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Abstract. Verification problems of programs in various paradigms can
be reduced to problems of solving Horn clause constraints on pred-
icate variables that represent unknown inductive invariants. This pa-
per presents a novel Horn constraint solving method based on inductive
theorem proving: the method reduces Horn constraint solving to valid-
ity checking of first-order formulas with inductively defined predicates,
which are then checked by induction on the derivation of the predicates.
To automate inductive proofs, we introduce a novel proof system tai-
lored to Horn constraint solving, and use a PDR-based Horn constraint
solver as well as an SMT solver to discharge proof obligations arising
in the proof search. We prove that our proof system satisfies the sound-
ness and relative completeness with respect to ordinary Horn constraint
solving schemes. The two main advantages of the proposed method are
that (1) it can deal with constraints over any background theories sup-
ported by the underlying SMT solver, including nonlinear arithmetic
and algebraic data structures, and (2) the method can verify relational
specifications across programs in various paradigms where multiple func-
tion calls need to be analyzed simultaneously. The class of specifications
includes practically important ones such as functional equivalence, asso-
ciativity, commutativity, distributivity, monotonicity, idempotency, and
non-interference. Our novel combination of Horn clause constraints with
inductive theorem proving enables us to naturally and automatically
axiomatize recursive functions that are possibly non-terminating, non-
deterministic, higher-order, exception-raising, and over non-inductively
defined data types. We have implemented a relational verification tool
for the OCaml functional language based on the proposed method and
obtained promising results in preliminary experiments.

1 Introduction

Verification problems of programs written in various paradigms, including imper-
ative [30], logic, concurrent [28], functional [47, 54, 55, 59], and object-oriented [36]
ones, can be reduced to problems of solving Horn clause constraints on predi-
cate variables that represent unknown inductive invariants. A given program is
guaranteed to satisfy its specification if the Horn constraints generated from the
program have a solution (see [27] for an overview of the approach).

This paper presents a novel Horn constraint solving method based on induc-
tive theorem proving: the method reduces Horn constraint solving to validity



checking of first-order formulas with inductively defined predicates, which are
then checked by induction on the derivation of the predicates. The main technical
challenge here is how to automate inductive proofs. To this end, we propose an
inductive proof system tailored for Horn constraint solving and a technique based
on SMT and PDR [10] to automate proof search in the system. Furthermore,
we prove that the proof system satisfies the soundness and relative completeness
with respect to ordinary Horn constraint solving schemes.

Compared to previous Horn constraint solving methods [27, 29, 32, 33, 41, 48,
52, 55, 57] based on Craig interpolation [21, 42], abstract interpretation [20], and
PDR, the proposed method has two major advantages:

1. It can solve Horn clause constraints over any background theories supported
by the underlying SMT solver. Our method solved constraints over the the-
ories of nonlinear arithmetic and algebraic data structures, which are not
supported by most existing Horn constraint solvers.

2. It can verify relational specifications where multiple function calls need to
be analyzed simultaneously. The class of specifications includes practically
important ones such as functional equivalence, associativity, commutativity,
distributivity, monotonicity, idempotency, and non-interference.

To show the usefulness of our approach, we have implemented a relational ver-
ification tool for the OCaml functional language based on the proposed method
and obtained promising results in preliminary experiments.

For an example of the reduction from (relational) verification to Horn con-
straint solving, consider the following OCaml program Dmult .

1

let rec mult x y = if y=0 then 0 else x + mult x (y-1)

let rec mult_acc x y a = if y=0 then a else mult_acc x (y-1) (a+x)

let main x y a = assert (mult x y + a = mult_acc x y a)

Here, the function mult takes two integer arguments x, y and recursively com-
putes x × y (note that mult never terminates if y < 0). mult acc is a tail-
recursive version of mult with an accumulator a. The function main contains
an assertion with the condition mult x y + a = mult_acc x y a, which rep-
resents a relational specification, namely, the functional equivalence of mult

and mult acc. Our verification problem here is whether for any integers x, y,
and a, the evaluation of main x y a, under the call-by-value evaluation strat-
egy adopted by OCaml, never causes an assertion failure, that is ∀x, y, a ∈
N. main x y a 6−→∗assert false. By using a constraint generation method for
functional programs [55], the relational verification problem is reduced to the
constraint solving problem of the following Horn clause constraint set Hmult :P (x, 0, 0), P (x, y, x+ r)⇐ P (x, y − 1, r) ∧ (y 6= 0),

Q(x, 0, a, a), Q(x, y, a, r)⇐ Q(x, y − 1, a+ x, r) ∧ (y 6= 0),
⊥ ⇐ P (x, y, r1) ∧Q(x, y, a, r2) ∧ (r1 + a 6= r2)


1 Our work also applies to programs that require a path-sensitive analysis of intricate

control flows caused by non-termination, non-determinism, higher-order functions,
and exceptions but, for illustration purposes, we use this as a running example.
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Here, the predicate variable P (resp. Q) represents an inductive invariant among
the arguments and the return value of the function mult (resp. mult acc). The
first Horn clause P (x, 0, 0) is generated from the then-branch of the definition of
mult and expresses that mult returns 0 if 0 is given as the second argument. The
second clause in Hmult , P (x, y, x+r)⇐ P (x, y−1, r)∧(y 6= 0) is generated from
the else-branch and represents that mult returns x+r if the second argument y is
non-zero and r is returned by the recursive call mult x (y-1). The other Horn
clauses are similarly generated from the then- and else- branches of mult acc and
the assertion in main. Because Hmult has a satisfying substitution (i.e., solution)
θmult = {P 7→ λ(x, y, r).x × y = r,Q 7→ λ(x, y, a, r).x × y + a = r} for the
predicate variables P and Q, the correctness of the constraint generation [55]
guarantees that the evaluation of main x y a never causes an assertion failure.

The previous Horn constraint solving methods, however, cannot solve this
kind of constraints that require a relational analysis of multiple predicates. To see
why, recall the constraint in Hmult , ⊥ ⇐ P (x, y, r1)∧Q(x, y, a, r2)∧(r1+a 6= r2)
which asserts the equivalence of mult and mult acc, where a relational analy-
sis of the two predicates P and Q is required. The previous methods, however,
analyze each predicate P and Q separately, and therefore must infer nonlin-
ear invariants r1 = x × y and r2 = x × y + a respectively for the predicate
applications P (x, y, r1) and Q(x, y, a, r2) to conclude r1 + a = r2 by canceling
x × y, because x and y are the only shared arguments between P (x, y, r1) and
Q(x, y, a, r2). The previous methods can only find solutions that are expressible
by efficiently decidable theories such as the quantifier-free linear real (QF LRA)
and integer (QF LIA) arithmetic2, which are not powerful enough to express the
above nonlinear invariants and the solution θmult of Hmult .

