The next
section describes the details of our proposed collision
detection algorithm.

3 Collision Detection Algorithm
3.1 Assumptions

All objects in the world are modeled as polyhedra
(boundary representation). The faces of a polyhedron
are assumed to be triangular patches without any loss of
generality in the range of representations. Objects can be
concave or convex. These objects undergo motion that
is not predetermined (e.g., a user can move his graphical
hand in a sequence of nonpredetermined, jerky mo-
tions); object motion can be both translational and rota-
tional. Objects can be deformed during motion. Given
this kind of environment, the goal is to be able to detect
the colliding objects in the world and, in particular, the
face pairs between objects that are interfering. Collision
will be checked for all objects at discrete time instants
(i.e., at each time instant the new positions of the objects
will be determined, and collision will be checked for at
that time instant before the computer graphic images of
the objects are drawn to the screen). It is assumed that

’ extraction of rotation and translation |

i L |
|interl‘erer|ce test using bounding boxes |

interfering ?

Yes

determination of faces
intersecting overlap regions

any faces ?

Yes

[interference test using face octrees

interfering ?

Yes

face pair interference test

interfering?

generation of
CG images

o]

l pairs of faces

Figure 1. Control flow of collision detection.

the speed of each object is sufficiently slow compared
with the sampling interval so that collisions are not
missed. Finally, it is assumed that there is a large cube
that completely bounds the world (i.e., that all objects
will stay inside of this cube); let the side length of this
cube be L.

3.2 Outline of the Method

Figure 1 shows the control flow of our method.
Suppose there are n objects in the workspace. The
bounding boxes for each object are updated periodically
(at discrete time instants . . . tj_q, tj, t 4, . . .) USINg Ob-
served object motion parameters. Updated bounding
boxes are checked for interference. For each object with
an interfering bounding box, all overlap regions of the

Kitamuraetal. 41

object’s bounding box with those of other objects are
determined. Next, for each such object all faces of the
object are checked to see if they intersect with the over-
lap regions of the object; a list of the object’s faces that
intersect one or more of the overlap regions is stored.
Then, if there is a list of faces for more than one object, a
face octree (i.e., an octree where a node is black if and
only if it intersects faces) is built for the remaining faces
(for all objects’ face lists, together), where the root node
is the world cube of side length L and the face octree is
built to some user-specified resolution. Finally, for each
pair of faces that are from separate objects and that inter-
sect the same face octree voxel (i.e., the smallest resolu-
tion cube) it is determined whether the faces intersect
each other in three-dimensional space. In this way, all
interfering face pairs are found. Note that the intersec-
tion of faces with overlap regions and face octree stages
repeatedly test for intersection of a face with an axis-
aligned box; thus, we describe an efficient algorithm for
testing this intersection.

3.3 Approximate Interference
Detection Using Bounding Boxes

At every time instant, axis-aligned bounding boxes
are computed for all objects, and all pairs of objects are
compared for overlap of their bounding boxes. For each
pair of objects whose bounding boxes overlap, the inter-
section between the two bounding boxes is determined
(called an overlap region, as shown in Figure 2) and put
into a list of overlap regions for each of the two objects.
The overlap regions are passed to the next step.

3.4 Determination of Faces Intersecting
Overlap Regions

For every object that has a list of overlap regions,
all faces of the object are compared for intersection with
the overlap regions. Once a face of an object is deter-
mined to be intersecting with at least one overlap region
it is placed in a face checklist for the object. If there are
face checklists for two or more objects, then these are
passed on to the next stage. Figure 3 shows an example
of faces intersecting an overlap region.

object 1

— overlap region

object 2
o
Figure 2. An overlap region.
A
z :
E -,s’.-."
. x
N W FE
i
Y

X

Figure 3. Faces intersecting the overlap region.

