
Verification of Tree-Processing Programs via
Higher-Order Model Checking

Hiroshi Unno, Naoshi Tabuchi, and Naoki Kobayashi

Tohoku University

Abstract. We propose a new method to verify that a higher-order, tree-
processing functional program conforms to an input/output specification.
Our method reduces the verification problem to multiple verification
problems for higher-order multi-tree transducers, which are then trans-
formed into higher-order recursion schemes and model-checked. Unlike
previous methods, our new method can deal with arbitrary higher-order
functional programs manipulating algebraic data structures, as long as
certain invariants on intermediate data structures are provided by a pro-
grammer. We have proved the soundness of the method and implemented
a prototype verifier.

1 Introduction

The model checking of higher-order recursion schemes [20], or higher-order model
checking for short, has been extensively studied recently. Ong [20] has shown the
decidability of higher-order model checking. Kobayashi [12, 13] then developed a
practical model checking algorithm and applied it to program verification. The
present work is an extension of that line of work, trying to apply higher-order
model checking to verification of a wider range of higher-order programs.

From a programming language point of view, recursion schemes are terms
of the simply-typed λ-calculus with recursion and tree constructors (but not
destructors). One can also encode finite data domains (such as booleans) by
using Church encoding. Based on this observation, Kobayashi [13] applied model
checking to resource usage verification of simply-typed functional programs with
recursion, booleans, and resource primitives. The limitation of this approach
was that programs manipulating infinite data domains such as lists and trees
could not be handled. To relax this limitation, in our previous work [15], we
have introduced higher-order multi-parameter tree transducers (HMTTs) as an
extension of recursion schemes with tree destructors. HMTTs are a kind of tree
transducers that take (possibly infinite) input trees, which can be destructed,
and outputs a (possibly infinite) tree. However, there still remains a gap between
HMTTs and ordinary functional programs that use recursive data structures
since HMTTs do not support intermediate data structures: an HMTT cannot
destruct trees constructed by the HMTT itself.

In this paper, we propose a verification method for an extension of HMTTs
called EHMTTs. In essence, EHMTTs are higher-order, simply-typed functional

Functional
Program

EHMTT

HMTT

HMTT

HMTT

Higher Order
Model Checking

Higher Order
Model Checking

Higher Order
Model Checking

adding
coercion

annotations

Previous work (POPL2010)The present work

Fig. 1. Overall Structure of EHMTT Verification Method

programs with recursion and tree primitives. Unlike our previous HMTTs [15],
there is no fundamental restriction on tree constructors/destructors, except that
special annotations (called coercion) are required for destructing trees con-
structed in a program. Our method can check whether the output trees gen-
erated by a given EHMTT conform to a given output specification whenever
the input trees conform to given input specifications. We can apply our method
to verification of ordinary functional programs that manipulate algebraic data
structures by encoding them as trees and adding annotations to the programs.

The overall structure of our method is shown in Figure 1. A given EHMTT
verification problem is reduced to multiple HMTT verification problems, which
are then solved by an HMTT verification method presented in our previous
work [15]. The HMTT verification method further reduces the HMTT verifi-
cation problems to model checking problems of recursion schemes, which are
finally solved by Kobayashi’s higher-order model checker TRecS [12]. In this
paper, we have formalized the reduction from an EHMTT verification problem
to HMTT verification problems, and proved the soundness of the reduction.
Our verification method is not complete, however, since the verification problem
is undecidable in general. We have implemented a prototype verifier and veri-
fied functional programs that manipulate XML and user-defined recursive data
structures.

The rest of the paper is organized as follows. Section 2 presents some prelim-
inary definitions and notations. In Section 3, we introduce EHMTTs. Section 4
formalizes our verification method for EHMTTs. Section 5 reports on the ex-
perimental results. We compare our method with related work in Section 6, and
conclude the paper with some remarks on future work in Section 7.

2 Preliminaries

We write dom(f) for the domain of a map f , and f{x �→ v} for the map f ′ such
that dom(f ′) = dom(f)∪{x}, f ′(x) = v and f ′(y) = f(y) for y ∈ dom(f) \ {x}.

We write X∗ for the set of sequences of elements of X. We write ε for the
empty sequence, and v1 · · · vn for the sequence consisting of v1, . . . , vn. We write
s1 · s2 for the concatenation of sequences s1 and s2. A sequence v1 · · · vn is often
abbreviated to ṽ.

A ranked alphabet Σ is a map from a finite set of symbols to non-negative
integers. For each symbol a ∈ dom(Σ), Σ(a) denotes the arity of a. We write
AΣ to denote the largest arity of the symbols in dom(Σ). A Σ-labeled ranked
tree T is a map from a subset of {1, · · · , AΣ}∗ to dom(Σ) such that:

– dom(T) is prefix-closed, i.e. if π · i ∈ dom(T), then π ∈ dom(T); and
– if T (π) = a, then {i | π · i ∈ dom(T)} = {1, . . . , Σ(a)}.

3 Extended HMTTs

In this section, we introduce extended HMTTs (EHMTTs). From a programming
language point of view, an EHMTT is a simply-typed, call-by-name, higher-
order functional program that takes possibly infinite trees as input and outputs
a possibly infinite tree. The main differences from ordinary functional programs
is that trees are classified into input and output trees. Input trees can only
be destructed, and output trees can only be constructed in a program, as in
other tree transducers. Special annotations (coerceL(·) introduced below) are
however provided to convert output trees to input trees, so that, unlike ordinary
tree transducers, trees constructed in a program can be destructed again in the
same program. Thus, the class of EHMTTs is actually Turing complete.

We fix below a ranked alphabet Σ. We call elements of dom(Σ) terminal
symbols, and use the meta-variable a for them.

Definition 1 (EHMTT). An EHMTT P is a pair (D,S) where D is a set
of function definitions of the form {F1 x̃1 = t1, . . . , Fn x̃n = tn}, and S is a
function name. Here, t ranges over the set of terms, given by:

t ::= a | x | F | t1 t2 | case t of {ai ỹi ⇒ ti}n
i=1 | coerceL(t) | genL

Here, L denotes a set of trees. An EHMTT (D,S) is well-sorted under K if
S : i → · · · → i → o ∈ K and � D : K is derivable by using the sort assignment
rules in Figure 2. An HMTT is an EHMTT that does not contain coerceL(t).