By contrast, our induction-based Horn constraint solving method can di-
rectly and automatically show that the predicate applications P (x, y, r1) and
Q(x, y, a, r2) imply r1 + a = r2 (i.e., Hmult is solvable), by simultaneously an-
alyzing the two. More precisely, our method interprets P,Q as the predicates
inductively defined by the definite clauses (i.e., the clauses whose head is a pred-
icate application), and uses induction on the derivation of P (x, y, r1) to prove the
conjecture ∀x, y, r1, a, r2.(P (x, y, r1)∧Q(x, y, a, r2)∧(r1 +a 6= r2)⇒ ⊥) denoted
by the goal clause (i.e., the clause whose head is not a predicate application).

The use of Horn clause constraints, which can be considered as an Interme-
diate Verification Language (IVL) common to Horn constraint solvers and tar-
get languages, enables our method to verify relational specifications across pro-
grams written in various paradigms. Horn constraints can naturally axiomatize
various advanced language features including recursive functions that are par-
tial (i.e., possibly non-terminating), non-deterministic, higher-order, exception-
raising, and over non-inductively defined data types (recall that Hmult axioma-
tizes the partial functions mult and mult acc, and see the full version [58] for
more examples). Furthermore, we can automate the axiomatization process by
using program logics such as Hoare logics for imperative and refinement type sys-
tems [47, 54, 55, 60] for functional programs. In fact, researchers have developed

2 See http://smt-lib.org/ for the definition of the theories.
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and made available tools such as SeaHorn [30] and JayHorn [36], respectively
for translating C and Java programs into Horn constraints. Despite their expres-
siveness, Horn constraints have a simpler logical semantics than other popular
IVLs like Boogie [3] and Why3 [8]. The simplicity enabled us to directly apply
inductive theorem proving and made the proofs and implementation easier.

In contrast to our method based on the logic of predicates defined by Horn
clause constraints, most state-of-the-art automated inductive theorem provers
such as ACL2s [15], Leon [50], Dafny [40], Zeno [49], HipSpec [18], and CVC4 [46]
are based on logics of pure total functions over inductively-defined data struc-
tures. Some of them support powerful induction schemes such as recursion in-
duction [43] and well-founded induction (if the termination arguments for the re-
cursive functions are given). However, the axiomatization process often requires
users’ manual intervention and possibly has a negative effect on the automation
of induction later, because one needs to take into consideration the evaluation
strategies and complex control flows caused by higher-order functions and side-
effects such as non-termination, exceptions, and non-determinism. Furthermore,
the process needs to preserve branching and calling context information for path-
and context-sensitive verification. Thus, our approach complements automated
inductive theorem proving with the expressive power of Horn clause constraints
and, from the opposite point of view, opens the way to leveraging the achieve-
ments of the automated induction community into Horn constraint solving.

The rest of the paper is organized as follows. In Section 2, we will give an
overview of our induction-based Horn constraint solving method. Section 3 de-
fines Horn constraint solving problems and proves the correctness of the reduc-
tion from constraint solving to inductive theorem proving. Section 4 formalizes
our constraint solving method and proves its soundness and relative complete-
ness. Section 5 reports on our prototype implementation based on the proposed
method and the results of preliminary experiments. We compare our method
with related work in Section 6 and conclude the paper with some remarks on
future work in Section 7. The full version [58] contains omitted proofs, example
constraints generated from verification problems, and implementation details.

2 Overview of Induction-Based Horn Constraint Solving

In this section, we use the constraint set Hmult in Section 1 as a running example
to give an overview of our induction-based Horn constraint solving method (more
formal treatment is provided in Sections 3 and 4). Our method interprets the
definite clauses of a given constraint set as derivation rules for atoms P (t̃),
namely, applications of a predicate variable P to a sequence t̃ of terms t1, . . . , tm.

For example, the definite clauses Dmult ⊆ Hmult are interpreted as the rules:

|= y = 0 ∧ r = 0

P (x, y, r)

P (x, y − 1, r − x) |= y 6= 0

P (x, y, r)

|= y = 0 ∧ r = a

Q(x, y, a, r)

Q(x, y − 1, a+ x, r) |= y 6= 0

Q(x, y, a, r)
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Here, the heads of the clauses are changed into the uniform representations
P (x, y, r) and Q(x, y, a, r) of atoms over variables. These rules inductively define
the least interpretation ρmult for P and Q that satisfies the definite clauses Dmult .
We thus get ρmult = {P 7→ {(x, y, r) ∈ Z3 | x×y = r∧y ≥ 0}, Q 7→ {(x, y, a, r) ∈
Z4 | x× y + a = r ∧ y ≥ 0}}, and Hmult has a solution iff the goal clause

∀x, y, r1, a, r2. (P (x, y, r1) ∧Q(x, y, a, r2) ∧ (r1 + a 6= r2)⇒ ⊥)

is valid under ρmult (see Section 3 for a correctness proof of the reduction). We
then check the validity of the goal by induction on the derivation of atoms.

Principle 1 (Induction on Derivations) Let P be a property on derivations
D of atoms. We then have ∀D.P(D) if and only if ∀D. ((∀D′ ≺ D.P(D′))⇒ P(D)),
where D′ ≺ D represents that D′ is a strict sub-derivation of D.

Formally, we propose an inductive proof system for deriving judgments of the
formD;Γ ;A;φ ` ⊥, where⊥ represents the contradiction, φ represents a formula
without atoms, A represents a set of atoms, Γ represents a set of induction
hypotheses and user-specified lemmas, and D represents a set of definite clauses
that define the least interpretation of the predicate variables in Γ or A. Here,
Γ , A, and φ are allowed to have common free term variables. The free term
variables of a clause in D have the scope within the clause, and are considered
to be universally quantified. Intuitively, a judgment D;Γ ;A;φ ` ⊥ means that
the formula

∧
Γ ∧

∧
A ∧ φ ⇒ ⊥ is valid under the least interpretation induced

by D. For example, consider the following judgment Jmult :

Jmult , Dmult ; ∅; {P (x, y, r1), Q(x, y, a, r2)} ; (r1 + a 6= r2) ` ⊥

If Jmult is derivable, P (x, y, r1)∧Q(x, y, a, r2)∧ (r1 +a 6= r2)⇒ ⊥ is valid under
the least predicate interpretation by Dmult , and hence Hmult has a solution.

