
Solving Higher-Order Quantified Boolean Satisfiability via Higher-Order Model
Checking

Hiroshi Unno1, Takeshi Tsukada2, Jie-Hong Roland Jiang3

1Tohoku University
2Chiba University

3National Taiwan University
hiroshi.unno@acm.org, t.tsukada@acm.org, jhjiang@ntu.edu.tw

Abstract

The satisfiability (SAT) problem of higher-order quantified
Boolean formula (HOQBF) emerged as a natural general-
ization of SAT, quantified SAT, and second-order quantified
SAT. It allows succinct encoding of k-EXPTIME problems
beyond the reach of prior Boolean satisfiability formulations,
but its application was hampered by the lack of solvers. In this
paper, we present the first HOQBF solver that leverages tech-
niques from the model-checking community. Our HOQBF
solver is based on reduction to higher-order model check-
ing, which is a generalization from model checking of while-
programs to that of higher-order functional programs. The
ability of a higher-order model checker to deal with higher-
order functions in a program is used to reason about higher-
order quantifiers in HOQBF.

1 Introduction
Higher-order quantified Boolean satisfiability (HOSAT) ex-
tends Boolean satisfiability (SAT). It allows quantification
over higher-order Boolean function variables, and subsumes
all the currently known SAT variants, including the sat-
isfiability of quantified Boolean formula (QBF), depen-
dency QBF (DQBF), and second-order QBF (SOQBF). The
HOSAT problem is TOWER-complete and the higher-order
quantified Boolean formula (HOQBF) is capable of succinct
encoding of k-EXPTIME problems (Chistikov et al. 2022).
Its usefulness has been demonstrated in encoding Pres-
burger arithmetic for a theoretical complexity study (Chis-
tikov et al. 2022). Other potential applications may include,
e.g., memory consistency verification (Cooksey et al. 2020),
planning for multi-agent systems, secure system synthesis
(Jiang 2023), and solving quantified bit-vector arithmetic
problems (Jonáš and Strejček 2018). Despite the potential
broad applications of HOQBF, to date, there are no HOQBF
solvers, not even for SOQBF.

In this work, we develop the first HOQBF solver to ini-
tiate the study for practical applications. The technical nov-
elty lies in leveraging techniques from higher-order model
checking for reasoning about higher-order quantifiers in
HOQBFs. Higher-order model checking is a generalization
from model checking of while-programs to that of higher-
order functional programs, where functions can be passed

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as arguments to other functions and returned as results.
Since the decidability problem of higher-order model check-
ing being resolved by (Ong 2006), various model check-
ers (Kobayashi 2009a; Broadbent and Kobayashi 2013;
Ramsay, Neatherway, and Ong 2014) have been actively re-
searched and developed, with the aim of making them prac-
tical for the formal verification of higher-order functional
programs, even with the high computational complexity.

Specifically, we reduce the HOSAT problem to higher-
order model checking by constructing a higher-order pro-
gram that returns true when the HOSAT problem is sat-
isfiable and false otherwise. Here, the higher-order vari-
ables in the original HOQBF, introduced by the higher-order
quantifiers, naturally correspond to higher-order variables in
the program through the transformation, allowing a higher-
order model checker to efficiently and precisely reason about
higher-order functions and, as a result, higher-order quanti-
fiers. Technically, to achieve this transformation, it is nec-
essary to define recursive functions for enumerating the ele-
ments in the domains of higher-order quantifiers. However,
since higher-order model checking can only handle finite
data domains, such as Boolean or enumerated types as prim-
itive data types, careful design is required. To address this,
we inductively define and use what we call enumeration
structures for Boolean and higher-order function types (for
more details, see Section 3).

In some applications, such as synthesis (Jiang 2023), it
is required not only to determine the satisfiability of a HO-
QBF but also to extract assignments to existential quanti-
fiers that make the HOQBF true as Skolem functions. There-
fore, this work also provides a method for extracting Skolem
functions from the witness output by a higher-order model
checker when it answers “yes.”

We implemented the proposed reduction and combined it
with the state-of-the-art higher-order model checker HOR-
SAT2 (Broadbent and Kobayashi 2013; Kobayashi 2016),
realizing the first HOQBF solver, which we call HOMC-
SAT. We evaluated the solver using a benchmark set consist-
ing of 21 problem instances and obtained promising results
while also identifying the limitations of the backend solver
and suggesting directions for improvement.

By bridging these two distinct worlds of higher-order
model checking and higher-order quantified Boolean logic
satisfiability through our reduction, and by applying higher-

order model checking to such a novel and challenging do-
main, we have opened the door to mutually exchanging tech-
niques and advancing the solving methods in both fields.

The remainder of this paper is structured as follows. Sec-
tion 2 provides a brief review of higher-order quantified
Boolean formulas and higher-order model checking. In Sec-
tion 3, we discuss the reduction from HOSAT to higher-
order model checking. Section 4 presents a method for ex-
tracting Skolem functions from the witness output by a
higher-order model checker. Section 5 reports on the imple-
mentation and evaluation results. In Section 6, we compare
related work, and in Section 7, we conclude the paper with
remarks on future work.