In the figure, the sorts i and o describe input and output trees respectively.
The sort κ1 → κ2 denotes functions that take a tree or tree function of sort κ1

and return a tree or tree function of sort κ2. κ̃ → o and x̃ : κ̃ are shorthand
forms of κ1 → · · · → κk → o and x1 : κ1, . . . , xk : κk respectively. We consider
only well-sorted EHMTTs below.

Syntax of Sorts:

κ ::= i | o | κ1 → κ2

Sort Assignment Rules:

K � F : K(F) (T-Fun)

K � a : o → · · · → o| {z }
Σ(a)

→ o
(T-Con)

K, x : κ � x : κ (T-Var)

K � t1 : κ1 → κ2

K � t2 : κ1

K � t1 t2 : κ2

(T-App)

K � t : i K, eyi : ei � ti : o
(for all i = 1, . . . , N)

K � case t of {ai eyi ⇒ ti}n
i=1 : o

(T-Case)

K � genL : i (T-Gen)

K � t : o

K � coerceL(t) : i
(T-Coerce)

K = {F1 : eκ1 → o, . . . , Fn : eκ1 → o}
K, exi : eκi � ti : o (for each i)

� {F1 ex1 = t1, . . . , Fn exn = tn} : K (T-Def)

Operational Semantics

t (extended terms) ::= · · · | a | o2i(t) | assertL(t)

E (evaluation contexts) ::= [] | a t1 · · · tj−1 E tj+1 · · · tΣ(a)

| case E of {ai eyi ⇒ ti}n
i=1 | o2i(E) | assertL(E)

F ex = t ∈ D

E[F et] −→P E[[et/ex]t]
(E-App)

E[case ai et of {ai eyi ⇒ ti}n
i=1] −→P E[[et/eyi]ti] (E-Case)

a �∈ {a1, . . . , an}
E[case a et of {ai eyi ⇒ ti}n

i=1] −→P E[fail]
(E-Case-Fail)

a L1 · · ·Ln ⊆ L

E[genL] −→P E[a genL1 . . .genLn]
(E-Gen)

E[coerceL(t)] −→P assertL(t) (E-Coerce-Assert)

E[coerceL(t)] −→P E[o2i(t)] (E-Coerce-Input)

E[o2i(ai et)] −→P E[ai o2i(et)] (E-Input)

t⊥ �∈ L⊥

assertL(t) −→P Error
(E-Assert-Error)

Fig. 2. Sort Assignment Rules and Call-by-Name Operational Semantics

The term case t of {ai ỹi ⇒ ti}n
i=1 is reduced to [ũi/ỹi]ti if t evaluates to

ai ũi. If t does not match any pattern, the term evaluates to a special terminal
symbol fail.1 The term coerceL(t) asserts that the tree generated by t belongs
to a set L of trees, and converts the tree to an input tree. genL generates an
element of L non-deterministically.

Example 1. Consider the EHMTT Prev = (D,Reverse), where D consists of:

Reverse x = case x of e ⇒ e

| a x′ ⇒ Append (coerceb
∗a∗e(Reverse x′)) (a e)

| b x′ ⇒ Append (coerceb
∗e(Reverse x′)) (b e).

Append x y = case x of e ⇒ y
| a x′ ⇒ a (Append x′ y)
| b x′ ⇒ b (Append x′ y).

Prev takes a tree of the form am(bn(e)) as input, and outputs a tree bn(am(e)).
The coercions coerceb

∗a∗e(·) and coerceb
∗e(·) assert that their arguments be-

long to {bm(an(e)) | m,n ≥ 0} and {bm(e) | m ≥ 0} respectively, and con-
vert them to input trees. Note that Reverse and Append have sorts i → o and
i → o → o respectively, so that Reverse x′ returns an output tree. �

Figure 2 shows the formal semantics of the language. In the semantics, the
set of terms are extended as follows. An underlined symbol a denotes an input
tree constructor (which, by the restriction of EHMTT, occurs only at run-time,
not in source programs). o2i(t) and assertL(t) are used to define the semantics
of coerceL(t): the former converts an output tree to an input tree, and the latter
asserts that the tree generated by t belong to L. In the rule E-Assert-Error,
t⊥ is a finite (Σ ∪ {⊥ �→ 0})-labeled ranked tree, defined by:

t⊥ =
{

a t⊥1 · · · t⊥n (if t = a t1 · · · tn)
⊥ (otherwise)

L⊥ is the set {T | T
 T ′ ∈ L}, where T
 T ′ means that T is obtained from
T ′ by replacing some nodes of T ′ with ⊥.

Remark 1. Note that EHMTT is call-by-name. This is because our verification
method is based on the model checking of higher-oder recursion schemes, whose
semantics is call-by-name. To deal with call-by-value programs, it suffices to
apply CPS transformation before applying our verification method. The reasons
why we allow infinite trees as inputs and outputs for EHMTTs are as follows.
First, we would like to verify programs that manipulate not only finite but also
infinite data structures (such as streams). Secondly, we would like to model a
1 Thus, verification of the absence of pattern match errors can be encoded as a problem

of checking that the tree generated by EHMTT does not contain fail, which is an
instance of EHMTT verification problems considered below.

program that contains non-deterministic branches (which is typically obtained
by abstracting branching information of a user program) as an EHMTT that
generates a single tree describing all the possible outputs of the program. In
that case, even if a program manipulates only finite data structures, the output
of the EHMTT can be an infinite tree.

The goal of our verification is to check that a given EHMTT conforms to a
given specification on input and output. As EHMTTs manipulate infinite trees,
we use top-down tree automata called trivial automata (which are Büchi tree
automata with a trivial acceptance condition) as specifications (as well as for
annotations L in coerceL(·) and genL).

Definition 2 (trivial automaton). A trivial automaton M is a quadruple
(Σ,Q,Δ, q0), where:

– Σ is a ranked alphabet.
– Q is a finite set of states.
– Δ is a finite subset of Q × dom(Σ) × Q∗ called a transition relation such

that if (q, a, q̃) ∈ Δ, then the length of the sequence q̃ is Σ(a).
– q0 is a state called an initial state.

A Σ-labeled ranked tree T is accepted by M if there is a Q-labeled tree R such
that:

– dom(T) = dom(R).
– For any π ∈ dom(R), (R(π), T (π), R(π · 1) · · ·R(π · Σ(T (π)))) ∈ Δ.
– R(ε) = q0.