The inference rules for the judgment D;Γ ;A;φ ` ⊥ are shown in Section 4,
Figure 2. The rules there, however, are too general and formal for the purpose
of providing an overview of the idea. Therefore, we defer a detailed explanation
of the rules to Section 4, and here explain a simplified version shown below,
obtained from the complete version by eliding some conditions and subtleties
while retaining the essence. The rules are designed to exploit Γ and D for itera-
tively updating the current knowledge represented by the formula

∧
A ∧ φ until

a contradiction is implied. The first rule Induct

P (t̃) ∈ A {ỹ} = fvs(A) ∪ fvs(φ) x̃ : fresh σ = {ỹ 7→ x̃}
ψ = ∀x̃.

((
P (σt̃) ≺ P (t̃)

)
∧
∧
σA⇒ ¬(σφ)

)
D;Γ ∪ {ψ} ;A;φ ` ⊥

D;Γ ;A;φ ` ⊥

selects an atom P (t̃) ∈ A and performs induction on the derivation of the atom
by adding a new induction hypothesis ψ to Γ , which is obtained from the current
proof obligation

∧
A∧φ⇒ ⊥ by generalizing its free term variables (denoted by

fvs(A) ∪ fvs(φ)) into fresh ones x̃ using a map σ, and adding a guard P (σt̃) ≺
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P (t̃), requiring the derivation of P (σt̃) to be a strict sub-derivation of that of
P (t̃), to avoid an unsound application of ψ. The second rule Unfold

P (t̃) ∈ A D;Γ ;A ∪ [t̃/x̃]A′;φ ∧ [t̃/x̃]φ′ ` ⊥ (for each (P (x̃)⇐ A′ ∧ φ′) ∈ D)

D;Γ ;A;φ ` ⊥

selects an atom P (t̃) ∈ A, performs a case analysis on the last rule used to derive
the atom, which is represented by a definite clause in D. The third rule Apply⊥

∀x̃.
((
P (t̃′) ≺ P (t̃)

)
∧
∧
A′ ⇒ φ′

)
∈ Γ dom(σ) = {x̃} P (σt̃′) ≺ P (t̃)

|=
∧
A ∧ φ⇒

∧
σA′ D;Γ ;A;φ ∧ σφ′ ` ⊥
D;Γ ;A;φ ` ⊥

selects an induction hypothesis in Γ , and tries to find an instantiation σ of the
quantified variables x̃ such that

– the instantiated premise
∧
σA′ of the hypothesis is implied by the current

knowledge
∧
A ∧ φ and

– the derivation of the atom P (σt̃′) ∈ σA′ to which the hypothesis is being
applied is a strict sub-derivation of that of the atom P (t̃) on which the
induction (that has introduced the hypothesis) has been performed.

If such a σ is found, σφ′ is added to the current knowledge. The fourth rule
Valid⊥ checks whether the current knowledge implies ⊥, and if so, closes the
proof branch under consideration.

Figure 1 shows the structure (with side-conditions omitted) of a derivation of
the judgment Jmult , constructed by using the simplified version of the inference
rules. We below explain how the derivation is constructed. First, by performing
induction on the atom P (x, y, r1) in Jmult using the rule Induct, we obtain the
subgoal J0, where the induction hypothesis ∀x′, y′, r′1, a′, r′2. φind is added. We
then apply Unfold to perform a case analysis on the last rule used to derive
the atom P (x, y, r1), and obtain the two subgoals J1 and J2. We here got two
subgoals because Dmult has two clauses with the head that matches with the
atom P (x, y, r1). The two subgoals are then discharged as follows.

– Subgoal 1: By performing a case analysis on Q(x, y, a, r2) in J1 using the
rule Unfold, we further get two subgoals J3 and J4. Both J3 and J4 are
derived by the rule Valid⊥ because |= φ3 ⇒ ⊥ and |= φ4 ⇒ ⊥ hold.

– Subgoal 2: By performing a case analysis on Q(x, y, a, r2) in J2 using the
rule Unfold, we obtain two subgoals J5 and J6. J5 is derived by the rule
Valid⊥ because |= φ5 ⇒ ⊥ holds. To derive J6, we use the rule Apply⊥ to
apply the induction hypothesis to the atom P (x, y − 1, r1 − x) ∈ A6 in J6.
Note that this can be done by using the quantifier instantiation

σ = {x′ 7→ x, y′ 7→ y − 1, r′1 7→ r1 − x, a′ 7→ a+ x, r′2 7→ r2} ,
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J3
(Valid⊥)

J4
(Valid⊥)

J1
(Unfold)

J5
(Valid⊥)

J7
(Valid⊥)

J6
(Apply⊥)

J2
(Unfold)

J0
(Unfold)

Jmult
(Induct)

Here, Ji’s are of the form Ji , Dmult ; {∀x′, y′, r′1, a′, r′2. φind} ;Ai;φi ` ⊥ where:

φind = (P (x′, y′, r′1) ≺ P (x, y, r1)) ∧ P (x′, y′, r′1) ∧Q(x′, y′, a′, r′2)⇒ r′1 + a′ = r′2

φ0 = r1 + a 6= r2

φ1 = φ0 ∧ y = 0 ∧ r1 = 0

φ2 = φ0 ∧ y 6= 0

φ3 = φ1 ∧ y = 0 ∧ r2 = a

φ4 = φ1 ∧ y 6= 0

φ5 = φ2 ∧ y = 0 ∧ r2 = a

φ6 = φ2 ∧ y 6= 0

φ7 = φ6 ∧ σ(r′1 + a′ = r′2)

A0 = A1 = A3 = {P (x, y, r1), Q(x, y, a, r2)}
A2 = A5 = A0 ∪ {P (x, y − 1, r1 − x)}
A4 = A1 ∪ {Q(x, y − 1, a+ x, r2)}
A6 = A7 = A2 ∪ {Q(x, y − 1, a+ x, r2)}

Fig. 1. The structure of an example derivation of Jmult .

because σ(P (x′, y′, r′1)) = P (x, y − 1, r1 − x) ≺ P (x, y, r1) holds and the
premise σ(P (x′, y′, r′1)∧Q(x′, y′, a′, r′2)) = P (x, y−1, r1−x)∧Q(x, y−1, a+
x, r2) of the instantiated hypothesis is implied by the current knowledge∧
A6 ∧ r1 + a 6= r2 ∧ y 6= 0. We thus obtain the subgoal J7, whose φ-part

is equivalent to r1 + a 6= r2 ∧ y 6= 0 ∧ r1 + a = r2. Because this implies a
contradiction, J7 is finally derived by using the rule Valid⊥.