2 Preliminaries
This section briefly reviews higher-order quantified boolean
formulas and higher-order model checking.

2.1 Higher-Order Quantified Boolean Formula
A higher-order quantified boolean formula (HOQBF) is
composed of Boolean operators (i.e., conjunction, disjunc-
tion and negation) and quantifiers (i.e. ∀ and ∃), just like
an ordinary quantified Boolean formula. The difference is
the range of quantifiers: HOQBF may have a quantifier over
functions and/or over higher-order functions (i.e. functions
on functions).

We use types to appropriately control higher-order func-
tions. The syntax of (simple) types is given by A,B ::=
bool | A → B, so a type is either the boolean type bool or
a function type A → B. The meaning of each type should
be obvious: bool denotes the set [[bool]] := {true, false}
and A → B the set [[A→ B]] := [[B]][[A]] of all functions
from [[A]] to [[B]]. Note that [[A]] is finite for every A, since
the denotation [[bool]] of the unique atomic type is finite.

A higher-order quantifier is of the form ∀xA.φ or ∃xA.φ.
These quantifiers introduce the new variable x of type A
whose scope is φ. The formula ∀xA.φ means that φ is true
no matter which element of [[A]] is assigned to x, and ∃xA.φ
is true if φ is true for some assignment to x.

In the context of satisfiability testing, the order of a type
is defined by order(bool) := 1 and

order(A1 → · · · → Ak → bool) := max
i

{order(Ai)+ 1}.

The order of a formula is the maximal order of types A such
that a quantifier, ∀xA or ∃xA, appears in the formula.

2.2 Higher-Order Model Checking
Higher-order model checking is the problem to decide if a
given program in a certain programming language satisfies a
given property. This subsection defines the model-checking
problem by providing the target programming language. The
target programming language is a functional programming
language with recursion but with two important constraints:
the language is simply-typed and has only finite data types.

That the target language is simply-typed1 means that each
1This is a technical term in the programming language com-

munity, meaning that the language has a type system that has no
advanced features such as polymorphism.

expression in the language is associated with a type. The
syntax of types and their intuitive meaning are the same as
in Section 2.1.

The syntax of expressions or terms is given as follows.
We assume infinite sets VarA indexed by types A such that
VarA and VarB are disjoint if A ̸= B. Intuitively, VarA is
the set of variables of type A, and its element is written as x
(or xA to emphasize its type). The terms are constructed by
the following rules.

• If xA ∈ VarA, then xA is a term of type A.
• If t is a term of type A and xB ∈ VarB , then λxB .t is

a term of type B → A. This is a function that takes an
argument of type B, evaluates t, and returns the result
of the evaluation. The function body t can contain the
variable x.

• If t is a term of type A, u is a term of type B → C
and fB→C ∈ VarB→C is a variable of type B → C,
then let rec f = u in t is a term of type A. Here t and
u can contain the variable f , so f = u is a recursive
definition of the function f . The value of this expression
is the result of the evaluation of t, which may refer to the
definition f = u of f when the function f is invoked
during the evaluation.

• If t is a term of type A → B and u is a term of type A,
then t u is a term of type B. This is the function applica-
tion.

• true and false are terms of type bool.
• If t is a term of type bool and s and u are terms of type
A, then if t then s elseu is a term of type A.

A term t of type A1 → A2 → · · · → Ak → bool is
often regarded as a function taking k arguments, and we
write a series of applications t u1 u2 . . . uk as t(u1, . . . , uk).
The logical conjunction t and s and disjunction t or s
for t, s : bool are defined by if t then s else false and
if t then true else s, respectively.

The variable x in λx.t (resp. f in let rec f = u in s)
is a binding variable whose scope is t (resp. u and s). An
occurrence of a variable x in t (resp. f in u or s) is bound.
An unbound occurrence of a variable x is free. A variable
in t is a free variable if it has a free occurrence, and we
write FV(t) for the set of free variables. A term t is closed
if FV(t) = ∅.

A program is a closed term of type bool. The result of the
evaluation of a program is true, false, or divergence.

The higher-order model-checking asks whether a given
program t is not evaluated to false (i.e. the evaluation di-
verges or results in true).2 Remarkably, the higher-order
model checking is decidable, despite the fact that many pro-
gram verification problems are known to be undecidable,

2The higher-order model-checking studied by Ong (Ong 2006)
is more general than the problem considered here. The specification
used in this paper concerns only the final outcome of the evaluation
of a program, but Ong studied a verification problem against tem-
poral properties. The complexity result (Theorem 1) holds for the
subproblem of this paper, as shown in (Kobayashi and Ong 2009).
The target languages differ in several respects, but the gap can be
filled by program transformations.

and some efficient solvers (Broadbent and Kobayashi 2013;
Kobayashi 2009a; Ramsay, Neatherway, and Ong 2014) are
available.

The hardness of the higher-order model checking depends
on the order of a program. The order of a term t is the max-
imum order of the types of the subterms of t.
Theorem 1 ((Ong 2006; Kobayashi and Ong 2009)). The
higher-order model checking for order-n terms is (n − 1)-
EXPTIME complete.

Since the second-order QBF belongs to 2-
EXPTIME (Jiang 2023), there exists a polynomial-time
many-one reduction from the second-order QBF to the
order-3 higher-order model checking. This general result
motivates us to utilize the algorithms and tools for the
higher-order model checking to solve the second-order
QBF. Unfortunately, the reduction obtained by the general
result looks very inefficient. So, we will discuss a more
direct reduction in the following section.