3.5 Face Octree Spatial
Subdivision Stage

A face octree is built down to a user-specified reso-
lution for the remaining faces starting from the world
cube of side length L as the root. To minimize computa-
tion, only as much of the face octree as is necessary for
collision detection is built; in particular, a parent node is
subdivided into its eight children only if it contains faces
from two or more objects, and only the faces found to

42 PRESENCE: VOLUME 7, NUMBER 1

face 1

face 2

Figure 4. Face pair intersection test.

intersect the parent node are tested for intersection with
the child nodes. Also, there is no condensation of the
face octree (i.e., eight black child nodes are not erased
and replaced by their single, black parent node). If there
are voxels in the face octree, then in each voxel there are
faces from two or more objects. For each voxel, all pos-
sible pairs of faces, where the faces are from different
objects, are determined and put into a face pair checklist.
However, a face pair is only put into this face pair check-
list if it was not previously put there by examination of
another voxel. The face pair checklist is then passed to
the next stage. Note that it is not necessary to allocate
memory and actually build a face octree; faces can simply
be checked for intersection with the standard cubes of an
octree and checked recursively for lower-level cubes
(thus no memory, beyond the small amount used by the
stack during recursion, is necessary for storing octrees).
Also note that a face octree is built for only a very small
portion of all the faces; the previous stage eliminates
most faces as not interfering.

3.6 Face Pair Interference Check

A pair of faces is checked for intersection at a time
instant as follows (see Figure 4). First, the bounding
boxes of the faces are computed and checked for over-
lap; if there is no overlap in the bounding boxes then the
faces do not intersect. Otherwise, the plane equation of
the face plane of the first face is computed and the verti-
ces of the second face are evaluated in this equation; if all

vertices lead to the same sign (+ or —) then the second
face is completely on one side of the face plane of the
first face, and thus there is no intersection. The plane
equation of the face plane of the second face is then de-
termined, and the vertices of the first face are evaluated
in it in the same way. If neither face is found to be com-
pletely on one side of the face plane of the other face,
then more detailed checks are done as follows. The point
of intersection of each edge of face 1 with the face plane
of face 2 is found and checked to see if it is inside face 2
(a three-dimensional point-in-polygon check—the
method used is described in Arvo [1991]); if the point is
inside the face then the two faces intersect. The case
where an edge and face plane are coplanar is handled by
projecting the edge and face onto the two-dimensional
coordinate axis most parallel to the face plane and per-
forming a two-dimensional intersection check between
the projected face and edge. In the same way, the edges
of face 2 are checked for intersection with face 1. If no
edges of either face are found to intersect the other face,
then the two faces do not intersect.

3.7 Efficient Triangular Patch and
AXxis-Aligned Box Intersection
Determination

To determine whether or not a triangular patch
intersects with an axis-aligned box, we perform clipping
against four of the face planes of the faces that comprise
the box; the four face planes are the maximum and mini-
mum extents of two of the three dimensions x, y, and z
(e.g., in our implementation we arbitrarily chose to clip
against the maximum and minimum x extents and the
maximum and minimum y extents). For the final dimen-
sion, it is only necessary to check whether or not the
remaining vertices of the clipped triangular patch are
either all greater than the maximum extent or all less
than the minimum extent. If either case is true then
there is no intersection; otherwise there is intersection.
In addition, it is often not even necessary to clip against
the four planes. When clipping, whenever the intersec-
tion point of a segment with the current face plane is
calculated, this point can be quickly checked to see if it is
inside of the face of the face plane; if it is inside, then the

Kitamuraetal. 43

Figure 5. Examples of experimental objects (standardized spheres
with different numbers of faces).

triangular patch and box intersect and no more compu-
tation need be done. Finally, before performing any clip-
ping at all, two quick tests are done. As a first step, a
quick overlap check between the bounding box of the
triangular patch and the axis-aligned box can be done to
quickly determine nonintersection in many cases. Sec-
ond, the three vertices of the triangular patch can be
checked to see if one of them is inside of the axis-aligned
box; if so, then the triangular patch and axis-aligned box
intersect.

4 Performance of the Proposed Method

The algorithm and an experimental environment
were implemented and run on a Silicon Graphics In-
digo? (with an R4400/150 Mhz processor), with the
exception of the experiment in Section 4.3; experiments
were done to determine the efficiency of the proposed
algorithm. In all experiments described in this section,
face octrees were built to resolution level 6.