To automate proof search in the system, we use either an off-the-shelf SMT
solver or a PDR-based Horn constraint solver for checking whether the current
knowledge implies a contradiction (in the rule Valid⊥). An SMT solver is also
used to check whether each element of Γ can be used to update the current
knowledge, by finding a quantifier instantiation σ (in the rule Apply⊥). The
use of an SMT solver provides our method with efficient and powerful reasoning
about data structures, including integers, real numbers, arrays, algebraic data
types, and uninterpreted functions. However, there still remain two challenges
to be addressed towards full automation:

1. Challenge: How to check (in the rule Apply⊥) the strict sub-derivation
relation P (t̃′) ≺ P (t̃) between the derivation of an atom P (t̃′) to which an
induction hypothesis in Γ is being applied, and the derivation of the atom
P (t̃) on which the induction has been performed? Recall that in the above
derivation of Jmult , we needed to check P (x, y−1, r1−x) ≺ P (x, y, r1) before
applying the rule Apply⊥ to J6.
Our solution: The formalized rules presented in Section 4 keep sufficient
information for checking the strict sub-derivation relation: we associate each
induction hypothesis in Γ with an induction identifier α, and each atom in
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A with a set M of identifiers indicating which hypotheses can be applied to
the atom. Further details are explained in Section 4.

2. Challenge: In which order should the rules be applied?
Our solution: We here adopt the following simple strategy, and evaluate it
by experiments in Section 5.

– Repeatedly apply the rule Apply⊥ if possible, until no new knowledge
is obtained. (Even if the rule does not apply, applications of Induct and
Unfold explained in the following items may make Apply⊥ applicable.)

– If the knowledge cannot be updated by Apply⊥, select some atom from
A in a breadth-first manner, and apply the rule Induct to the atom.

– Apply the rule Unfold whenever Induct is applied.
– Try to apply the rule Valid⊥ whenever the knowledge is updated.

3 Horn Constraint Solving Problems

This section formalizes Horn constraint solving problems and proves the correct-
ness of our reduction from constraint solving to inductive theorem proving. We
here restrict ourselves to constraint Horn clauses over the theory TZ of quantifier-
free linear integer arithmetic for simplicity, although our induction-based Horn
constraint solving method formalized in Section 4 supports constraints over any
background theories supported by the underlying SMT solver. A TZ-formula φ is
a Boolean combination of atomic formulas t1 ≤ t2, t1 < t2, t1 = t2, and t1 6= t2.
We write > and ⊥ respectively for tautology and contradiction. A TZ-term t is
either a term variable x, an integer constant n, or t1 + t2.

3.1 Notation for HCSs

A Horn Constraint Set (HCS) H is a finite set {hc1, . . . , hcm} of Horn clauses.
A Horn clause hc is defined to be h ⇐ b, consisting of a head h and a body b.
A head h is either of the form P (t̃) or ⊥, and a body b is of the form P1(t̃1) ∧
· · · ∧ Pm(t̃m) ∧ φ. Here, P is a meta-variable ranging over predicate variables.
We write ar(P ) for the arity of P . We often abbreviate a Horn clause h ⇐
> as h. We write pvs(hc) for the set of the predicate variables that occur in
hc and define pvs(H) =

⋃
hc∈H pvs(hc). Similarly, we write fvs(hc) for the set

of the term variables in hc and define fvs(H) =
⋃

hc∈H fvs(hc). We assume
that for any hc1, hc2 ∈ H, hc1 6= hc2 implies fvs(hc1) ∩ fvs(hc2) = ∅. We
write H�P for the set of Horn clauses in H of the form P (t̃) ⇐ b. We define
H(P ) = λx̃.∃ỹ.

∨m
i=1(bi ∧ x̃ = t̃i) if H�P =

{
P (t̃i)⇐ bi

}
i∈{1,...,m} where {ỹ} =

fvs(H�P ) and {x̃}∩{ỹ} = ∅. By usingH(P ), an HCSH is logically interpreted as
the formula

∧
P∈pvs(H) ∀x̃P . (H(P )(x̃P )⇒ P (x̃P )), where x̃P = x1, . . . , xar(P ).

A Horn clause with the head of the form P (t̃) (resp. ⊥) is called a definite
clause (resp. a goal clause). We write def (H) (resp. goal(H)) for the subset of
H consisting of only the definite (resp. goal) clauses. Note that H = def (H) ∪
goal(H) and def (H) ∩ goal(H) = ∅.
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3.2 Predicate Interpretation

A predicate interpretation ρ for an HCS H is a map from each predicate variable
P ∈ pvs(H) to a subset of Zar(P ). We write the domain of ρ as dom(ρ). We write
ρ1 ⊆ ρ2 if ρ1(P ) ⊆ ρ2(P ) for all P ∈ pvs(H). We call an interpretation ρ a solu-
tion of H and write ρ |= H if ρ |= hc holds for all hc ∈ H. For example, ρ′mult =
{P 7→

{
(x, y, r) ∈ Z3 | x× y = r

}
, Q 7→

{
(x, y, a, r) ∈ Z4 | x× y + a = r

}
} is a

solution of the HCS Hmult in Section 1.

Definition 1 (Horn Constraint Solving Problems). A Horn constraint
solving problem is the problem of checking if a given HCS H has a solution.

We now establish the reduction from Horn constraint solving to inductive the-
orem proving, which is the foundation of our induction-based Horn constraint
solving method. The definite clauses def (H) are considered to inductively de-
fine the least predicate interpretation for H as the least fixed-point µFH of the
following function on predicate interpretations.

FH(ρ) =
{
P 7→

{
(x̃) ∈ Zar(P )

∣∣∣ ρ |= H(P )(x̃)
} ∣∣∣ P ∈ dom(ρ)

}
Because FH is continuous [35], the least fixed-point µFH of FH exists. Further-
more, we can express it as µFH =

⋃
i∈N F

i
H({P 7→ ∅ | P ∈ pvs(H)}), where F iH

means i-times application of FH. It immediately follows that the least predicate
interpretation µFH is a solution of def (H) because any fixed-point of FH is a
solution of def (H). Furthermore, µFH is the least solution. Formally, we can
prove the following proposition.

Proposition 1. µFH |= def (H) holds, and for all ρ such that ρ |= def (H),
µFH ⊆ ρ holds.