3 Reduction of HOSAT to Higher-Order
Model Checking

This section reduces the satisfiability problem of higher-
order quantified boolean formulas to the higher-order model
checking (Ong 2006; Kobayashi 2009b, 2013). We encode
higher-order variables in formulas introduced by the higher-
order quantifiers by using the higher-order variables of the
functional programming language.

3.1 Basic Idea and Challenge
We reduce the HOQBF solving to higher-order model
checking. A given formula φ is mapped to a program Pφ
that calculates the truth value of φ.

The translation is straightforward in most cases:

Pφ∧ψ := Pφ and Pψ

Pφ∨ψ := Pφ or Pψ

Pf(x1,...,xk) := f(x1, . . . , xk)

P¬φ := notPφ.

Here and, or, and not are implementations of logical con-
junction, disjunction, and negation. (We use the infix nota-
tions for these functions.)

The remaining constructs are quantifiers. A naı̈ve ap-
proach is to translate the first order quantifiers ∀xbool and
∃xbool into the following programs:

P∀xbool.φ := ((λx.Pφ) true) and ((λx.Pφ) false)

P∃xbool.φ := ((λx.Pφ) true) or ((λx.Pφ) false).

A similar approach is applicable to quantifiers ∀fA and ∃fA
over arbitrary type A since the set of all elements of the type
A is finite, say {F0, F1, . . . , FN}:

P∀fA.φ := ((λf.Pφ)F0) and · · · and ((λf.Pφ)FN)

P∃fA.φ := ((λf.Pφ)F0) or · · · or ((λf.Pφ)FN).

As expected, the above translation yields a program Pφ that
is evaluated to true if and only if φ is true. A problem here
is that the size of Pφ can be huge for the following reasons:

1. The number of elements of τ = bool → · · · → bool
is 22

k

, where k is the number of arguments of τ . Hence,
even for 2nd-order formulas, the size of the constructed
program may be hyper-exponential in size. So the trans-
lation itself is not in polynomial time.

2. The program P∀xbool.φ has two copies of Pφ. Hence
P∀xbool1 .∀xbool2∀xbooln .φ has 2n copies of Pφ, so its size
cannot be bounded by a polynomial.

3.2 Compact Implementation of Quantifiers
First, for simplicity, consider quantifiers on a finite subset
A := {0, 1, . . . , N} of natural numbers. In other words,
suppose we want programs that calculate the truth values
of ∀x ∈ A.φ(x) and ∃x ∈ A.φ(x). They can be easily de-
scribed using loops: for example, a program computing the
universal quantifier is given by

r := true
for x in 0..N:

r := r and Pφ
return r

Loops and mutable variables are not in the functional pro-
gramming language for the higher-order model checking,
but there are known ways to simulate these features. The
above program can be written as the following functional
program:

P∀xA.φ := let rec f = t in f(0)

where t is

λxA.Pφ(x) and ifx = N then true else f (x+ 1).

The program itself can also be understood directly. The
function f (or, equivalently, t since f = t by the recursive
definition of f) takes an integer i and computes the truth
value of ∀x ∈ {i, . . . , N}.φ(x). The above definition of f
corresponds to the logical equivalence

∀x ∈ {i, . . . , N}.φ(x)
⇔ φ(i) ∧ ((i = N) ∨ (∀x ∈ {i+ 1, . . . , N}.φ(x))).

It should be now clear how to describe ∃x ∈ A.φ(x) in the
functional programming language.

The above discussion assumes that A = {0, . . . , N} for
some natural number N . However, on closer examination,
one notices that only the following assumptions are actually
used.
• The following data are programmable:

– The minimum element zero := 0.
– The comparison ismax(x) := (x = N) to the maxi-

mum element N ∈ A.
– The successor function succ(x) := x+ 1.

• The maximum elementN is reachable from 0 by iterative
application of the successor, i.e.,

ismax(succk(zero)) = true

for some k. Furthermore

A = {zero, succ(zero), . . . , succk(zero)}.

Let us call this structure an enumeration structure. This
structure allows us to program universal and existential
quantifiers for a function type by the above-described
method:

P∀xA.φ := let rec f = t in f(zero)

where t is

λxA.Pφ(x) and if ismax(x) then true else f (succ(x))

The set of boolean functions (as well as the set of boolean
values) is not a subset of the natural numbers, but it has prop-
erties similar to subsets of the natural numbers in the sense
that there are constants and operations as above. Details shall
be discussed in the next subsection.

Assuming appropriate implementations of zeroA,
ismaxA, and succA for all types A, our transformation is
defined by induction on the length of the logical formula, as
follows:

Pφ∧ψ := Pφ and Pψ

Pφ∨ψ := Pφ or Pψ

Pf(x1,...,xk) := f(x1, . . . , xk)

P¬φ := notPφ

and the translations of quantifiers are given by

P∀xA.φ :=

let rec f x = Pφ and
if ismaxA(x)then

true
else

f (succA(x))
in

f(zeroA)

and

P∃xA.φ :=

let rec f x = Pφ or
if ismaxA(x)then

false
else

f (succA(x))
in

f(zeroA)

where let rec f x = t in s is an abbreviation for
let rec f = (λx.t) in s.

As we shall see in the next subsection, since the size of
zeroA, ismaxA, and succA is linear with respect to the size
of A, we obtain the following result.