We write L(M) for the set of Σ-labeled ranked trees accepted by M.

When restricted to finite trees, the class of languages recognized by trivial au-
tomata is equivalent to the class of regular tree languages.

Example 2. Recall Example 1. A trivial automaton for accepting b∗a∗e is defined
by (Σ, {q0, q1},Δ, q0), where:

Σ = {a �→ 1, b �→ 1, e �→ 0}
Δ = {(q0, b, q0), (q0, a, q1), (q0, e, ε), (q1, a, q1), (q1, e, ε)} �

We now formalize our verification problem:

Definition 3. Given an EHMTT P = (D,S) and trivial automata M1, . . . ,Mk,
M = (Σ,Q,Δ, q0), we write |= (P,M1, . . . ,Mk,M) if for all T1 ∈ L(M1), . . . ,
Tk ∈ L(Mk),

1. S T1 · · ·Tk −→∗
P t implies t⊥ ∈ L(M⊥), and

2. S T1 · · ·Tk �−→∗
P Error.

Here, M⊥ is the trivial automaton (Σ ∪{⊥ �→ 0}, Q,Δ∪{(q,⊥, ε) | q ∈ Q}, q0).
An EHMTT verification problem (P,M1, . . . ,Mk,M) is the problem to check
that |= (P,M1, . . . ,Mk,M).

The first condition of an EHMTT verification problem says that given input trees
that conform to the input specification, the EHMTT generates a valid tree.2 The
second condition means that the EHMTT in fact never causes a coercion error.

In [15], we have presented a (sound but incomplete) method for the restricted
case (which we call HMTT verification problems) where P is an HMTT (i.e., for
the case where P does not contain coerceL(·)). In the next section, we reduce
an EHMTT verification problem to HMTT verification problems.

4 Verification Method for EHMTTs

We now present a method for reducing an EHMTT verification problem to
HMTT verification problems (which can then be solved by the previous method
[15]). The idea is to reduce each of the two conditions in Definition 3 to HMTT
verification problems.

Let (P,M1, . . . ,Mk,M) be a given EHMTT verification problem, and sup-
pose that P contains m occurrences of coercions: coerceL1(·), . . . , coerceLm(·).
We construct HMTTs PA,PB1 , . . . ,PBm such that:

– PA approximates the output of P, by assuming that coercions never fail.
– PBi approximates all the possible arguments of coerceLi(·).

Then, the verification problem (P,M1, . . . ,Mk,M) can be reduced to m + 1
HMTT verification problems: (PA,M1, . . . ,Mk,M), (PB1,M1, . . . ,Mk,B(L1)),
. . . , (PBm ,M1, . . . ,Mk,B(Lm)) (where B(L) is an automaton for accepting trees
representing subsets of L; see Section 4.2 below). Sections 4.1 and 4.2 below show
the constructions of PA and PBi respectively.

4.1 Construction of PA

Let PA be the HMTT obtained by just replacing every occurrence of coerceLi(·)
in P with genLi . Then, PA approximates the output of P, assuming that no
coercion error occurs.

Theorem 1. Let P=(D,S) be an EHMTT such that |= (PA,M1, . . . ,Mk,M)
holds. For any T1 ∈ L(M1), . . . , Tk ∈ L(Mk), if S T1 · · ·Tk �−→∗

P Error and
S T1 · · ·Tk −→∗

P t, then t⊥ ∈ L(M⊥).

A proof is given in Appendix A.

2 Because of the presence of ⊥, only safety properties are guaranteed; there is no
guarantee that the EHMTT eventually generates a tree that belongs to L(M).

Example 3. Recall Prev in Example 1. PA
rev is (D,ReverseA) where D is given

by:

ReverseA xA = case xA of e ⇒ e

| a x′A ⇒ AppendA genb
∗a∗e (a e)

| b x′A ⇒ AppendA genb
∗e (b e)

AppendA xA yA = case xA of e ⇒ yA

| a x′A ⇒ a (AppendA x′A yA)
| b x′A ⇒ b (AppendA x′A yA)

4.2 Construction of PBi

The construction of PBi is more involved, for the following reasons.

1. Given an input, P may invoke coerceLi(·) more than once. For example,
given b(b(e)) as input, Prev in Example 1 invoke coerceb

∗e(·) twice, with
different parameters e and b(e). Thus, PBi should approximate the set of
trees that are passed to coerceLi(·).

2. How a function invokes coerceLi(·) may depend on its arguments. For exam-
ple, consider a higher-order function F defined by F g x = g(x). Obviously,
how coerceLi(·) is invoked during evaluation of F t1 t2 depends on t1 and
t2.

To address the first issue, we represent a (possibly infinite) set of trees by
a single (possibly infinite) tree. We use special terminal symbols br and emp,
which represent the set union and an empty set respectively. For example, the
set {e, b(e)} is represented by br e (b(e)). PBi outputs such a tree representation
of (an over-approximation of) the set of trees passed to coerceLi(·).

To address the second issue, we duplicate each parameter x of a function
into xA and xB. The parameter xA is used to compute (an approximation of)
the original value of x, while the parameter xB computes (an approximation
of) the set of trees passed to coerceLi(·) during evaluation of x. For example,
F g x = g(x) is transformed to: FB gA gB xA xB = gB xA xB. Here, FB

computes an approximation of the set of trees passed to coerceLi(·) by calling
gB with duplicated parameters xA and xB.

We give below more concrete examples to explain the construction of PBi .

Example 4. Recall Prev in Example 1. For the first coercion coerceL1(Reverse x′)
(where L1 = b∗a∗e), we construct the following HMTT PB1rev:

ReverseB xA xB =
br xB (case xA of e ⇒ emp

| a x′A ⇒ AppendB genb
∗a∗e (br (ReverseA x′A)

(ReverseB x′A emp))
(a e) emp

| b x′A ⇒ AppendB genb
∗e (ReverseB x′A emp)

(b e) emp)
AppendB xA xB yA yB =

br xB (case xA of e ⇒ yB

| a x′A ⇒ AppendB x′A emp yA yB

| b x′A ⇒ AppendB x′A emp yA yB)

As mentioned above, the parameters of Reverse and Append have been dupli-
cated. When Reverse t is called in Prev, there are two cases where coerceL1(·)
may be called: the case where t contains coerceL1(·) and it is called when t is
evaluated by the case statement (note that our language is call-by-name); and
the case where coerceL1(·) is called in a case branch. In the body of the defini-
tion of ReverseB, the part xB approximates the set of trees passed to coerceL1(·)
in the former case, and the part case xA of · · · approximates the set of trees
for the latter case.