On the other hand, the goal clauses goal(H) are considered as specifications of
the least predicate interpretation µFH. As a corollary of Proposition 1, it follows
that H has a solution if and only if µFH satisfies the specifications goal(H).

Corollary 1. ρ |= H for some ρ if and only if µFH |= goal(H)

In Section 4, we present an induction-based method for proving µFH |= goal(H).

4 Induction-based Horn Constraint Solving Method

As explained in Section 2, our method is based on the reduction from Horn con-
straint solving into inductive theorem proving. The remaining task is to develop
an automated method for proving the inductive conjectures obtained from Horn
constraints. We thus formalize our inductive proof system tailored to Horn con-
straint solving and proves its soundness and relative completeness. To automate
proof search in the system, we adopt the rule application strategy in Section 2.

We formalize a general and more elaborate version of the inductive proof
system explained in Section 2. A judgment of the extended system is of the form
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Perform induction on the derivation of the atom P (t̃):

PM◦ (t̃) ∈ A Γ ′ = Γ ∪
{

(α . P (t̃), A, φ, h)
}

D;Γ ′; (A \ PM◦ (t̃)) ∪
{
PMα (t̃)

}
;φ ` h (α : fresh)

D;Γ ;A;φ ` h
(Induct)

Case-analyze the last rule used (where m rules are possible):

PMα (t̃) ∈ A D(P )(t̃) =
∨m
i=1 ∃x̃i. (φi ∧

∧
Ai)

D;Γ ;A ∪AiM∪{α}◦ ;φ ∧ φi ` h (for each i ∈ {1, . . . ,m})
D;Γ ;A;φ ` h

(Unfold)

Apply an induction hypothesis or a user-specified lemma in Γ :
(g,A′, φ′,⊥) ∈ Γ dom(σ) = fvs(A′)
|= φ⇒ Jσg∈AK |= φ⇒ JσA′⊆AK

{x̃} = fvs(φ′) \ dom(σ) D;Γ ;A;φ ∧ ∀x̃.¬(σφ′) ` h
D;Γ ;A;φ ` h

(Apply⊥)

Apply an induction hypothesis or a user-specified lemma in Γ :
(g,A′, φ′, P (t̃)) ∈ Γ dom(σ) = fvs(A′) ∪ fvs(t̃)

|= φ⇒ Jσg∈AK |= φ⇒ ∃x̃.(σφ′) |= φ⇒ JσA′⊆AK
{x̃} = fvs(φ′) \ dom(σ) D;Γ ;A ∪

{
P ∅◦ (σt̃)

}
;φ ` h

D;Γ ;A;φ ` h
(ApplyP )

Apply a definite clause in D:
(P (t̃)⇐ φ′ ∧

∧
A′) ∈ D dom(σ) = fvs(A′) ∪ fvs(t̃)

|= φ⇒ ∃x̃.(σφ′) |= φ⇒ JσA′⊆AK
{x̃} = fvs(φ′) \ dom(σ) D;Γ ;A ∪

{
P ∅◦ (σt̃)

}
;φ ` h

D;Γ ;A;φ ` h
(Fold)

Check if the current knowledge entails the asserted proposition:

µFD |=
∧
A ∧ φ⇒ ⊥

D;Γ ;A;φ ` ⊥
(Valid⊥)

µFD |=
∧
A ∧ φ⇒

q
P (t̃)∈A

y

D;Γ ;A;φ ` P (t̃)
(ValidP )

Auxiliary functions:

q
P (t̃)∈A

y
,

∨
P (t̃′)∈A

t̃ = t̃′ JA1⊆A2K ,
∧

P (t̃)∈A1

q
P (t̃)∈A2

y

J•∈AK , >
q
α . P (t̃)∈A

y
,

r
P (t̃)∈

{
PM (t̃′) ∈ A | α ∈M

}z

Fig. 2. The inference rules for the judgment D;Γ ;A;φ ` h.

D;Γ ;A;φ ` h, where D is a set of definite clauses and φ represents a formula
without atoms. We here assume that D(P ) is defined similarly as H(P ). The as-
serted proposition h on the right is now allowed to be an atom P (t̃) instead of ⊥.
For deriving such judgments, we will introduce new rules Fold and ValidP later
in this section. Γ represents a set {(g1, A1, φ1, h1), . . . , (gm, Am, φm, hm)} con-
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sisting of user-specified lemmas and induction hypotheses, where gi is either • or
α . P (t̃). (•, A, φ, h) ∈ Γ represents the user-specified lemma ∀x̃. (

∧
A ∧ φ⇒ h)

where {x̃} = fvs(A, φ, h), while (α . P (t̃), A, φ, h) ∈ Γ represents the induction
hypothesis ∀x̃.

((
P (t̃) ≺ P (t̃′)

)
∧
∧
A ∧ φ⇒ h

)
with {x̃} = fvs(P (t̃), A, φ, h) that

has been introduced by induction on the derivation of the atom P (t̃′). Here, α
represents the induction identifier assigned to the application of induction that
has introduced the hypothesis. Note that h on the right-hand side of ⇒ is now
allowed to be an atom of the form Q(t̃). We will introduce a new rule ApplyP
later in this section for using such lemmas and hypotheses to obtain new knowl-
edge. A is also extended to be a set

{
P1

M1
α1

(t̃1), . . . , Pm
Mm
αm

(t̃m)
}

of annotated

atoms. Each element PMα (t̃) has two annotations:

– an induction identifier α indicating that the induction with the identifier α
is performed on the atom by the rule Induct. If the rule Induct has never
been applied to the atom, α is set to be a special identifier denoted by ◦.

– a set of induction identifiers M indicating that if α′ ∈ M , the derivation
D of the atom PMα (t̃) satisfies D ≺ D′ for the derivation D′ of the atom
P (t̃′) on which the induction with the identifier α′ is performed. Thus, an
induction hypothesis (α′ . P (t̃′), A′, φ′, h′) ∈ Γ can be applied to the atom
PMα (t̃) ∈ A only if α′ ∈M holds.

Note that we use these annotations only for guiding inductive proofs and PMα (t̃)
is logically equivalent to P (t̃). We often omit these annotations when they are
clear from the context.

Given a Horn constraint solving problem H, our method reduces the problem
into an inductive theorem proving problem as follows. For each goal clause in
goal(H) = {

∧
Ai ∧ φi ⇒ ⊥}mi=1, we check the judgment def (H); ∅;Ai∅◦;φi ` ⊥

is derivable by the inductive proof system. Here, each atom in Ai is initially
annotated with ∅ and ◦.

The inference rules for the judgment D;Γ ;A;φ ` h are defined in Figure 2.
The rule Induct selects an atom PM◦ (t̃) ∈ A and performs induction on the
derivation of the atom. This rule generates a fresh induction identifier α 6= ◦,
adds a new induction hypothesis (α . P (t̃), A, φ, h) to Γ , and replaces the atom
PM◦ (t̃) with the annotated one PMα (t̃) for remembering that the induction with
the identifier α is performed on it. The rule Unfold selects an atom PMα (t̃) ∈ A
and performs a case analysis on the last rule P (t̃) ⇐ φi ∧

∧
Ai used to derive

the atom. As the result, the goal is broken into m-subgoals if there are m rules
possibly used to derive the atom. The rule adds Ai

M∪{α}
◦ and φi respectively

to A and φ in the i-th subgoal, where AMα represents
{
PMα (t̃)

∣∣ P (t̃) ∈ A
}

. Note
here that each atom in Ai is annotated with M ∪ {α} because the derivation
of the atom Ai is a strict sub-derivation of that of the atom PMα (t̃) on which
the induction with the identifier α has been performed. If α = ◦, it is the case
that the rule Induct has never been applied to the atom PMα (t̃) yet. The rules
Apply⊥ and ApplyP select (g,A′, φ′, h) ∈ Γ , which represents a user-specified
lemma if g = • and an induction hypothesis otherwise, and try to add new
knowledge respectively to the φ- and the A-part of the current knowledge: the
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rules try to find an instantiation σ for the free term variables in (g,A′, φ′, h),
which are considered to be universally quantified, and then use σ(g,A′, φ′, h)
to obtain new knowledge. Contrary to the rule Unfold, the rule Fold tries
to use a definite clause P (t̃) ⇐ φ′ ∧

∧
A′ ∈ D from the body to the head

direction: Fold tries to find σ such that σ(φ′ ∧
∧
A′) is implied by the current

knowledge, and updates it with P (σt̃). This rule is useful when we check the
correctness of user specified lemmas. The rule Valid⊥ checks if the current
knowledge

∧
A ∧ φ implies a contradiction, while the rule ValidP checks if the

asserted proposition P (t̃) on the right-hand side of the judgment is implied by
the current knowledge. Here, we can use either an SMT solver or a (PDR-based)
Horn constraint solver. The former is much faster because the validity checking
problem µFD |=

∧
A ∧ φ⇒ ψ is approximated to |=

∧
φ⇒ ψ. By contrast, the

latter is much more precise because we reduce µFD |=
∧
A ∧ φ ⇒ ψ to Horn

constraint solving of D ∪ {⊥ ⇐
∧
A ∧ φ ∧ ¬ψ}. The soundness of the inductive

proof system is shown as follows.

Lemma 1 (Soundness). If D;Γ ;A;φ ` h is derivable, then there is k such that

µFD |= JΓ,AKk ∧
∧
A∧φ⇒ h holds. Here, JΓ,AKk represents the conjunction of

user-specified lemmas and induction hypotheses in Γ instantiated for the atoms
occurring in the k-times unfolding of A.

The correctness of our Horn constraint solving method follows immediately
from Lemma 1 and Corollary 1 as follows.

Theorem 1. Suppose that H is an HCS with goal(H) = {
∧
Ai ∧ φi ⇒ ⊥}mi=1

and def (H); ∅;Ai;φi ` ⊥ for all i = 1, . . . ,m. It then follows ρ |= H for some ρ.

Proof. By Lemma 1 and the fact that µFdef (H) |=
∧
Ai ⇒ J∅, AiKk, we get

µFdef (H) |=
∧
Ai ∧ φi ⇒ ⊥. We therefore have µFdef (H) |= goal(H). It then

follows that ρ |= H for some ρ by Corollary 1.

We can also prove the following relative completeness of our system with
respect to ordinary Horn constraint solving schemes that find solutions explicitly.

Lemma 2 (Relative Completeness). Suppose that ρ is a solution of a given
HCS H with goal(H) = {⊥ ⇐

∧
A ∧ φ}. Let Γ = {φP | P ∈ dom(ρ)} where

φP = (∀x̃. P (x̃) ⇒ ρ(P )(x̃)). Then, def (H);Γ ;A;φ ` ⊥ and def (H);Γ \
{φP } ;P (x̃);¬ρ(P )(x̃) ` ⊥ hold for all P ∈ dom(ρ).

Note that our method can exploit over-approximations of the predicates com-
puted by an existing Horn constraint solver as lemmas for checking the validity
of the goal clauses, even if the existing solver failed to find a complete solution.

5 Implementation and Preliminary Experiments

We have implemented a Horn constraint solver based on the proposed method
and integrated it, as a backend solver, with a refinement type-based verification
tool RCaml [54, 55, 57] for the OCaml functional language. Our solver generates
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a proof tree like the one shown in Figure 1 as a certificate if the given constraint
set is judged to have a solution, and a counterexample if the constraint set is
judged unsolvable. We adopted Z3 [22] and its PDR engine [32] respectively as
the underlying SMT and Horn constraint solvers of the inductive proof system.
In addition, our solver is extended to generate conjectures on the determinacy
of the predicates, which are then checked and used as lemmas. This extension is
particularly useful for verification of deterministic functions. The details of the
implementation are explained in the full version [58]. The web interface to the
verification tool as well as all the benchmark programs used in the experiments
reported below are available from http://www.cs.tsukuba.ac.jp/~uhiro/.

We have tested our tool on two benchmark sets. The first set is obtained from
the test suite for automated induction provided by the authors of the IsaPlanner
system [23]. The benchmark set consists of 85 (mostly) relational verification
problems of pure mathematical functions on algebraic data types (ADTs) such as
natural numbers, lists, and binary trees. Most of the problems cannot be verified
by using the previous Horn constraint solvers [27, 29, 33, 41, 48, 52, 55, 57] because
they support neither relational verification nor ADTs. The benchmark set has
also been used to evaluate the automated inductive theorem provers [18, 40, 46,
49]. The experiment results on this benchmark set are reported in Section 5.1.

To demonstrate advantages of our novel combination of Horn constraint solv-
ing with inductive theorem proving, we have prepared the second benchmark set
consisting of 30 assertion safety verification problems of (mostly relational) spec-
ifications of OCaml programs that use various advanced language features such
as partial (i.e., possibly non-terminating) functions, higher-order functions, ex-
ceptions, non-determinism, ADTs, and non-inductively defined data types (e.g.,
real numbers). The benchmark set also includes integer functions with complex
recursion and a verification problem concerning the equivalence of programs
written in different language paradigms. All the verification problems except 4
are relational ones where safe inductive invariants are not expressible in QF LIA,
and therefore not solvable by the previous Horn constraint solvers. These ver-
ification problems are naturally and automatically axiomatized by our method
using predicates defined by Horn constraints as the least interpretation. By con-
trast, these problems cannot be straightforwardly axiomatized by the previous
automated inductive theorem provers based on logics of pure total functions on
ADTs. The experiment results on this benchmark set are reported in Section 5.2.

5.1 Experiments on IsaPlanner benchmark set

We manually translated the IsaPlanner benchmarks into assertion safety verifi-
cation problems of OCaml programs, where we encoded natural numbers using
integer primitives, and defined lists and binary trees as ADTs in OCaml. RCaml
reduced the verification problems into Horn constraint solving problems using
the constraint generation method proposed in [55]. Our solver then automatically
solved 68 out of 85 verification problems without using lemmas, and 73 problems
with the extension for conjecturing the determinacy of predicates enabled. We
have manually analyzed the experiment results and found that 9 out of 12 failed
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problems require lemmas. The other 3 problems caused timeout of Z3. It was
because the rule application strategy implemented in our solver caused useless
detours in proofs and put heavier burden on Z3 than necessary.

The experiment results on the IsaPlanner benchmark set show that our Horn-
clause-based axiomatization of total recursive functions does not have significant
negative impact on the automation of induction; According to the comparison
in [49] of state-of-the-art automated inductive theorem provers, which are based
on logics of pure total functions over ADTs, IsaPlanner [23] proved 47 out of
the 85 IsaPlanner benchmarks, Dafny [40] proved 45, ACL2s [15] proved 74, and
Zeno [49] proved 82. The HipSpec [18] inductive prover and the SMT solver
CVC4 extended with induction [46] are reported to have proved 80. In contrast
to our Horn-clause-based method, these inductive theorem provers can be, and in
fact are directly applied to prove the conjectures in the benchmark set, because
the benchmark set contains only pure total functions over ADTs.

It is also worth noting that, all the inductive provers that achieved better
results than ours support automatic lemma discovery (beyond the determinacy),
in a stark contrast to our solver. For example, the above result (80 out of 85)
of CVC4 is obtained when they enable an automatic lemma discovery technique
proposed in [46] and use a different encoding (called dti in [46]) of natural
numbers than ours. When they disable the technique and use a similar encoding
to ours (called dtt in [46]), CVC4 is reported to have proved 64. Thus, we
believe that extending our method with automatic lemma discovery, which has
been comprehensively studied by the automated induction community [15, 18,
34, 37, 46, 49], further makes induction-based Horn constraint solving powerful.

5.2 Experiments on benchmark set that uses advanced features

Table 1 summarizes the experiment results on the benchmark set. The column
“specification” shows the verified specification and the column “kind” shows its
kind, where “equiv”, “assoc”, “comm”, “dist”, “mono”, “idem”, “nonint”, and
“nonrel” respectively represent the equivalence, associativity, commutativity,
distributivity, monotonicity, idempotency, non-interference, and non-relational.
The column “features” shows the language features used in the verification prob-
lem, where each character has the following meaning: H: higher-order functions,
E: exceptions, P: partial (i.e., possibly non-terminating) functions, D: demonic
non-determinism, R: real functions, I: integer functions with complex recur-
sion, N: nonlinear functions, C: procedures written in different programming
paradigms. The column “result” represents whether our tool succeeded 3or failed
7. The column “time” represents the elapsed time for verification in seconds.

Our tool successfully solved 28 out of 30 problems. Overall, the results show
that our tool can solve relational verification problems that use various advanced
language features, in a practical time with surprisingly few user-specified lem-
mas. We also want to emphasize that the problem ID5, which required a lemma,
is a relational verification problem involving two function calls with significantly
different control flows: one recurses on x and the other on y. Thus, the result
demonstrates an advantage of our induction-based method that it can exploit
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Table 1. Experiment results on programs that use various language features

ID specification kind features result time (sec.)

1 mult x y + a = mult acc x y a equiv P 3 0.378

2 mult x y = mult acc x y 0 equiv P 3† 0.803

3 mult (1 + x) y = y + mult x y equiv P 3 0.403

4 y ≥ 0⇒ mult x (1 + y) = x+ mult x y equiv P 3 0.426

5 mult x y = mult y x comm P 3‡ 0.389

6 mult (x+ y) z = mult x z + mult y z dist P 3 1.964

7 mult x (y + z) = mult x y + mult x z dist P 3 4.360

8 mult (mult x y) z = mult x (mult y z) assoc P 7 n/a

9 0 ≤ x1 ≤ x2 ∧ 0 ≤ y1 ≤ y2 ⇒ mult x1 y1 ≤ mult x2 y2 mono P 3 0.416

10 sum x+ a = sum acc x a equiv 3 0.576

11 sum x = x+ sum (x− 1) equiv 3 0.452

12 x ≤ y ⇒ sum x ≤ sum y mono 3 0.593

13 x ≥ 0⇒ sum x = sum down 0 x equiv P 3 0.444

14 x < 0⇒ sum x = sum up x 0 equiv P 3 0.530

15 sum down x y = sum up x y equiv P 7 n/a

16 sum x = apply sum x equiv H 3 0.430

17 mult x y = apply2 mult x y equiv H, P 3 0.416

18 repeat x (add x) a y = a+ mult x y equiv H, P 3 0.455

19 x ≤ 101⇒ mc91 x = 91 nonrel I 3 0.233

20 x ≥ 0 ∧ y ≥ 0⇒ ack x y > y nonrel I 3 0.316

21 x ≥ 0⇒ 2× sum x = x× (x+ 1) nonrel N 3 0.275

22 dyn sys 0. −→∗/ assert false nonrel R,N 3 0.189

23 flip mod y x = flip mod y (flip mod y x) idem P 3 13.290

24 noninter h1 l1 l2 l3 = noninter h2 l1 l2 l3 nonint P 3 1.203

25 try find opt p l = Some (find p l) with
Not Found→ find opt p l = None equiv H, E 3 1.065

26 try mem (find ((=) x) l) l with Not Found→ ¬(mem x l) equiv H, E 3 1.056

27 sum list l = fold left (+) 0 l equiv H 3 6.148

28 sum list l = fold right (+) l 0 equiv H 3 0.508

29 sum fun randpos n > 0 equiv H,D 3 0.319

30 mult x y = mult Ccode(x, y) equiv P, C 3 0.303

† A lemma Pmult acc(x, y, a, r)⇒ Pmult acc(x, y, a− x, r − x) is used
‡ A lemma Pmult(x, y, r)⇒ Pmult(x− 1, y, r − y) is used

Used a machine with Intel(R) Xeon(R) CPU (2.50 GHz, 16 GB of memory).

lemmas to fill the gap between function calls with different control flows. An-
other interesting result we obtain is that the distributivity ID7 of mult is solved
thanks to our combination of inductive theorem proving and PDR-based Horn
constraint solving, and just using either of them failed.