Theorem 2. There exists a linear-time reduction φ 7→
Pφ from the HOQBF satisfiability problem to higher-order
model checking. Furthermore, the reduction maps an order-
n formula to order-(n+ 1) model checking.

3.3 Enumeration Structure of Each Type
We describe an implementation of an enumeration structure
for each type A. The definition is by induction on A.

Enumeration Structure of Booleans The set of values
[[bool]] = {true, false} of type bool has an obvious enu-
meration structure.

zerobool := false

ismaxbool(x) := x

succbool(x) := true.

The definition of succbool has arbitrariness. The value of
succbool for the “maximum” value can be anything (since
it is essentially undefined), so we can set, for example,
succbool(true) = false instead of the above definition
(i.e. succbool(true) = true). So succbool(x) := not(x)
is another possible implementation.

Enumeration Structure of Functions Taking Booleans
Before discussing arbitrary function types, let us first fo-
cus on function types whose argument type is bool. Let
A = bool → B and assume an enumeration structure forB.
We define zeroA : A, succA : A → A, and ismaxA : A →
bool with the expected properties.

By the induction hypothesis, the set [[B]] can be seen as an
initial segment {0, 1, . . . , N} of natural numbers for some
N . The idea is to identify a function f ∈ [[bool → B]]
with a pair (f(true), f(false)) ∈ [[B]] × [[B]]. So there
is a bijective correspondence between functions in [[A]] =
[[bool → B]] and two-digit numbers in the base-(N+1) sys-
tem. The idea is to define the zero and the successor for the
two-digit numbers in the base-(N + 1) system.

The zero is expressed as (0, 0). So it is the constant func-
tion to 0 in {0, . . . , N} ∼= [[B]]:

zerobool→B := λxbool.zeroB .

The successor of (n,m) is defined as follows:
• If m < N , then the successor is (n,m+ 1).
• If m = N and n < N , then the successor is (n+ 1, 0).
• If m = n = N , the successor is undefined.

This observation gives the following definition of the suc-
cessor.

succbool→B(x) := if ismaxB(x(false)) then

λbbool.if b then succB(x(b)) else zeroB

else

λbbool.if b thenx(b) else succB(x(b)).

The (n,m) is the maximum number if and only if n =
m = N :

ismaxbool→B(x) := ismaxB(x(true)) and

ismaxB(x(false)).

Enumeration Structure of General Function Types The
above given enumeration structure of first-order function
types can be easily extended to arbitrary function types. In
the above discussion, we identify elements in [[bool → B]]
as two-digit numbers in the base-(N + 1) system, where
[[B]] ∼= {0, 1, . . . , N}. Here, the number of digits, 2, comes
from the number of elements in [[bool]] = {true, false}.
For a general type C with [[C]] ∼= {0, 1, . . . ,M}, there is

a bijective correspondence between elements in [[C → B]]
and (M + 1)-digit numbers in the base-(N + 1) system. So
it suffices to implement the zero, the comparison with the
maximum and the successor function for (M+1)-digit num-
bers in the base-(N + 1) system. The implementation will
be slightly more cumbersome due to the increased number
of digits, but there are no inherent difficulties.

4 Synthesizing Skolem Functions
The previous section provided a translation from higher-
order QBFs to higher-order functional programs. The truth
value of an input formula coincides with the evaluation re-
sult of the generated program, so efficient program verifica-
tion tools are applicable to solve the higher-order QBF solv-
ing.

Some applications concern not only the truth or falsity of
a logical formula, but also the assignment to existentially
quantified variables that would make the logical formula
true. Such an assignment can be expressed as Skolem func-
tions.
Example 1. Consider the formula

∀xbool.∃ybool.∀zbool.(x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z),

which is true. An appropriate choice for y may depend
on the value of x, so it can be expressed as a function
Y : bool → bool (taking the value of x as its argument).
We seek a function Y that makes the formula

∀xbool.∀zbool.(x ∨ Y (x) ∨ z) ∧ (¬x ∨ ¬Y (x) ∨ ¬z),

true, and
Y (x) := ¬x

is an example of such a function.
Example 2. Consider the formula

∀fbool→bool.∃gbool→bool.∃zbool.(f(g(z)) ↔ z),

which is true. An appropriate choice for g and z depends on
f , so we would like to find functions G : (bool → bool) →
bool → bool and Z : (bool → bool) → bool that make

∀fbool→bool.
(
f(G(f, Z(f))) ↔ Z(f)

)
true. The requirement is satisfied by

G(f, x) := ⊤ and Z(f) := f(⊤).

Our higher-order QBF solving method based on the re-
duction to the higher-order model-checking program can be
used to synthesize such Skolem functions. When a higher-
order model checker answers “yes,” it generates a witness to
the correctness of the answer, from which Skolem functions
can be extracted. This witness is known as a derivation tree
for a refinement intersection type system, but we limit our
discussion here to what is necessary for this paper; see, e.g.,
(Kobayashi 2013) for a general theory.