In the clause for a(x′A), AppendB is used to compute an approximation of
the set of trees passed to coerceL1(·). The first and third parameters approx-
imate the values of the original parameters of Append. The second parameter
(br (ReverseA x′A) (ReverseB x′A emp)) approximates the set of trees passed to
coerceL1(·) during the computation of coerceL1(Reverse x′). Here, there are
two cases where coercion can occur: (i) the value of Reverse x′ is computed and
passed to coerceL1(·) and (ii) coerceL1(·) is invoked during the computation of
Reverse x′. The parts (ReverseA x′A) and (ReverseB x′A emp) cover the former
and the latter cases respectively. In the latter, the second parameter of (ReverseB

is an empty set, as the trees passed to coerceL1(·) during the computation of
x′ are already covered by xB.

�

The reduction works similarly for EHMTTs with higher-order functions.

Example 5. Let us consider a higher-order version of the list reverse program:

Reverse x = Reverseh Append x

Reverseh f x = case x of e ⇒ e

| a x′ ⇒ f (coerceb
∗a∗e(Reverseh f x′)) (a e)

| b x′ ⇒ f (coerceb
∗e(Reverseh f x′)) (b e)

We get the following HMTT for the first coercion coerceb
∗a∗e(Reverseh f x′):

ReverseB xA xB = ReversehB AppendA AppendB xA xB

ReversehB fA fB xA xB =
br xB (case xA of e ⇒ emp

| a x′A ⇒ fB genb
∗a∗e (br (ReversehA fA x′A)

(ReversehB fA fB x′A emp))
(a e) emp

| b x′A ⇒ fB genb
∗e (ReversehB fA fB x′A emp)

(b e) emp)

Here, AppendA is the one obtained in Example 3. Note that ReversehB requires
an additional argument fB, which generates all the trees passed to the coercion
by f . �

Formally, given an EHMTT P = (D,S), PBi is (Bi(D), S) where:

Bi(D) = {S x1 · · ·xk = SBi x1 emp · · ·xk emp}∪
{aBi xA

1 xBi
1 · · ·xA

Σ(a) xBi

Σ(a) = br xBi
1 · · ·xBi

Σ(a) | a ∈ dom(Σ)}∪
{FA xA

1 · · ·xA
n = A(t) | F x1 · · ·xn = t ∈ D}∪

{FBi xA
1 xBi

1 · · ·xA
n xBi

n = Bi(t) | F x1 · · ·xn = t ∈ D}

Bi(a) = aBi Bi(x) = xBi Bi(F) = FBi

Bi(t1 t2) = Bi(t1) A(t2) Bi(t2)
Bi(case t of {aj ỹj ⇒ tj}n

j=1) =
br Bi(t) (case A(t) of {aj ỹA

j ⇒ [ẽmp/ỹBi
j]Bi(tj)}n

j=1)
Bi(genL) = emp

Bi(coerceLj (t)) =
{
br A(t) Bi(t) (if i = j)
Bi(t) (otherwise)

Here, A(t) is the term obtained by replacing every coercion coerceL(·), variable
x, and function name F in t with genL, xA, and FA respectively. br t1 · · · tn
stands for br t1 (br t2 (br · · · (br tn−1 tn))) if n ≥ 2, t1 if n = 1, and emp if
n = 0. For each terminal a ∈ dom(Σ), we obtain the new function aBi that
generates all the trees passed to the i-th coercion by the actual arguments of a.

Given a trivial automaton M(Li) = (Σ,Q,Δ, q0) for accepting Li, the output
specification for PBi is the trivial automaton B(Li) = (Σ′, Q,Δ′, q0), where:

Σ′ = Σ ∪ {br �→ 2, emp �→ 0}
Δ′ = Δ ∪ {(q, br, q · q), (q, emp, ε) | q ∈ Q}

The following theorem states the correctness of the construction of PBi . See
Appendix B for the proof.

Theorem 2. Let P = (D,S) be an EHMTT and suppose that the coercions in P
are coerceL1(·), . . . , coerceLm(·). If |= (PBi ,M1, . . . ,Mk,B(Li)) holds for each
i ∈ {1, . . . , m}, for any T1 ∈ L(M1), . . . , Tk ∈ L(Mk), S T1 · · ·Tk �−→∗

P Error.

Our reduction from EHMTT to HMTT verification problems is incomplete,
however, i.e. there is a case that an EHMTT satisfies a given specification, but
the generated HMTTs do not satisfy the required properties. There are two main
reasons for this.

– Coercion annotations may not be good enough. For example, if coercions are
annotated with the empty language ∅, the derived HMTTs obviously do not
satisfy the property. Actually, there may be no good way to annotate coer-
cions. For example, consider the EHMTT S x = Zip (coerceL(Unzip x)),
where Unzip takes an input sn z that encodes a natural number n and re-
turns an output tree pair (sn z) (sn z), and Zip takes an input tree of the
form pair (sn1 z) (sn2 z) and outputs fail if and only if n1 �= n2. To verify
that S x never outputs fail for any x ∈ {sn z | n ≥ 0}, we need the coercion
annotation L = {pair (sn z) (sn z) | n ≥ 0}, which cannot be expressed by
a trivial automaton or a regular language. As another example, consider the
following variant of a reverse function:

Reverse x = case x of e ⇒ e
| cons z x′ ⇒ Append (coerceL(Reverse x′)) (cons z e)

Append x y = · · ·
Here, we have used a list-like representation of sequences of a, b. In this case,
the appropriate annotation depends on the value of z (L should be b∗a∗e if z
is a while b∗e if z is b), which cannot be expressed in our language. One way
to avoid this problem is to duplicate a part of the code so that appropriate
annotations can be inserted.

– The output specification B(Li) for PBi is too restrictive. When the automa-
ton for accepting Li is non-deterministic, B(Li) does not accept all the tree
representations of subsets of Li. This problem can easily be remedied, how-
ever, by using a more elaborate construction of B(Li), hence not a funda-
mental limitation.