4.1 Standardized Objects

For performance evaluation, spherelike objects
approximated by differing numbers of triangular patches
were used; spheres were selected for testing because of
their orientation invariance. Figure 5 shows some of the
spheres that were used in the experiments. The basic

computation time
(milliseconds)

: |
m |
|

3968 faces

30
/ ;960 faces
20
/-/ 528 faces
10 ,_/v\/‘f /{ ..1 68 faces
wv__NWVWJ
0 | SRANAAAARNAR ALY
0 20 40 60
time sequence (cycle)

Figure 6. Computation time for each processing cycle for two
identical sphere objects with 168, 528, 960, and 3968 faces.

experiment done was to have two identical sphere ob-
jects start at different (nonpenetrating) positions and
have them move toward each other (with both transla-
tion and rotation motion) until they collided. This basic
experiment was done with sphere objects having 8, 10,
24,48, 54, 80, 120, 168, 224, 360, 528, 728, 960, and
3968 faces. Figure 6 shows the computation time
(which includes updating object positions, but excludes
rendering graphics) required at each processing cycle
from t = 1 (cycle), when there is no interference, until

t = 72 (cycle), when faces from the two sphere objects
are found to be intersecting, for four of the experimental
sphere objects; at the last cycle, 70, 24, 16, and 11 milli-
seconds of computation are required to determine the
colliding faces for the spheres with 3968, 960, 528, and
168 faces. Finally, Figure 7 shows the computation re-
quired at the last stage (i.e., when faces from the two
objects are found to be interfering—this requires maxi-
mum computation and is the true measure of the effi-
ciency of a collision detection algorithm) of the pro-

44 PRESENCE: VOLUME 7, NUMBER 1

computation time (ms)

computation time
(milliseconds)

70 / 30]| 15 shuttles
60 / 25 —
50 / 20

40
30 /
20

10 J\/

0 1000

2000
number of faces

3000 4000

Figure 7. Computation time at the last stage of the proposed collision
detection between two identical sphere objects against the number of
planar patches of the objects.

posed collision detection algorithm between two sphere
objects against the number of triangular patches of the
sphere objects.

4.2 Multiple General Objects

An experiment was also done with multiple general
(i.e., concave, as occur in the real world) objects (see
Figure 8). Specifically, 15 identical objects (space
shuttles with 528 faces—see Figure 9) were moved
(both translation and rotation motion) in the test envi-
ronment for many processing cycles and the computa-
tion time required at each cycle to perform collision de-
tection was measured. At every cycle, many objects’
bounding boxes were overlapping; thus, many triangular
patches had to be tested for intersection with overlap
regions at every cycle. At the last cycle of the test, faces

:) MH‘W L2 huttes

o — LILUMMAAMMM A i

0 50 100 150
time sequence (cycle)

Figure 8. Computation time at each processing cycle for 15 and for 2
space shuttle objects—collision between two objects is detected at the
last cycle.

Figure 9. The space shuttle experimental object (528 triangular
patches).

from two objects were found to be interfering, taking 31
milliseconds of computation. Figure 8 shows the results
of this experiment. Also in this figure, to provide a basis
for comparison, are the results for when only the two
interfering space shuttle objects were in the test environ-
ment; here, the last step, where faces were determined to
be colliding, required 16 milliseconds of computation.

Kitamuraetal. 45

stereo viewer
with 6-DOF magnetic
tracker

70-inch

display

1280x480 stereo

-

CyberGlove
Graphics
— CyberGlove workstation
SGI ONYX
Fastrack R4400/150 MHz

Figure 10. Hardware configuration for interactive experiments.

4.3 Multiple Deformable Objects in an
Interactive Environment

Two users participated in the interactive experi-
ment (Kitamura and Kishino, 1996). Both wore glasses
and gloves with magnetic trackers and manipulated ob-
jects created by stereoscopic computer graphic images in
the environment as shown in Figure 10. Figure 11
shows two snapshots from the experiment. The yellow
hand could grasp the virtual objects directly and change
the motions of the objects, while the orange hand could
change the motions of the objects by touching them.
Here, the detected pairs of faces are shown by their color
change to red. The motions of collided objects are
changed according to the normal vectors of the face
pairs and their original motion vectors. The objects are
also reflected at the boundary plane of the environment,
meaning they continuously moved in the defined envi-
ronment. The number of faces of Venus, the space
shuttle, and each hand was 1816, 528, and 960, respectively.
Here, a sphere and the hands deformed during motion.
Even though a simple model for reflection was used in this
experiment, the response after collisions are detected
should be considered according to the application.