For simplicity, we will focus on the second-order QBF.
A witness consists of specifications that each part of the

input program satisfies. The specifications for a part of bool
type are {⊤,⊥} meaning the result of the evaluation. Spec-
ifications for function types have two kinds: prime ones and

collective ones.3 A prime specification expresses an output
to a specified input: for example, a prime specification for
bool → bool → bool is that “the function returns ⊤ if
it takes ⊤ as the first argument and ⊥ as the second argu-
ment,” which we write as ⊤ → ⊥ → ⊤. We allow the “don’t
care” argument for specification: for example, ⊤ → ∗ → ⊤
means that the function returns true if its first argument is
⊤, whatever the second argument is. This specification is
met by the disjunction function but not by the conjunction
function since conj (⊤,⊥) = ⊥. A collective specification
is simply a finite set of prime specifications, meaning that
all prime specifications in the set is satisfied. For example,
{⊤ → ∗ → ⊥, ⊥ → ∗ → ⊤} is a collective specification,
and there exists a unique function that satisfies this specifi-
cation (namely, the function f(x, y) := ¬x). A higher-order
model checker returns a specification for (the parts of) the
input program which suffices to prove the correctness of the
answer of the model checker.

Example 3. Recall Example 1. Let φ(x, y, z) := (x ∨ y ∨
z)∧ (¬x∨¬y∨¬z). The translation in the previous section
yields a program that contains Pφ, which is a program with
three free variables x, y and z. Regarding Pφ as a function
of type bool → bool → bool → bool, a possible wit-
ness returned by a model checker says that Pφ satisfies the
following (collective) specification:{

⊤ → ⊥ → ∗ → ⊤, ⊥ → ⊤ → ∗ → ⊤
}
.

Intuitively, this means that φ(⊤,⊥, ∗) = φ(⊥,⊤, ∗) = ⊤.
The witness suggests that we should set y = ⊥ when x = ⊤
and y = ⊤ when x = ⊥. This is the Skolem function given
in Example 1.

Our translation of a second-order QBF generates a pro-
gram in which a subprogram taking a function as an argu-
ment appears. For such higher-order functions, a witness is
similarly given. A slight difference is that a specification
of function arguments is given as a collective specification
(rather than boolean values). For example, Φ → ⊥ → ⊤
where Φ = {⊤ → ⊤} means that the function returns ⊤
if its first argument satisfies Φ and the second argument is
⊥. An example of a function that meets this specification is
H(f, z) = f(¬z).
Example 4. Recall Example 2. Let ψ(f, g, z) :=
(f(g(z)) ↔ z). The translation in the previous section
yields a program that contains Pψ , which is a program with
three free variables f, g and z. Regarding Pψ as a function
of type (bool → bool) → (bool → bool) → bool →
bool, a possible witness returned by a model checker says
that Pψ satisfies the following (collective) specification:{ {⊤ → ⊤} → {∗ → ⊤} → ⊤ → ⊤,

{⊤ → ⊥} → {∗ → ⊤} → ⊥ → ⊤

}
.

This witness suggests that it is better to divide the first argu-
ment f into two cases, namely, when it satisfies {⊤ → ⊤}
and when it satisfies {⊤ → ⊥} (i.e., the case where f(⊤) =

3Collective specifications are usually called intersection types,
whereas prime specifications as prime types.

problem O V A result time (s)
example1 1 3 2 SAT 0.032
example2 2 3 1 SAT 0.024
aaai23 ex1 2 5 4 SAT 0.437
aaai23 ex2 2 7 4 UNSAT 12.274
sym-asym-b 2 5 0 UNSAT 0.190
sym-asym-bb 2 9 0 T/O N/A
sym-asym-id 2 7 1 SAT 0.070
SB-theorem 2 16 3 SAT 0.152
left-total 2 3 1 SAT 0.035
right-total 2 3 1 UNSAT 0.035
left-uniq 2 4 0 UNSAT 0.035
right-uniq 2 4 0 SAT 0.032
refl-cl-exist 2 11 2 SAT 3.415
refl-cl-uniq 2 23 2 SAT 124.717
sym-cl-exist 2 13 2 SAT 7.717
sym-cl-uniq 2 27 2 M/O N/A
tran-cl-exist 2 15 2 SAT 30.286
tran-cl-uniq 2 31 2 M/O N/A
f h-neq-g h 3 3 2 SAT 0.111
cps-arity1 3 5 4 SAT 11.785
cps-arity2 4 6 4 M/O N/A

Table 1: Experiment results on the HOQBF benchmark set

⊤ and the case where f(⊤) = ⊥). The witness also sug-
gests that, in the former case, g and z can be chosen so that
g(∗) = ⊤ and z = ⊤, and in the latter case, g(∗) = ⊤ and
z = ⊥. This is the Skolem function given in Example 2.

As the above examples demonstrate, in general, appropri-
ate Skolem functions for a formula

Q1x1. . . .Qnxn.φ(x1, . . . , xn)

(where Qi ∈ {∀,∃}, xi is an ordinary or functional variable,
and φ is quantifier-free) can be synthesized from the wit-
ness given to the subprogram Pφ by a higher-order model
checker. The witness is a (collective) specification for a
function with arguments x1, . . . , xn and suggests, for each
universally quantified variable, an appropriate case distinc-
tion for the values for the variable and, for each existentially
quantified variable, the value that the variable should be set.

5 Implementation and Evaluation
We implemented the reduction from HOQBF satisfiabil-
ity (HOSAT) to higher-order model checking proposed in
Section 3 and developed a HOSAT solver we call HOM-
CSAT4 by using HORSAT2 (Broadbent and Kobayashi
2013; Kobayashi 2016) as the backend higher-order model
checker. HOMCSAT can read Boolean, QBF, and DQBF
satisfiability problems in prenex CNF, written in the DI-
MACS, QDIMACS, and DQDIMACS formats, respectively,
and solve them by converting them to HOSAT. It also sup-
ports reading a custom format for specifying non-prenex,
non-CNF HOSAT problem instances.

4Available from https://github.com/hiroshi-unno/coar.

We prepared a HOSAT benchmark set consisting of 21
problems to conduct preliminary experiments for evaluat-
ing HOMCSAT. The experiments were conducted on a ma-
chine with a 12th Gen Intel(R) Core(TM) i7-1270P 2.20
GHz processor and 32 GB of memory. The experimental
results are summarized in Table 1. In the “problem” col-
umn, example1 and example2 are the HOQBFs from
Examples 1 and 2, respectively, while aaai23 ex1 and
aaai23 ex2 are from Examples 1 and 2 in (Jiang 2023),
respectively. Cases sym-asym-b and sym-asym-bb as-
sert the existence of symmetric and anti-symmetric binary
relations on bool and bool×bool, respectively; the former
is unsatisfiable, while the latter is satisfiable. These bench-
marks were designed to assess solver scalability as the depth
of quantifier nesting increases, by changing the bit width
of the bitvector. Case sym-asym-id asserts that sym-
metric and anti-symmetric binary relations are character-
ized as subsets of the identity relation, while SB-theorem
is a HOQBF representing the Schröder-Bernstein theorem,
which states that for sets A and B, if there exist injec-
tive functions from A to B and from B to A, then there
exists a bijection from A to B. Cases left-total,
right-total, left-uniq, and right-uniq assert
that all bool → bool functions are, respectively, left-
total, right-total, left-unique, and right-unique. However,
only cases left-total and right-uniq are satisfi-
able. Cases refl-cl-uniq and refl-cl-exists rep-
resent the uniqueness and existence of the reflexive closure,
respectively, while sym-cl-* and trans-cl-* make
similar assertions regarding the symmetric and transitive
closures, respectively. Case f h-neq-g h is an order-3
problem instance representing

∀f (bool→bool)→bool.∃g(bool→bool)→bool.∀hbool→bool.

¬(f(h) ↔ g(h)).

Cases cps-arity1 and cps-arity2 assert the ex-
istence of CPS-transformed equivalent functions of type
bool → (bool → bool) → bool and bool → ((bool →
bool) → bool) → bool, respectively, for all functions of
type bool → bool and bool → bool → bool. These
benchmarks were intended to test solver scalability as the
arity of functions increases, and consequently, the order of
the CPS-transformed functions increases.

In the table, the column labeled “O” indicates the order
of each problem, “V” represents the number of variables,
“A” indicates the maximum number of quantifier alterna-
tions along a path from the root to a leaf in the syntax tree of
the HOQBF, and in the “result” column, “SAT” and “UN-
SAT” show that HOMCSAT correctly judged whether the
problem is satisfiable or unsatisfiable, respectively. “T/O”
indicates a timeout (300 seconds), and “M/O” represents out
of memory. The column labeled “time (s)” shows the time in
seconds taken to conclude “SAT” or “UNSAT.”

As the first HOSAT solver, HOMCSAT was able to solve
various HOQBFs that express typical properties of boolean
functions and binary relations, which involve higher-order
quantifiers and quantifier alternations, yielding promising
results. At the same time, the experimental results highlight
both the limitations of HORSAT2, the backend higher-order

model checker used, and possible directions for improve-
ment. Since HORSAT2 has primarily been applied to pro-
gram verification, it struggles to scale when dealing with
cases like those in our benchmark set that involve extensive
branching due to numerous quantifiers, a situation uncom-
mon in programs written by humans. This extensive branch-
ing leads to the “intersection refinement types,” which HOR-
SAT2 searches for as witnesses of satisfiability, becoming
too large and complex to manage effectively. This is re-
flected in problems such as sym-asym-b, which involves
proving the existence of a binary relation on bool and was
solved in under 0.2 seconds, but sym-asym-bb, which
expands the search space to binary relations on bool ×
bool, timed out. Similarly, out-of-memory errors occur with
sym-cl-uniq, trans-cl-uniq, and cps-arity2.
The results do not clearly reveal the relationship between
parameters such as the number of quantified variables, or-
der, and quantifier alternation depth, and the time required
for solving. We believe this is because HORSAT2 tends to
be peaky in performance, making it challenging to mea-
sure their scalability based on these parameters. Possi-
ble remedies include improving HORSAT2 by compactly
representing the “intersection refinement types” using bi-
nary decision diagrams (BDDs) (Lee 1959; Bryant 1986)
or zero-suppressed binary decision diagrams (ZDDs) (Mi-
nato 1993), as symbolic model checkers do, and incorpo-
rating abstraction, pruning, and propagation techniques sim-
ilar to those used in SAT, QBF, and DQBF solvers. With
these extensions, as the higher-order model checker scales to
HOSAT instances with more quantifiers, future work could
involve applying HOMCSAT to second-order solving for
relaxed memory models, which, like in our current exper-
iments, would involve reasoning about combinations of typ-
ical properties concerning n-ary relations, as explored in
(Cooksey et al. 2020).

6 Related Work
HOQBF is an elevation from SOQBF by permitting quan-
tification over variables of arbitrary order, whereas SOQBF
subsumes DQBF by allowing an arbitrary number of alterna-
tions between universal and existential second-order quan-
tification.

The satisfiability checking of SOQBF has complexity
corresponding to the exponential-time hierarchy (EXPH)
(Dawar, Gottlob, and Hella 1998), as was established in
(Lohrey 2012; Lück 2016). The connection between SO-
QBF and EXPH is similar to that between QBF and the
polynomial-time hierarchy (PH) (Stockmeyer 1976). Prior
work (Jiang 2023) provides a sound and complete proof sys-
tem for SOQBF and an algorithm for countermodel extrac-
tion from a refutation proof.

Chistikov et al. formulates HOQBF and shows its com-
putational complexity. Essentially, HOSAT is TOWER-
complete for the unbounded case and is complete for the
weak k-EXP hierarchy when the formula is of order at most
k and has d quantifier alternations for d being odd (Chis-
tikov et al. 2022). In contrast, in this work, we focus on the
algorithmic solving for HOQBF.

In this paper, instead of extending existing QBF and
DQBF solving techniques for checking the satisfiability of
HOQBFs, we applied the techniques of higher-order model
checking, which have been developed independently from
the SAT community, bridging the gap between the two re-
search communities. Since Ong (2006) established the de-
cidability of higher-order model checking, practical model
checkers based on intersection refinement types or collapsi-
ble pushdown systems such as TRECS (Kobayashi 2009a),
GTRECS (Kobayashi 2011), TRAVMC (Neatherway, Ram-
say, and Ong 2012), C-SHORE (Broadbent et al. 2013),
HORSAT (Broadbent and Kobayashi 2013), and PREF-
ACE (Ramsay, Neatherway, and Ong 2014) have been ac-
tively researched and developed, despite the inherently high
computational complexity.

Although higher-order model checking has primarily
been applied to the verification of higher-order functional
programs, addressing a wide range of specifications (Kuwa-
hara et al. 2014, 2015; Murase et al. 2016) and lan-
guage features (Kobayashi 2013; Kobayashi, Tabuchi, and
Unno 2010; Ong and Ramsay 2011; Unno, Tabuchi, and
Kobayashi 2010; Kobayashi, Sato, and Unno 2011; Sato,
Unno, and Kobayashi 2013; Matsumoto, Kobayashi, and
Unno 2015; Kobayashi, Lago, and Grellois 2020; Dal Lago
and Ghyselen 2024; Sekiyama and Unno 2024) as program
verification problems, to the best of our knowledge, this
paper is the first to apply it to Boolean satisfiability prob-
lems, particularly those involving reasoning with higher-
order quantifiers. As discussed in Section 5, we not only
obtained promising results for this novel application but
also identified the limitations of existing higher-order model
checkers and proposed directions for future improvements.

7 Conclusion and Future Work

We have developed the first HOQBF solver based on the re-
duction to higher-order model checking. We implemented
the proposed approach and evaluated it using a HOSAT
benchmark set, with the higher-order model checker HOR-
SAT2 as the backend. Despite the high computational com-
plexity, our solver HOMCSAT successfully solved various
higher-order examples, yielding promising results. At the
same time, we also identified problem instances that could
not be solved due to HORSAT2 being a bottleneck and dis-
cussed possible directions for improving HORSAT2. The ap-
plication of higher-order model checking in this work differs
significantly from previous applications, as it involves ex-
tensive branching caused by higher-order quantifiers. This
makes it an important future work to introduce techniques
developed for solving SAT, QBF, and DQBF, such as ab-
straction, pruning, and propagation, into higher-order model
checking. Once these enhancements are made, we plan to
explore full-scale applications such as memory consistency
verification (Cooksey et al. 2020), planning for multi-agent
systems, secure system synthesis (Jiang 2023), and solv-
ing quantified bit-vector arithmetic problems (Jonáš and
Strejček 2018).

Acknowledgments
We thank the anonymous reviewers for their comments,
which improved the paper. This research was partially sup-
ported by JSPS KAKENHI Grant Numbers JP20H04162,
JP20H05703, JP24H00699, JP23K24826, and JP23K24820,
and NSTC 111-2923-E-002-013-MY3 of Taiwan.