Our overall method is also incomplete because of the incompleteness of the
HMTT verification method [15] (unsurprisingly, as the HMTT verification prob-
lem is undecidable in general).

5 Experiments

We have implemented the reduction method from an EHMTT verification prob-
lem to HMTT verification problems presented in Section 4. For solving the
HMTT verification problems, we adopted an HMTT verification method in [15]
and Kobayashi’s higher-order model checker TRecS [12].

Table 1 shows the results of preliminary experiments. The column “O” shows
the order of each EHMTT which is the largest order of the sorts of the functions.
The order of a sort is defined by:

order(i) = order(o) = 0 order(κ1 → κ2) = max (order(κ1) + 1, order(κ2))

Programs O C R S SumR SumS QI QO TRed Y/N TMC

Reverse 1 2 3 32 23 222 4 2 1 Y 4
Isort 1 1 4 29 16 115 3 2 1 Y 3
Msort 2 4 8 131 88 1,731 3 2 2 Y 224
HomRep-Rev 4 1 12 90 43 362 6 2 1 Y 31
Split 2 1 6 126 33 572 23 9 3 Y 132
Bib2Html 2 1 13 493 126 2,303 59 50 52 Y 52
XMarkQ1 2 1 12 454 118 2,136 99 23 29 Y 168
XMarkQ2 1 2 9 461 207 3,797 99 4 77 Y 92
Gapid-Html 3 1 17 374 75 1,642 16 7 2 Y 112
JWIG-guess 2 1 6 465 98 2,331 64 50 588 Y 50
JWIG-cal 1 2 12 475 222 4,045 60 50 72 Y 73
MinCaml-K 2 8 19 605 563 16,117 5 3 5 Y 647

Split’ 2 1 6 126 33 572 23 9 3 N 27
JWIG-guess’ 2 1 6 465 98 2,331 64 50 586 N 49
JWIG-cal’ 1 2 12 475 222 4,045 60 50 2 N 55

Table 1. Experimental Results

The column “C” shows the number of coercions in each EHMTT. The columns
“R” and “S” are the number of rules and the size of each EHMTT respectively.
The size of an EHMTT is measured by the number of symbols occurring in the
right-hand side of the rewriting rules. “SumR” and “SumS” respectively are the
sum of the numbers of the rules and the sum of the sizes of all HMTTs de-
rived from each EHMTT. “QI” and “QO” respectively show the numbers of the
states of trivial automata for the input and output specifications. The column
“TRed” shows the elapsed time, in milliseconds, of reduction from an EHMTT
verification problem to HMTT verification problems. The column “Y/N” indi-
cates whether each EHMTT was proved correct (Y) or rejected (N). The column
“TMC” shows the total running time of the higher-order model checker TRecS
to solve all the HMTT verification problems derived from each EHMTT.

The program Reverse is the same as the one presented in the paper. Isort
performs insertion sort on the lists encoded as linear trees over Σ = {a �→
1, b �→ 1, e �→ 0}. Msort performs merge sort instead of insertion sort on the
same linear trees. HomRep-Rev takes a word homomorphism h over linear trees
(a + b)∗e, a number n and a word w ∈ (a + b)∗e, and produces the reverse of
the image hn(w). We let h = {a �→ bb, b �→ a} and verified that if n is an even
number and w ∈ a∗b∗e, then the reversed image is in b∗a∗e. The program Split
presented in Figure 3 is taken from sample programs of CDuce [2], a higher-order
XML-oriented functional language. Split takes a list of persons, and splits it
into two lists of men and women. Bib2Html also simulates a CDuce program
that transforms a list of bibliography into an XHTML. XMarkQ1 and XMarkQ2
taken from Q1 and Q2 of XMark benchmark suite [21] simulate simple XQuery
queries. The program Gapid-Html is a composition of Tozawa’s high-level tree
transducers [22]. It takes a document of the following DTD:

type Doc = doc[Preface, (Div|P|Note)*]
type Preface = preface[Header, P*]
type Header = header[A*]
type P = p[A*]
type Div = div[(Div|P|Note|A)*]
type Note = note[(P|A)*]
type A = a[A*]

and another tree as inputs. It checks whether the children of each node of the
document are empty, and if so, replaces the empty children with a “hole”. The
program then inserts the given tree into the holes. The program finally trans-
forms the result to an XHTML. The programs JWIG-guess and JWIG-cal are
taken from sample programs of JWIG (http://www.brics.dk/JWIG/), a pro-
gramming language for interactive Web services. A main feature of JWIG is
document templates. For example, the following document template represents
an HTML document with a hole named x:

<html>
<head><title> ... </title></head>
<body><[x]></body>

</html>

We can instantiate the template by substituting another document or template
for x. In EHMTTs, the template can be encoded as the following rule for a
function T with an argument x:

T x → html (head (title (text leaf leaf) leaf) (body x leaf)) leaf

The program JWIG-guess is a number guessing game. The program JWIG-cal
is a web-based calendar service. MinCaml-K simulates the K-normalization rou-
tine of the MinCaml compiler (http://min-caml.sourceforge.net/index-e.
html). Finally, Split’, JWIG-guess’ and JWIG-cal’ are respectively the same
as Split, JWIG-guess and JWIG-cal except that they involve wrong coercions
which lead to an Error to see that programs with wrong coercions are rejected.
These programs (except for Reverse, Isort, Msort and HomRep-Rev) are man-
ually translated from original source codes to EHMTTs.

All the valid programs have been proved correct by our verification method
despite its incompleteness, while wrong programs are correctly rejected. The
number of coercions (thus the number of annotations required by our method)
is much smaller than the number of rules (functions) in all cases. Though these
numbers depend on the particular encoding, this result witnesses that our ver-
ification method usually requires fewer annotations than existing verification
methods [2, 4, 9], which require type annotations for every function definition.
Further comparison with the existing methods on this point is given in Section 6.

All the programs were proved correct within 1 second. From this, we can
expect that our method can verify non-trivial programs reasonably fast despite
the high time complexity (n-EXPTIME complete, where n is the order) of higher-
order model checking.