Figure 12 shows the computation time for only the

collision detection routine required at each processing
cycle during about 800 cycles with some random condi-
tions. During the cycles without any collisions, the algo-
rithm took negligible (rarely more than 5 milliseconds)
computation time. It increased only when collisions
were found. The average computation time for a cycle
throughout this experiment was 11.5 milliseconds, as
shown in Figure 12. The method detects colliding pairs
of faces quite efficiently in a complicated environment;
therefore, it is possible to design a virtual object manipu-
lation aid using dynamic constraints among faces that
provides the user with a natural impression of motion
(Kitamura, Yee, and Kishino, submitted).

4.4 Application to a Virtual
Cooperative Workspace

The proposed method was applied to a ““virtual
space teleconferencing’’ system. This system offers an
environment for teleconferencing with realistic sensa-
tions, in which participants at different sites can engage
in a conference with the sensation of sharing the same
space (Miyasato, Kishino, and Terashima, 1995). It cre-
ates an image of a virtual conference room and the re-
motely located conference participants using computer
graphics in real time. The users can work cooperatively
in the virtual workspace (Takemura and Kishino, 1992).

An example of virtual cooperative work is shown on
the front cover. It is a snapshot of constructing a ‘‘miko-
shi”” (a portable shrine). In this environment, multiple
complicated objects are independently manipulated by
different participants, with the proposed collision detec-
tion method providing users with sophisticated feed-
back. The detected colliding pairs of faces are shown by
their color change to blue, and collision sound is also
generated. Though the mikoshi has 5263 faces, it could
present such feedback in real time (Miyasato, Ohya, and
Kishino, 1996 [video]).

5 Comparison Against Existing
Algorithms

The performance of the proposed algorithm is
compared directly against three other existing algo-

46 PRESENCE: VOLUME 7, NUMBER 1

Figure 11. Two snapshots from the interactive environment, which includes multiple deformable objects.

rithms. In general, it is difficult to make such direct
comparisons because authors of collision detection pa-
pers do not normally give out the code that they used to
get their experimental results. Fortunately, however, we
found the C language code for the first existing collision
detection algorithm in Heckbert 1994, the second exist-
ing algorithm is a slight modification of the algorithm
proposed in this paper, and the library for the third one
is available on the internet.

5.1 Separating Plane Algorithm

The first algorithm is based on the separating plane
algorithm (Gilbert, Johnson, and Keerth, 1988; Baraff,
1990). This algorithm can only be used for convex, rigid
objects and it does not return the list of face pairs that
are interfering, as ours does. The details of this algo-
rithm are given in Heckbert 1994. However, briefly, the
algorithm works by initially finding a separating plane
between each pair of objects. A separating plane is found
for two objects by finding the two closest vertices on the
objects (using the method in Gilbert, Johnson, and
Keerth, 1988); the vector between these two points is
the normal vector of the plane, and the plane passes

computation time
(milliseconds)

200

180

160

140

120

100

- T
VWAL

0 200 400 600 800
time sequence (cycle)

Figure 12. Computation time at each processing cycle for the
interactive environment.

Kitamuraetal. 47

through one of the two points. Separating planes are
cached between time instants and the previous time in-
stant’s separating plane is checked at the current time
instant to see if it still separates the two objects; if it no
longer separates them, an attempt is made to find a new
separating plane, which is then cached. If no new sepa-
rating plane can be found then there is collision. Note
that the complexity for this test (for n objects) is O(n?).

We compared our proposed algorithm against this
algorithm for environments containing differing num-
bers of the same sphere objects (528 triangular patches).
In particular, we tested both algorithms in environments
with 10, 20, 30, and 40 moving sphere objects; at the
last cycle of the tests two of the sphere objects collided.
For 10 sphere objects, our algorithm performed roughly
the same as the separating plane algorithm; in particular,
our algorithm required 16 milliseconds of computation
at the last cycle, while the separating plane algorithm
required approximately 10 milliseconds per cycle. How-
ever, for 20, 30, and 40 objects our algorithm per-
formed better. In particular, for 20, 30, and 40 objects,
our algorithm required 21, 22, and 41 milliseconds at
the last cycle; against this, the separating plane algorithm
required approximately 35, 76, and 140 milliseconds per
cycle. The results of these experiments can be seen in
Figure 13 (the separating plane algorithm’s times are
drawn with dotted lines, while the proposed algorithm’s
are drawn with solid lines). The computation times were
measured by a Silicon Graphics Indigo?.