Our tool, however, failed to verify the associativity ID8 of mult and the equiv-
alence ID15 of sum down and sum up. ID8 requires two lemmas Pmult(x, y, r) ⇒
Pmult(y, x, r), which represents the commutativity of mult, and Pmult(x+y, z, r)⇒
∃s1, s2.(Pmult(x, z, s1)∧Pmult(y, z, s2)∧r = s1+s2). The latter lemma, however, is
not of the form currently supported by our proof system. In ID15, the functions
sum down and sum up use different recursion parameters (resp. y and x), and
requires Psum down(x, y, s) ∧ a < x ⇒ ∃s1, s2.(Psum down(a, y, s1) ∧ Psum down(a, x −
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1, s2) ∧ s = s1 − s2) and Psum up(x, y, s) ∧ a < x ⇒ ∃s1, s2.(Psum down(a, y, s1) ∧
Psum down(a, x− 1, s2)∧ s = s1 − s2). These lemmas are provable by induction on
the derivation of Psum down(x, y, s) and Psum up(x, y, s), respectively. However, as
in the case of ID8, our system does not support the form of the lemmas. Future
work thus includes an extension to more general form of lemmas and judgments.

6 Related Work

Automated inductive theorem proving techniques and tools have long been stud-
ied, for example and to name a few: the Boyer-Moore theorem provers [37]
ACL2s [15], rewriting induction provers [45] SPIKE [9], proof planners CLAM [14,
34] and IsaPlanner [23], and SMT-based induction provers Leon [50], Dafny [40],
Zeno [49], HipSpec [18], and CVC4 extended with induction [46]. These auto-
mated provers are mostly based on logics of pure total functions over inductive
data types. Consequently, users of these provers are required to axiomatize ad-
vanced language features and specifications using pure total functions as neces-
sary. The axiomatization process, however, is non-trivial, error-prone, and pos-
sibly causes a negative effect on the automation of induction. For example, if a
partial function (e.g., f(x) = f(x) + 1) is input, Zeno goes into an infinite loop
and CVC4 is unsound (unless control literals proposed in [50] are used in the ax-
iomatization). We have also confirmed that CVC4 failed to verify complex integer
functions like the McCarthy 91 and the Ackermann functions (resp. ID19 and
ID20 in Table 1). By contrast, our method supports advanced language features
and specifications via Horn-clause encoding of their semantics based on program
logics. Compared to cyclic proofs [11] and widely-supported structural induction
on derivation trees, our proof system uses induction explicitly by maintaining a
set of induction hypotheses and annotating atoms with induction identifiers so
that we can apply the hypotheses soundly. This enables our system to introduce
multiple induction hypotheses within a single proof path from dynamically gener-
ated formulas. Another advantage is the support of user-supplied lemmas, which
are useful in relational verification involving function calls with different control
flows (e.g., ID5). To address entailment checking problems in separation logic,
researchers have recently proposed induction-based methods [12, 13, 16, 39, 51] to
go beyond the popular unfold-and-match paradigm (see e.g. [44]). It seems fruit-
ful to incorporate their techniques into our approach to Horn constraint solving
to enable verification of heap-manipulating higher-order functional programs.

To aid verification of relational specifications of functional programs, Giesl [25]
proposed context-moving transformations and Asada et al. [2] proposed a kind
of tupling transformation. SymDiff [38] is a transformation-based tool built
on top of Boogie [3] for equivalence verification of imperative programs. Self-
composition [5] is a program transformation technique to reduce k-safety [19,
53] verification into ordinary safety verification, and has been applied to non-
interference [4, 5, 53, 56] and regression verification [24] of imperative programs.
These transformations are useful for some patterns of relational verification prob-
lems, which are, however, less flexible in some cases than our approach based on
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a more general principle of induction. For example, Asada et al.’s transformation
enables verification of the functional equivalence of recursive functions with the
same recursion pattern (e.g., ID1), but does not help verification of the commu-
tativity of mult (ID5). Because most of the transformations are designed for a
particular target language, they cannot be applied to aid relational verification
across programs written in different paradigms (e.g., ID30). Concurrently to our
work, De Angelis et al. [1] recently proposed a predicate pairing transforma-
tion in the setting of Horn constraints for relational verification of imperative
programs. We tested our tool with some of their benchmark constraint solving
problems. There were some problems our tool successfully solved but their tool
VeriMAP failed, and vice versa: only our tool solved “barthe2” in MON cat-
egory (if its goal clause is generalized) and “product” in INJ category. We also
confirmed that VeriMAP failed to solve our benchmark ID5 involving function
calls with different control flows. On the contrary, VeriMAP solved ID15.

There have also been proposed program logics that allow precise relational
verification [6, 7, 17, 26]. In particular, the relational refinement type system pro-
posed in [6] can be applied to differential privacy and other relational security
verification problems of higher-order functional programs. This approach, how-
ever, is not automated.

7 Conclusion and Future Work

We have proposed a novel Horn constraint solving method based on an inductive
proof system and a PDR and SMT-based technique to automate proof search
in the system. We have shown that our method can solve Horn clause con-
straints obtained from relational verification problems that were not possible
with the previous methods based on Craig interpolation, abstract interpreta-
tion, and PDR. Furthermore, our novel combination of Horn clause constraints
with inductive theorem proving enabled our method to automatically axioma-
tize and verify relational specifications of programs that use various advanced
language features.

As a future work, we are planning to extend our inductive proof system to
support more general form of lemmas and judgments. We are also planning to
extend our proof search method to support automatic lemma discovery as in
the state-of-the-art inductive theorem provers [15, 18, 46, 49]. To aid users to
better understand verification results of our method, it is important to generate
a symbolic representation of a solution of the original Horn constraint set from
the found inductive proof. It is however often the case that a solution of Horn
constraint sets that require relational analysis (e.g., Hmult) is not expressible
by a formula of the underlying logic. It therefore seems fruitful to generate a
symbolic representation of mutual summaries in the sense of [31] across multiple
predicates (e.g., P,Q of Hmult).
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