Split x = case x of person g n c =>

case c of children cs => case g of gender gend =>

Let gend n (coerce qPair (MakePair cs nil nil))

Let gend n x = case gend of

m => Make man (Copy n) x

| f => Make woman (Copy n) x

MakePair ps ms fs = case ps of nil => pair ms fs

| cons p sib => case p of person g n c => case g of gender gend =>

case gend of

m => MakePair sib (cons (person (gender m) (Copy n) (Copy c)) ms) fs

|f => MakePair sib ms (cons (person (gender f) (Copy n) (Copy c)) fs)

Make tag name sdpair = case sdpair of pair s d =>

tag name (sons (RevMap Split s nil))

(daughters (RevMap Split d nil))

RevMap f l ac =

case l of nil => ac | cons x xs => RevMap f xs (cons (f x) ac)

Fig. 3. Split

6 Related Work

As shown in Section 1, our verification method is based on recent advances on
higher-order model checking [1, 11, 14, 20]. Ong [20] has proven the decidability of
the model checking problem for recursion schemes, and Kobayashi has developed
and implemented a type-based model checking algorithm [14].

As we have shown in Section 5, our EHMTT verification method can be ap-
plied to verification of functional programs that manipulate various data struc-
tures such as strings, lists, trees, XML, and user-defined recursive data structures
by encoding them as trees and adding coercion annotations to the programs. We
compare our method with existing verification methods below.

Refinement types [4, 7] can be used for verification of functional programs
that manipulate user-defined recursive data structures. The original refinement
type system [7] uses a näıve least fixed-point algorithm to infer the most precise
refinement types of functions, and does not seem to scale for higher-order func-
tions. Another refinement type system proposed by Davies [4] requires users to
write type annotations for each function. For example, for Prev in Example 1,
Reverse and Append need to be annotated with the following intersection types:

Reverse : (a∗b∗e → b∗a∗e) ∧ (b∗e → b∗e)
Append : (b∗a∗e → a∗e → b∗a∗e) ∧ (b∗e → b∗e → b∗e)

In contrast, our method requires only the annotations coerceb
∗a∗e(Reverse x′)

and coerceb
∗e(Reverse x′) in the definition of Reverse. As in this case, we

expect that coercion annotations required in our approach tends to be simpler
than refinement type declarations. Because of the limitation of our approach
discussed at the end of Section 4, however, it may be useful to combine both
approaches.

Several research groups have proposed typed XML processing languages [2, 9].
Their type systems can be used for verification of XML processing programs. As
in the Davies’s refinement type system, these type systems require type annota-
tions for each function for type checking. Thus, our method can be used as an
alternative for a verification purpose. Meanwhile their type systems support ad-
vanced programming features such as parametric polymorphism [8] and regular
expression pattern matching [10]. Extensions of our method with these features
are left for future work. While the type checking of the XML processing lan-
guages are incomplete, extensive work has been done on complete type checking
of various tree transducers [17, 18]. They are not Turing-complete, however, and
thus less expressive than our EHMTTs. As shown in [16], ordinary macro and
high-level tree transducers [5, 6] are subsumed by linear HMTTs, for which our
EHMTT verification method is sound and complete.

String analysis [3, 19] can verify programs that manipulate strings by approx-
imating a string-processing program as a regular or a context-free grammar. In
contrast, our method is more precise since we can naturally model programs as
EHMTTs, which are strictly more expressive than context-free grammars.

Our approach of reducing EHMTT verification to simpler verification prob-
lems based on coercion annotations is a reminiscent of program verification tech-
niques for imperative languages based on verification condition generation from
loop invariants: coercion annotations are invariants, and generated HMTT veri-
fication problems can be considered verification conditions. The main differences
are that our target is a higher-order functional language and that not all recur-
sions (or loops) need to be annotated with invariants.

7 Conclusion

We have proposed a verification method for tree-processing programs based on
reduction to higher-order model checking, and shown its effectiveness through ex-
periments. We plan to investigate techniques for inferring coercion annotations,
which would enable fully automatic verification of tree-processing programs. If
the derived HMTTs are ordinary macro or high-level tree transducers [5, 6], an-
notations can indeed be inferred by the inverse inference technique. For general
EHMTTs, we plan to apply techniques of machine learning. Addressing the lim-
itations discussed at the end of Section 4 is also left for future work.

Acknowledgment

We would like to thank anonymous referees for useful comments.

References

1. Aehlig, K., de Miranda, J.G., Ong, C.H.L.: The monadic second order theory of
trees given by arbitrary level-two recursion schemes is decidable. In: TLCA ’05.
LNCS, vol. 3461, pp. 39–54. Springer (2005)

2. Benzaken, V., Castagna, G., Frisch, A.: CDuce: an XML-centric general-purpose
language. In: ICFP ’03. pp. 51–63. ACM (2003)

3. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string ex-
pressions. In: SAS ’03. LNCS, vol. 2694, pp. 1–18. Springer (2003)

4. Davies, R.: Practical refinement-type checking. Ph.D. thesis, Carnegie Mellon Uni-
versity (2005), chair-Pfenning, Frank

5. Engelfriet, J., Vogler, H.: Macro tree transducers. Journal of Computer and System
Sciences 31(1), 71–146 (1985)

6. Engelfriet, J., Vogler, H.: High level tree transducers and iterated pushdown tree
transducers. Acta Informatica 26(1/2), 131–192 (1988)

7. Freeman, T., Pfenning, F.: Refinement types for ML. In: PLDI ’91. pp. 268–277.
ACM (1991)

8. Hosoya, H., Frisch, A., Castagna, G.: Parametric polymorphism for XML. ACM
Transactions on Programming Languages and Systems 32(1), 1–56 (2009)

9. Hosoya, H., Pierce, B.C.: XDuce: A statically typed XML processing language.
ACM Transactions on Internet Technology 3(2), 117–148 (2003)

10. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. In: ICFP
’00. pp. 11–22. ACM (2000)

11. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In:
FoSSaCS ’02. LNCS, vol. 2303, pp. 205–222. Springer (2002)

12. Kobayashi, N.: Model-checking higher-order functions. In: PPDP ’09. pp. 25–36.
ACM (2009)

13. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: POPL ’09. pp. 416–428. ACM (2009)

14. Kobayashi, N., Ong, C.H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: LICS ’09. pp. 179–188. IEEE
(2009)

15. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In: POPL ’10. pp. 495–508.
ACM (2010)

16. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree transduc-
ers and recursion schemes for program verification. An extended version, available
from http://www.kb.ecei.tohoku.ac.jp/∼koba/papers/hmtt.pdf (2010)