References
Broadbent, C.; Carayol, A.; Hague, M.; and Serre, O. 2013.
C-SHORe: A Collapsible Approach to Higher-order Verifi-
cation. In ICFP ’13, 13–24. ACM.
Broadbent, C.; and Kobayashi, N. 2013. Saturation-Based
Model Checking of Higher-Order Recursion Schemes. In
CSL ’13, volume 23 of LIPIcs, 129–148. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.
Bryant, R. E. 1986. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Computers,
C-35(8): 677–691.
Chistikov, D.; Haase, C.; Hadizadeh, Z.; and Mansutti, A.
2022. Higher-Order Quantified Boolean Satisfiability. In
MFCS ’22, volume 241 of LIPIcs, 33:1–33:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.
Cooksey, S.; Harris, S.; Batty, M.; Grigore, R.; and Janota,
M. 2020. PrideMM: Second Order Model Checking for
Memory Consistency Models. In Formal Methods. FM 2019
International Workshops, 507–525. Springer.
Dal Lago, U.; and Ghyselen, A. 2024. On Model-Checking
Higher-Order Effectful Programs. Proceedings of the ACM
on Programming Languages, 8(POPL).
Dawar, A.; Gottlob, G.; and Hella, L. 1998. Capturing Rel-
ativized Complexity Classes without Order. Mathematical
Logic Quarterly, 44(1): 109–122.
Jiang, J.-H. R. 2023. Second-Order Quantified Boolean
Logic. In AAAI ’23, volume 37, 4007–4015.
Jonáš, M.; and Strejček, J. 2018. On the complexity of the
quantified bit-vector arithmetic with binary encoding. Infor-
mation Processing Letters, 135: 57–61.
Kobayashi, N. 2009a. Model-checking higher-order func-
tions. In PPDP ’09, 25–36. ACM.
Kobayashi, N. 2009b. Types and higher-order recursion
schemes for verification of higher-order programs. In POPL
’09, 416–428. ACM.
Kobayashi, N. 2011. A Practical Linear Time Algorithm
for Trivial Automata Model Checking of Higher-Order Re-
cursion Schemes. In FoSSaCS ’11, volume 6604 of LNCS,
260–274. Springer.
Kobayashi, N. 2013. Model Checking Higher-Order Pro-
grams. Journal of the ACM, 60(3): 20:1–20:62.
Kobayashi, N. 2016. HORSAT2. https://www-kb.is.s.u-
tokyo.ac.jp/∼koba/horsat2/.
Kobayashi, N.; Lago, U. D.; and Grellois, C. 2020. On the
Termination Problem for Probabilistic Higher-Order Recur-
sive Programs. Logical Methods in Computer Science, Vol-
ume 16, Issue 4.

Kobayashi, N.; and Ong, C.-H. L. 2009. Complexity of
Model Checking Recursion Schemes for Fragments of the
Modal Mu-Calculus. In ICALP ’09, volume 5556 of LNCS,
223–234. Springer.
Kobayashi, N.; Sato, R.; and Unno, H. 2011. Predicate ab-
straction and CEGAR for higher-order model checking. In
PLDI ’11, 222–233. ACM.
Kobayashi, N.; Tabuchi, N.; and Unno, H. 2010. Higher-
order multi-parameter tree transducers and recursion
schemes for program verification. In POPL ’10, 495–508.
ACM.
Kuwahara, T.; Sato, R.; Unno, H.; and Kobayashi, N. 2015.
Predicate Abstraction and CEGAR for Disproving Termi-
nation of Higher-order Functional Programs. In CAV ’15,
LNCS. Springer.
Kuwahara, T.; Terauchi, T.; Unno, H.; and Kobayashi, N.
2014. Automatic Termination Verification for Higher-Order
Functional Programs. In ESOP ’14, volume 8410 of LNCS,
392–411. Springer.
Lee, C. Y. 1959. Representation of switching circuits by
binary-decision programs. The Bell System Technical Jour-
nal, 38(4): 985–999.
Lohrey, M. 2012. Model-checking hierarchical structures.
Journal of Computer and System Sciences, 78(2): 461–490.
Lück, M. 2016. Complete Problems of Propositional Logic
for the Exponential Hierarchy. CoRR, abs/1602.03050.
Matsumoto, Y.; Kobayashi, N.; and Unno, H. 2015.
Automata-Based Abstraction for Automated Verification of
Higher-Order Tree-Processing Programs. In APLAS ’15,
295–312. Springer.
Minato, S.-i. 1993. Zero-suppressed BDDs for set manip-
ulation in combinatorial problems. In DAC ’93, DAC ’93,
272–277. ACM.
Murase, A.; Terauchi, T.; Kobayashi, N.; Sato, R.; and Unno,
H. 2016. Temporal Verification of Higher-order Functional
Programs. In POPL ’16, 57–68. ACM.
Neatherway, R. P.; Ramsay, S. J.; and Ong, C.-H. L. 2012. A
Traversal-based Algorithm for Higher-order Model Check-
ing. In ICFP ’12, 353–364. ACM.
Ong, C.-H. L. 2006. On Model-Checking Trees Generated
by Higher-Order Recursion Schemes. In LICS ’06, 81–90.
IEEE.
Ong, C.-H. L.; and Ramsay, S. J. 2011. Verifying higher-
order functional programs with pattern-matching algebraic
data types. In POPL ’11, 587–598. ACM.
Ramsay, S. J.; Neatherway, R. P.; and Ong, C.-H. L. 2014. A
Type-directed Abstraction Refinement Approach to Higher-
order Model Checking. In POPL ’14, 61–72. ACM.
Sato, R.; Unno, H.; and Kobayashi, N. 2013. Towards a
scalable software model checker for higher-order programs.
In PEPM ’13, 53–62. ACM.
Sekiyama, T.; and Unno, H. 2024. Higher-Order Model
Checking of Effect-Handling Programs with Answer-Type
Modification. Proceedings of the ACM on Programming
Languages, 8(OOPSLA2).

Stockmeyer, L. J. 1976. The polynomial-time hierarchy.
Theoretical Computer Science, 3(1): 1–22.
Unno, H.; Tabuchi, N.; and Kobayashi, N. 2010. Verifica-
tion of Tree-Processing Programs via Higher-Order Model
Checking. In APLAS ’10, volume 6461 of LNCS, 312–327.
Springer.