5.2 Octree Update Algorithm

The second algorithm (Kitamura, Smith, Take-
mura, and Kishino, 1994) is a slight modification of the
algorithm proposed in this paper, and is representative of
the bounding region hierarchy, octree, and voxel ap-
proaches described in Section 2. Essentially, the modifi-
cation is to precompute complete face octrees for all of
the polyhedral objects, and to store a list for each black
node of the faces that intersect that black node. Then,
the proposed collision detection algorithm is modified as
follows. Instead of determining the polyhedral faces that
intersect with overlap regions, the octree update algo-
rithm determines the black nodes from the precomputed

computation time
(milliseconds)
i l=separating plane
140 : (40p:b]ectgs
120
100
s ., P 3 .
80 - / reseparating plane
N T8 onjecss)
60
posed method
[1 a0'objects)
40 / -se(rarating lane
(20 objects
L proposed method
{] (30 objects)
} r« proposed method
20 ?2'0 objects)
 proposed method
?10 objects)
™ separating plane
(1 0’ obiectgs)p
1]
1] 10 20 30 40
time sequence (cycle)

Figure 13. Computation time for each processing cycle for the
proposed algorithm (solid lines) and the separating plane algorithm
(dotted lines) for 10, 20, 30, and 40 identical sphere objects (528
triangular patches each).

face octrees that intersect with the overlap regions.
These intersecting black nodes are then put into a ‘““node
checklist’” (as opposed to a “‘face checklist’). Then, in
the next stage (the face octree spatial subdivision stage),
instead of creating a face octree by testing for intersec-

48 PRESENCE: VOLUME 7, NUMBER 1

computation time
(milliseconds)

160

140 /
120

100 r/

octree
update
algorithm

) \A/-N/r
40 TP jaad A~
20
proposed
|\~~~ algorithm
0 /
0 20 40 60 80

time sequence (cycle)

Figure 14. Computation time for each processing cycle for the
proposed algorithm and the octree update algorithm for the
environment of Figure 15.

tions between the polyhedral faces in the face check list
and the standard octree nodes, the octree update algo-
rithm builds an octree by testing for intersections be-
tween the transformed black nodes (using the same
transformation matrix as for the polyhedral objects) of
the node checklist and the standard octree nodes. Fi-
nally, for each standard octree voxel found to contain
transformed black nodes from more than one object, all
unique pairs of faces, where the faces are inside a pre-
computed face list of one of the transformed black nodes
and the faces are from different objects, are enumerated
and checked for intersection (using the method de-
scribed in Section 3.6). Basically, the octree update algo-
rithm substitutes precomputed face octree black nodes
for faces in checking for intersection with overlap re-
gions and standard octree nodes. Note that this algo-
rithm can be used for concave objects, but that the ob-
jects must be rigid; thus, it is not as general as the
proposed algorithm.

Figure 14 shows the results of an experiment in which
we tested the proposed algorithm against this octree up-

2

Figure 15. The experimental environment used to obtain the data for
Figure 14.

date algorithm for the environment of Figure 15; this
environment contains a sphere (120 faces), a space
shuttle (528 faces), a chair (146 faces), and a head of
Venus (1816 faces). The experiment that was performed
was to move the Venus head and the space shuttle to-
ward each other (with translation and rotation) until
they collided at the last cycle; the other two objects also
translated and rotated slightly (without any collision).
The proposed algorithm performed much better than
the octree update algorithm for all cycles after cycle 17
(when bounding boxes first overlapped); in particular, at
the last cycle the octree update algorithm required 161
milliseconds of computation, while the proposed algo-
rithm required only 11 milliseconds (roughly 16 times
better performance).

5.3 Distance-based Algorithm

The third algorithm is a distance-based approach
(Cohen, et al., 1995), which involves keeping track of

Kitamuraetal. 49

computation time

(milliseconds) — distance based

...... proposed method

40

35

30 |

25

15

0Nt i M h

0 200 400

|
600 800 1000
time sequence (cycle)
Figure 16. Computation time at each processing cycle for the
proposed algorithm and the distance-based algorithm for 15 spheres

having 168 polygons.

the distance between each closest feature pair of rigid,
convex polyhedral objects in the world. It uses the co-
herence of objects between time instants (i.e., object
positions change only slightly) and the property of con-
vex polyhedra, so it cannot be directly used for deform-
able convex/concave objects. We got the program
through the internet (http://www. cs.unc.edu/
~geom/1_COLLIDE.html) and compared it with our
proposed method under the same condition with convex
and rigid multiple objects.

Figures 16 and 17 show the computation time for
only the collision detection routine required at each pro-
cessing cycle (frame) during 1000 cycles in which many
random collisions among 15 identical spheres having
168 and 960 faces occur. Measurements were made by a
Silicon Graphics Onyx with an R4400/150 MHz pro-
cessor. Both conditions correspond to 5% of the envi-
ronment volume the objects occupy. The translation
velocity is 5% of the object radius for each cycle, and the
rotational velocity is 10 degrees per cycle for each ob-
ject. Here, the motion vectors of collided objects are
exchanged, and the objects are reflected at the boundary

computation time
(milliseconds)

600

— distance based
...... proposed method

500

300

200

1!

60 0
time sequence (cycle)

100—|-;

Figure 17. Computation time at each processing cycle for the
proposed algorithm and the distance-based algorithm for 15 spheres
having 960 polygons.

plane of the environment, so they continuously move in
the defined environment. The distance-based method
(which uses fixed size bounding cubes) required much
computation time only when collision occurred, but it
performed quite fast computation for other cycles. Local
maximums were almost the same for both methods with
objects having 168 faces, but our proposed method had
faster local maximums than the distance-based method
with more complicated objects. Figure 18 shows the
average computation time for the proposed and dis-
tance-based methods throughout the experimented
cycles! (1000 cycles), and the average computation time
for only the cycles where collisions were found, with
sphere objects having 48, 80, 168, 360, 528, 728, and
960 faces. Though these graphs indicate only one aspect
of performance, our proposed method showed a faster
computation time for the cycles where collisions oc-
curred.

1 Only data of this type are listed in Cohen, Lin, Manocha, and Po-
namgi, 1995.

50 PRESENCE: VOLUME 7, NUMBER 1

computation time

{milliseconds) |
only collision, distance basei/
250
200
150
only collision, proposed
100
" throughout, proposed
80— T
"t-hroughout, distance based
|
0
0 200 400 600 800 1000

number of faces

Figure 18. Average computation time for the proposed and
distance-based methods throughout the experimented cycles (1000
cycles), and average computation time for only the cycles where
collisions were found, with sphere objects having 48, 80, 168, 360, 528,
728, and 960 faces.

6 Discussion

As can be seen from the various graphs given, our
collision detection algorithm is quite efficient. Card,
Moran, and Newell (1983) write that if a graphic inter-
face finishes all procedures within the cycle time of the
human’s perceptual processor (100 milliseconds) it pro-
vides the user with a natural impression of motion. Us-
ing this knowledge, our algorithm is able to perform
collision detection for objects having up to approxi-
mately 5936 faces (extrapolated from Figure 7) within
this cycle time.

We did not implement the basic, naive collision detec-
tion algorithm in order to compare it to our algorithm.
Our algorithm is clearly better—see Kitamura, Take-
mura, and Kishino (1994) and Shinya and Forgue
(1991) to see how ludicrously long the naive algorithm
can take for even very simple environments. The impor-
tant basis of comparison should be with other authors’
accurate collision detection algorithms for general, de-

formable polyhedra; as shown in Section 2, there are
very few collision detection algorithms that provide this
generality. We were not able to compare our algorithm
directly against another existing algorithm that is as gen-
eral as ours; however, even against the more restrictive
algorithms of the previous section our algorithm gave
better performance.

Our proposed algorithm would perform quite well in
many applications. Unfortunately, however, we cannot
assert, based solely on the above experiments, that our
algorithm is the fastest for all possible applications. More
comprehensive research, which does more complete
comparisons and tests variations and combinations of
the various algorithms in situations that mimic real appli-
cations, might be necessary. For the time being, how-
ever, we feel that, considering the generality of our algo-
rithm, its ease of implementation, its small memory
requirements, and its proven efficiency, we have pro-
vided a practical solution to the problem of real-time
collision detection.

7 Summary and Conclusion

In this paper, we have presented an efficient algo-
rithm for accurate collision detection among polyhedral
objects. The algorithm can be used for both convex and
concave objects; both types of objects are dealt with in
the same way and there is no performance penalty for
concave objects. The algorithm can be used for objects
whose motion is not prespecified, and both translation
and rotation motion are allowed. The algorithm can also
be used for objects that deform during motion. Thus,
the algorithm is very general. The algorithm is fairly
straightforward and should be easy to implement. The
algorithm does not require the precomputation and up-
date of memory-intensive auxiliary data structures,
which some collision detection algorithms require and
which can sap the memory resources of an application,
making it impossible to perform collision detection for a
large number of objects. Finally, and most importantly,
even though the algorithm is very general it is extremely
fast; adding many objects to the environment does not

Kitamuraetal. 51

require much more computation and the algorithm can
run in real-time on a graphics workstation for polyhedra
containing several thousand faces.

The performance of the proposed algorithm is com-
pared directly against three other existing algorithms,
and the results are given to show the efficiency of the
proposed method in a general environment. Further
speedup can be achieved by using various optimizations
of this algorithm, such as using face bintrees instead of
face octrees, using a more efficient bounding box check
(to reduce the O(n?) complexity for n objects), and de-
termining the optimal level for face octree subdivision
(the PM-octree [Samet, 1990] might be useful for this).
In addition, because the algorithm calculates many inde-
pendent intersections, further speedup can be easily
achieved by parallelization (Kitamura et al., 1995). The
algorithm is already sufficiently fast for most applica-
tions. However, with anticipated speedups from optimi-
zation and parallelization, our algorithm should be suit-
able for very large, practical virtual environments.

References

Arvo, J. (Ed.) (1991). Graphics gems I1. Boston: Academic
Press Professional.

Baraff, D. (1990). Curved surfaces and coherence for non-
penetrating rigid body simulation. Computer Graphics,
24(4), 19-28.

Bouma, W., & Vanecek, G. (1991). Collision detection and
analysis in a physical based simulation. Proceedings of Euro-
graphics Workshop on Animation and Simulation, 191-203.

Boyse, J. W. (1979). Interference detection among solids and
surfaces. Communications of the ACM, 22(1), 3-9.

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology
of human-computer interaction. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Chung, K., & Wang, W. (1996). Quick collision detection of
polytopes in virtual environments. Proceedings of Symposium
on Virtual Reality Software and Technology, 125-132, ACM.

Cohen, J. D, Lin, M. C., Manocha, D., & Ponamgi, M.
(1995). I-COLLID: An interactive and exact collision detec-
tion system for large-scale environments. Proceedings of the
Symposium on interactive 3D Graphics, 189-196, ACM.

Fairchild, K. M., Poston, T., & Bricken, W. (1994). Efficient
virtual collision detection for multiple users in large virtual
spaces. Proceedings of Virtual Reality Software and Technol-
ogy, 271-285, ACM.

Foisy, A., Hayward, V., & Aubry, S. (1990). The use of aware-
ness in collision prediction. Proceedings of International
Conference on Robotics and Automation, 338-343, IEEE.

Fujimura, K., & Kunii, T. (1985). A hierarchical space index-
ing method. Proceedings of Visual Technology and Art (Com-
puter Graphics Tokyo), 21-33.

Garcia-Alonso, A., Serrano, N., & Flaquer, J. (1994). Solving
the collision detection problem. Computer Graphics and Ap-
plications, 14(3), 36-43.

Gilbert, G., Johnson, W., & Keerth, S. (1988). A fast proce-
dure for computing the distance between complex objects in
three-dimensional space. Journal of Robotics and Automa-
tion, 4(2), 193-203, IEEE.

Gottschalk, S., Lin, M. C., & Manocha, D. (1996). OBBTree:
a hierarchical structure for rapid interference detection.
Computer Graphics Proceedings, Annual Conference Series,
171-180, ACM.

Hahn, J. K. (1988). Realistic animation of rigid bodies. Com-
puter Graphics, 22(4), 299-308.

Hayward, V. (1986). Fast collision detection scheme by recur-
sive decomposition of a manipulator workspace. Proceedings
of the International Conference on Robotics and Automation,
1044-1049, IEEE.

Heckbert, P. (Ed.) (1994). Graphics gems I1V. Boston: Aca-
demic Press Professional.

Hubbard, P. M. (1993). Interactive collision detection. Pro-
ceedings of the Symposium on Research Frontiers in Virtual
Reality, 24-31, IEEE.

Kirk, D. (Ed.) (1992). Graphics gems I11. Boston: Academic
Press Professional.

Kitamura, Y., & Kishino, F. (1996). Real-time colliding face
determination in a general 3-D environment. Video Proceed-
ings of the Virtual Reality Annual International Symposium,
IEEE.

Kitamura, Y., Takemura, H., & Kishino, F. (1994). Coarse-to-
fine collision detection for real-time applications in virtual
workspace. Proceedings of the International Conference on
Avrtificial Reality and Tele-Existence, 147-157.

Kitamura, Y., Yee, A., & Kishino, F. A sophisticated manipula-
tion aid in a virtual environment using the dynamic con-
straints among object faces. Presence, Teleoperators and Vir-
tual Environments. (Submitted).

52 PRESENCE: VOLUME 7, NUMBER 1

Kitamura, Y., Smith, A., Takemura, H., & Kishino, F. (1994).
Optimization and parallelization of octree-based collision
detection for real-time performance. Proceedings of IEICE
Conference 1994, Autumn, D-323 (in Japanese).

Kitamura, Y., Smith, A., Takemura, H., & Kishino, F. (1995).
Parallel algorithms for real-time colliding face detection.
Proceedings of the International Workshop on Robot and Hu-
man Communication, 211-218, IEEE.

Lin, M. C., & Canny, J. F. (1991). A fast algorithm for incre-
mental distance calculation. Proceedings of the International
Conference on Robotics and Automation, 1008-1014, IEEE.

Lin, M. C., Manocha, D., & Canny, J. F. (1994). Fast contact
determination in dynamic environments. Proceedings of the
International Conference on Robotics and Automation, 602—
608, IEEE.

Mantyla, M., & Tamminen, M. (1983). Localized set opera-
tions for solid modeling. Computer Graphics, 17(3), 279-
288.

Maruyama, K. (1972). A procedure to determine intersections
between polyhedral objects. International Journal of Com-
puter and Information Sciences, 1(3), 255-266.

Miyasato, T., Kishino, F., & Terashima, N. (1995). Virtual
space teleconferencing: Communication with realistic sensa-
tions. Proceedings of the International Workshop on Robot
and Human Communication, 205-210, IEEE.

Miyasato, T., Ohya, J., & Kishino, F. (1996). Virtual space
teleconference—communication with realistic sensations.
Video Proceedings of the Virtual Reality Annual Interna-
tional Symposium, IEEE.

Moore, M., & Wilhelms, J. (1988). Collision detection and

response for computer animation. Computer Graphics,
22(4), 289-298.

Pentland, A. P. (1990). Computational complexity versus
simulated environments. Computer Graphics, 24(2), 185—
192.

Quinlan, S. (1994). Efficient distance computation between
non-convex objects. Proceedings of the International Confer-
ence on Robotics and Automation, 3324-3329, IEEE.

Samet, H. (1990). The design and analysis of spatial data struc-
tures. Reading, MA: Addison-Wesley.

Shaffer, C. A., & Herb, G. M. (1992). A real-time robot arm
collision avoidance system. Transactions on Robotics and Au-
tomation, 8(2), 149-160, IEEE.

Shinya, M., & Forgue, M. (1991). Interference detection
through rasterization. The Journal of Visualization and
Computer Animation, 2, 132-134.

Takemura, H., & Kishino, F. (1992). Cooperative work envi-
ronment using virtual workspace. Proceedings of the Annual
Conference on Computer Supported Cooperative Work, 226—
232, ACM.

Turk, G. (1989). Interactive collision detection for molecular
graphics. M.Sc. thesis, Department of Computer Science,
University of North Carolina at Chapel Hill.

Vanecek, G. (1994). Back-face culling applied to collision detec-
tion of polyhedra. Technical report, Purdue University De-
partment of Computer Science.

Zyda, M. J., Pratt, D. R., Osborne, W. D., & Monahan, J. G.
(1993). NPSNET: Real-time collision detection and re-
sponse. The Journal of Visualization and Computer Anima-
tion, 4(1), 13-24.