17. Maneth, S., Berlea, A., Perst, T., Seidl, H.: XML type checking with macro tree
transducers. In: PODS ’05. pp. 283–294. ACM (2005)

18. Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. Journal of
Computer and System Sciences 66(1), 66–97 (2003)

19. Minamide, Y.: Static approximation of dynamically generated web pages. In:
WWW ’05. pp. 432–441. ACM (2005)

20. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS ’06. pp. 81–90. IEEE (2006)

21. Schmidt, A., Waas, F., Kersten, M., Carey, M.J., Manolescu, I., Busse, R.: XMark:
a benchmark for XML data management. In: VLDB ’02. pp. 974–985. VLDB En-
dowment (2002)

22. Tozawa, A.: XML type checking using high-level tree transducer. In: FLOPS ’06.
LNCS, vol. 3945, pp. 81–96. Springer (2006)

Appendix

A Proof of Theorem 1

To prove Theorem 1, we use a variant =⇒ of the evaluation relation −→ in Fig-
ure 2 which adopts the following rule instead of E-Coerce-Input and E-Input:

t =⇒∗
P t′ t′⊥ ∈ L⊥

E[coerceL(t)] =⇒P E[t′⊥]
(E-Coerce)

Lemma 1. If S T1 · · ·Tk �−→∗
P Error and S T1 · · ·Tk −→∗ t, then S T1 · · ·Tk =⇒∗

t′ is derivable for some t′ such that t⊥ = t′⊥.

The term translation A(t) is formally defined by:

A(a) = a A(x) = xA A(F) = FA A(t1 t2) = A(t1) A(t2)
A(case t of {ai ỹi ⇒ ti}n

i=1) = case A(t) of {ai ỹA
i ⇒ A(ti)}n

i=1

A(genL) = genL A(coerceL(t)) = genL A(a) = a

We prepare lemmas for Theorem 1.

Lemma 2. A([t′/x]t) = [A(t′)/xA]A(t)

Lemma 3. If t =⇒ t′ is derivable without using E-Coerce-Assert, then
A(t) =⇒∗ A(t′) holds.

Proof. We prove the lemma by case analysis for the last rule used to derive
t =⇒ t′:

E-App
We have

t = E[F t̃]
t′ = E[[t̃/x̃]t′′]
F x̃ = t′′ ∈ D

We get FA x̃A = A(t′′) ∈ A(D). We have

A(t) = A(E)[A(F t̃)]
= A(E)[FA A(t̃)]

=⇒ A(E)[[A(t̃)/x̃A]A(t′′)] (By E-App)
= A(E)[A([t̃/x̃]t′′)] (By Lemma 2)
= A(E[[t̃/x̃]t′′])
= A(t′)

E-Case
We have

t = E[case ai t̃ of {ai ỹi ⇒ ti}n
i=1]

t′ = E[[t̃/ỹi]ti]

We obtain

A(t) = A(E)[A(case ai t̃ of {ai ỹi ⇒ ti}n
i=1)]

= A(E)[case ai A(t̃) of {ai ỹA
i ⇒ A(ti)}n

i=1]

=⇒ A(E)[[A(t̃)/ỹA
i]A(ti)] (By E-Case)

= A(E)[A([t̃/ỹi]ti)] (By Lemma 2)
= A(E[[t̃/ỹi]ti])
= A(t′)

E-Case-Fail
We have

t = E[case a t̃ of {ai ỹi ⇒ ti}n
i=1]

t′ = E[fail]
a �∈ {a1, . . . , an}

We obtain

A(t) = A(E)[A(case a t̃ of {ai ỹi ⇒ ti}n
i=1)]

= A(E)[case a A(t̃) of {ai ỹA
i ⇒ A(ti)}n

i=1]
=⇒ A(E)[fail] (By E-Case-Fail)
= A(E[fail])
= A(t′)

E-Gen
We have

t = E[genL]
t′ = E[a genL1 . . .genLn]
a L1 · · ·Ln ⊆ L

A(t) = A(E)[A(genL)]
= A(E)[genL]

=⇒ A(E)[a genL1 . . .genLn] (By E-Gen)
= A(E[a genL1 . . .genLn])
= A(t′)

E-Coerce
We have

t = E[coerceL(t1)]
t′ = E[t⊥2]
t1 =⇒∗ t2

t⊥2 ∈ L⊥

A(t) = A(E)[A(coerceL(t′′))]
= A(E)[genL]

=⇒∗ A(E)[t⊥2] (By E-Gen and gen∅ = ⊥)
= A(E[t⊥2])
= A(t′)

E-Coerce-Assert
This case is impossible

E-Assert-Error
This case is impossible

We now prove Theorem 1.

Proof of Theorem 1 Assume that S T1 · · ·Tk �−→∗ Error and S T1 · · ·Tk −→∗ t.
By Lemma 1, S T1 · · ·Tk =⇒∗ t′ is derivable for some t′ such that t⊥ = t′⊥.
If the derivation of S T1 · · ·Tk =⇒∗ t′ uses T-Coerce-Assert, we have t⊥ =
t′⊥ = ⊥ ∈ L(M⊥). Otherwise, by Lemma 3, we have SA T1 · · ·Tk =⇒∗ A(t′).
Thus, we get t⊥ = t′⊥ = A(t′)⊥ ∈ L(M⊥). �

B Proof of Theorem 2

Lemma 4. If S T1 · · ·Tk �=⇒P Error, then S T1 · · ·Tk �−→∗
P Error.

The term translation Bi(t) is extended with:

Bi(a) = aBi Bi(assertL(t)) = Bi(t)

Lemma 5. Bi([t′/x]t) = [A(t′)/xA,Bi(t′)/xBi]Bi(t).

We write t1 ⊆ t2 if the set of trees generated by t1 is a subset of that of t2.

Lemma 6. br t [emp/x]t′ ⊇ [t/x]t′.

Lemma 7. If t1 ⊇=⇒ t2, then t1 =⇒⊇ t2.

We define Bi(E)[tA][tBi] by:

Bi([])[tA][tBi] = tBi

Bi(a t1 · · · tj−1 E tj+1 · · · tΣ(a))[tA][tBi]

= aBi A(t1) Bi(t1) · · · A(tj−1) Bi(tj−1) tA Bi(E)[tA][tBi] A(tj+1) Bi(tj+1) · · · A(tΣ(a)) Bi(tΣ(a))

Bi(case E of {aj ỹj ⇒ tj}n
j=1)[t

A][tBi]

= br Bi(E)[tA][tBi] (case A(E)[tA] of {aj ỹA
j ⇒ [ẽmp/ỹBi

j]Bi(tj)}n
j=1)

Bi(assertL(E)) = Bi(E)[tA][tBi]

Lemma 8. If t =⇒ t′, then Bi(t) =⇒∗⊇ Bi(t′).

Proof. We prove the lemma by case analysis for the last rule used to derive
t =⇒ t′:

E-App
We have

t = E[F t1 . . . tn]
t′ = E[[t1/x1, . . . , tn/xn]t′′]
F x1 . . . xn = t′′ ∈ D

We get FA xA
1 . . . xA

n = A(t′′) ∈ Bi(D). FBi xA
1 xBi

1 . . . xA
n xBi

n = Bi(t′′) ∈
Bi(D). We have

Bi(t) = Bi(E)[A(F t1 . . . tn)][Bi(F t1 . . . tn)]
= Bi(E)[A(F t1 . . . tn)][FBi A(t1) Bi(t1) . . .A(tn) Bi(tn)]

=⇒ Bi(E)[A(F t1 . . . tn)][[A(t1)/xA
1 ,Bi(t1)/xBi

1 , . . . ,A(tn)/xA
n ,Bi(tn)/xBi

n]Bi(t′′)] (By E-App)
= Bi(E)[A(F t1 . . . tn)][Bi([t1/x1, . . . tn/xn]t′′)] (By Lemma 5)

=⇒ Bi(E)[A([t1/x1, . . . , tn/xn]t′′)][Bi([t1/x1, . . . tn/xn]t′′)] (By E-App)
= Bi(E[[t1/x1, . . . tn/xn]t′′])
= Bi(t′)

E-Case
We have

t = E[case aj t̃ of {aj ỹj ⇒ tj}n
j=1]

t′ = E[[t̃/ỹj]tj]

We obtain

Bi(t) = Bi(E)[A(case aj t̃ of {aj ỹj ⇒ tj}n
j=1)][Bi(case aj t̃ of {aj ỹj ⇒ tj}n

j=1)]

=⇒ Bi(E)[A([t̃/ỹj]tj)][Bi(case aj t̃ of {aj ỹj ⇒ tj}n
j=1)] (By E-Case)

= Bi(E)[A([t̃/ỹj]tj)][br Bi(aj t̃) (case aj A(t̃) of {aj ỹA
j ⇒ [ẽmp/ỹBi

j]Bi(tj)}n
j=1)]

=⇒ Bi(E)[A([t̃/ỹj]tj)][br Bi(aj t̃) [A(t̃)/ỹA
j , ẽmp/ỹBi

j]Bi(tj)] (By E-Case)

⊇ Bi(E)[A([t̃/ỹj]tj)][[A(t̃)/ỹA
j ,Bi(t̃)/ỹBi

j]Bi(tj)] (By Lemma 6)

= Bi(E)[A([t̃/ỹj]tj)][Bi([t̃/ỹj]tj)] (By Lemma 5)
= Bi(E[[t̃/ỹj]tj])
= Bi(t′)

E-Case-Fail
We have

t = E[case a t̃ of {aj ỹj ⇒ tj}n
j=1]

t′ = E[fail]
a �∈ {a1, . . . , an}

We obtain

Bi(t) = Bi(E)[A(case a t̃ of {aj ỹj ⇒ tj}n
j=1)][Bi(case a t̃ of {aj ỹj ⇒ tj}n

j=1)]

=⇒ Bi(E)[fail][Bi(case a t̃ of {aj ỹj ⇒ tj}n
j=1)] (By E-Case-Fail)

⊇ Bi(E)[fail][emp]
= Bi(E)[A(fail)][Bi(fail)]
= Bi(E[fail])
= Bi(t′)

E-Gen
We have

t = E[genL]
t′ = E[a genL1 . . .genLn]
a L1 · · ·Ln ⊆ L

Bi(t) = Bi(E)[A(genL)][Bi(genL)]
=⇒ Bi(E)[A(a genL1 . . .genLn)][Bi(genL)] (By E-Gen)
= Bi(E)[A(a genL1 . . .genLn)][emp]
= Bi(E)[A(a genL1 . . .genLn)][Bi(a genL1 . . .genLn)]
= Bi(E[a genL1 . . .genLn])
= Bi(t′)

E-Coerce
We have

t = E[coerceLj (t1)]
t′ = E[t⊥2]
t1 =⇒∗ t2

t⊥2 ∈ L⊥

Bi(t) = Bi(E)[A(coerceLj (t1))][Bi(coerceLj (t1))]
=⇒∗ Bi(E)[A(t⊥2)][Bi(coerceLj (t1))] (By E-Gen)
⊇ Bi(E)[A(t⊥2)][emp]
= Bi(E)[A(t⊥2)][Bi(t⊥2)]
= Bi(E[t⊥2])
= Bi(t′)

E-Coerce-Assert
We have

t = E[coerceLj (t′′)]
t′ = assertLj (t′′)

Bi(t) = Bi(E)[A(coerceLj (t′′))][Bi(coerceLj (t′′))]
⊇ Bi(E)[A(coerceLj (t′′))][Bi(t′′)]
⊇ Bi(t′′)
= Bi(assertLj (t′′))
= Bi(t′)

E-Assert-Error
This case is impossible

Proof of Theorem 2 Assume that |= (PBi ,M1, . . . ,Mk,B(Li)) holds for each i ∈
{1, . . . , m} and S T1 · · ·Tk =⇒∗ E[coerceLj (t)] for some T1 ∈ L(M1), . . . , Tk ∈
L(Mk). By Lemma 8, we obtain SBj T1 emp · · ·Tk emp(=⇒∗⊇)∗Bj(E[coerceLj (t)])
By Lemma 7, we get SBj T1 emp · · ·Tk emp =⇒∗⊇ Bj(E[coerceLj (t)]). Thus, for
any t′ such that t =⇒∗ t′, t′⊥ ∈ B(Lj) = L⊥

j . Therefore, E[coerceLj (t)] �=⇒∗

Error. By Lemma 4, we get E[coerceLj (t)] �−→∗ Error. �

