
Propositional Dynamic Logic for
Higher-Order Functional Programs

Yuki Satake and Hiroshi Unno

University of Tsukuba
{satake,uhiro}@logic.cs.tsukuba.ac.jp

Abstract. We present an extension of propositional dynamic logic called
HOT-PDL for specifying temporal properties of higher-order functional
programs. The semantics of HOT-PDL is defined over Higher-Order
Traces (HOTs) that model execution traces of higher-order programs. A
HOT is a sequence of events such as function calls and returns, equipped
with two kinds of pointers inspired by the notion of justification pointers
from game semantics: one for capturing the correspondence between call
and return events, and the other for capturing higher-order control flow
involving a function that is passed to or returned by a higher-order func-
tion. To allow traversal of the new kinds of pointers, HOT-PDL extends
PDL with new path expressions. The extension enables HOT-PDL to
specify interesting properties of higher-order programs, including stack-
based access control properties and those definable using dependent re-
finement types. We show that HOT-PDL model checking of higher-order
functional programs over bounded integers is decidable via a reduction
to modal µ-calculus model checking of higher-order recursion schemes.

1 Introduction

Temporal verification of higher-order programs has been an emerging research
topic [12, 14, 18, 22–24, 26, 27, 31, 34]. The specification languages used there are
(ω-)regular word languages (that subsume LTL) [12, 18, 26] and modal µ-calculus
(that subsumes CTL) [14, 24, 31], which are interpreted over sequences or trees
consisting of events. (Extended) dependent refinement types are also used to
specify temporal [23, 27] and branching properties [34]. These specification lan-
guages, however, cannot sufficiently express specifications of control flow involv-
ing (higher-order) functions. For example, let us consider the following simple
higher-order program Dtw (in OCaml syntax):

let tw f x = f (f x) in let inc x = x + 1 in let r = * in tw inc r

Here, ∗ denotes a non-deterministic integer, and the higher-order function tw :
(int → int) → int → int applies its function argument f : int → int to the
integer argument x twice. For example, for r = 0, the program Dtw exhibits the
following call-by-value reduction sequence (with the redexes underlined).

tw inc 0 −→ (λx.inc (inc x)) 0 −→ inc (inc 0) −→∗ inc 1 −→∗ 2

Example properties of the program Dtw that cannot be expressed by the previous
specification languages are:

Prop.1 If the function returned by a partial application of tw to some function
(e.g., λx.inc (inc x) in the above sequence) is called with some integer n,
the function argument passed to tw (i.e., inc) is eventually called with n.

Prop.2 If the function returned by a partial application of tw to some function
is never called, then the function argument passed to tw is never called.

To remedy the limitation, we introduce a notion of Higher-Order Trace
(HOT) that captures the control flow of higher-order programs and propose
a dynamic logic over HOTs called Higher-Order Trace Propositional Dynamic
Logic (HOT-PDL) for specifying temporal properties of higher-order programs.

Intuitively, a HOT models a program execution trace which is a possibly
infinite sequence of events such as function calls and returns with information
about actual arguments and return values. Furthermore, HOTs are equipped
with two kinds of pointers to enable precise specification of control flow: one
for capturing the correspondence between call and return events, and the other
for capturing higher-order control flow involving a function that is passed to or
returned by a higher-order function. The two kinds of pointers are inspired by
the notion of justification pointers from the game semantics of PCF [1, 2, 19, 20].

For the higher-order program Dtw, for r = 0, we get the following HOT Gtw:
1

call (tw, •) ret (tw, •) call (• , 0)call (• , 0) · · · ret (• , 1)call (• , 1) · · · ret (• , 2) ret(•, 2)

CC

CC

RCCR

CR

CR CR

Here, • represents some function value, call(f, v) represents a call event of the
function f with the argument v, and ret(f, v) represents a return event of the
function f with the return value v. This trace corresponds to the previous reduc-
tion sequence: the call events call(tw, •), call(•, 0), call(•, 0), and call(•, 1) that
occur in the trace in this order correspond respectively to the redexes tw inc,
(λx.inc (inc x)) 0, inc 0, and inc 1. The three important points here are that
(1) the call events have pointers labeled with CR to the corresponding return
events ret(tw, •), ret(•, 2), ret(•, 1), and ret(•, 2), (2) the call event call(tw, •)
has two pointers labeled with CC, where • represents the function argument f
of tw and the pointed call events call(•, 0) and call(•, 1) represent the two calls
to f in tw, and (3) the return event ret(tw, •) has a pointer labeled with RC,
where • represents the partially-applied function λx.inc (inc x) and the pointed
call event call(•, 0) represents the call to the function.

To allow traversal of the pointers, HOT-PDL extends propositional dynamic
logic with new path expressions (see Section 3 for details). The extension enables

1 The symbol · · · indicates the omission of a subsequence. The two omitted subse-

quences are call(inc, 0) ret(inc, 1)

CR

and call(inc, 1) ret(inc, 2)

CR

in this order.

HOT-PDL to specify interesting properties of higher-order programs, including
stack-based access control properties and those definable using dependent re-
finement types. Here, stack-based access control is a security mechanism imple-
mented in runtimes like JVM for ensuring secure execution of programs that
have components with different levels of trust: the mechanism ensures that a
security-critical function (e.g., file access) is invoked only if all the (immediate
and indirect) callers in the current call stack are trusted, or one of the callers is
a privileged function and its callees are all trusted. We introduce a new variant
of stack-based access control properties for higher-order programs, formalized in
HOT-PDL from the point of view of interactions among callers and callees.

Compared to the previous specification languages with respect to the expres-
siveness, HOT-PDL subsumes (ω-)regular languages because PDL interpreted
over words is already as expressive as them [15]. Temporal logics over nested
words [6] such as CaRet [5] and NWTL [4] can capture the correspondence be-
tween call and return events (i.e., pointers labeled with CR) but cannot capture
higher-order control flow (i.e., pointers labeled with CC and RC). Branching
properties (expressible in, e.g., CTL), however, are out of the scope of the present
paper, and such an extension of HOT-PDL remains an interesting future direc-
tion. Dependent refinement types are often used to specify properties of higher-
order programs for partial- and total-correctness verification [29, 33, 39, 40]. For
example, the following properties of the program Dtw are expressible:

Prop.3 The function yielded by applying tw to a strictly increasing function is
strictly increasing.

Prop.4 The function yielded by applying tw to a terminating function is termi-
nating.

This paper shows that HOT-PDL can encode such dependent refinement types.
We also study HOT-PDL model checking: given a higher-order program D

over bounded integers and a HOT-PDL formula ϕ, the problem is to decide
whether ϕ is satisfied by all the execution traces of D modeled as HOTs. We
show the decidability of HOT-PDL model checking via a reduction to modal
µ-calculus model checking of higher-order recursion schemes [21, 28].

The rest of the paper is organized as follows. Section 2 formalizes HOTs
and explains how to use them to model execution traces of higher-order func-
tional programs. Section 3 defines the syntax and the semantics of HOT-PDL
and Section 4 shows how to encode stack-based access control properties and
dependent refinement types in HOT-PDL. Section 5 discusses HOT-PDL model
checking. We compare HOT-PDL with related work in Section 6 and conclude
the paper with remarks on future work in Section 7. Omitted proofs are given
in the extended version of this paper [30].

2 Higher-Order Traces

This section defines the notion of Higher-Order Trace (HOT), which is used to
model execution traces of higher-order programs. To this end, we first define
(Σ,Γ)-labeled directed graphs and DAGs.

Definition 1 ((Σ,Γ)-labeled directed graphs). Let Σ be a finite set of node
labels and Γ be a finite set of edge labels. A (Σ,Γ)-labeled directed graph is
defined as a triple (V, λ, ν), where V is a countable set of nodes, λ : V → Σ is a
node labeling function, and ν : V ×V → 2Γ is an edge labeling function. We call
a (Σ,Γ)-labeled directed graph that has no directed cycle (Σ,Γ)-labeled DAG.

Note that an edge may have multiple labels. For nodes u, u′ ∈ V , ν(u, u′) = ∅
means that there is no edge from u to u′. We use σ and γ as meta-variables
ranging respectively over Σ and Γ . We write Vσ for the set {u ∈ V | σ = λ(u)}
of all the nodes labeled with σ. We also write VΣ for the set

∪
σ∈Σ Vσ. For

u, u′ ∈ V , we write u ≺γ u′ if γ ∈ ν(u, u′). A binary relation ≺+
γ (resp. ≺∗

γ)
denotes the transitive (resp. reflexive and transitive) closure of ≺γ .

Definition 2 (HOTs). A HOT is a (Σ,Γ)-DAG, G = (V, λ, ν) that satisfies:

1. V ̸= ∅, Γ = {N,CR,CC,RC}, Σ = Σcall ⊎Σret, and Σcall = ΣT
call ⊎ΣA

call
2. ≺CR⊆ (VΣcall

×VΣret), ≺CC⊆ (VΣcall
×VΣA

call
), and ≺RC⊆ (VΣret ×VΣA

call
).

3. The elements of V are linearly ordered by ≺N

4. If u ≺CR u′ and u ≺CR u′′, then u′ = u′′.
5. For all u′ ∈ VΣret , there uniquely exists u ∈ VΣcall

such that u ≺CR u′ holds.
6. For all u′ ∈ VΣA

call
, there uniquely exists u ∈ V such that u ≺CC u′ or

u ≺RC u′ holds.

Intuitively, Σcall (resp. Σret) represents a set of call (resp. return) events.
ΣT

call (resp. ΣA
call) represents a set of call events of top-level functions (resp.

functions that are returned by or passed to (higher-order) functions). u ≺N u′

means that u′ is the next event of u in the trace. u ≺CR u′ indicates that u′ is
the return event corresponding to the call event u. u ≺CC u′ represents that u′ is
a call event of the function argument passed at the call event u. u ≺RC u′ means
that u′ is a call event of the partially-applied function returned at the return
event u. We call the minimum node of a HOTG with respect to≺N the root node,
denoted by 0G. For HOTs G1 and G2, we say G1 is a prefix of G2 and write G1 ⪯
G2, if G1 is a sub-graph of G2 such that 0G1

= 0G2
. Note that the HOT Gtw in

Section 1, whereN-labeled edges are omitted, satisfies the above conditions, with
{call(tw, •), call(inc, 0), call(inc, 1)} ⊆ ΣT

call, {call(•, 0), call(•, 1)} ⊆ ΣA
call,

and {ret(tw, •), ret(inc, 1), ret(inc, 2), ret(•, 1), ret(•, 2)} ⊆ Σret.

2.1 Trace Semantics for Higher-Order Functional Programs

We now formalize our target language L, which is an ML-like typed call-by-value
higher-order functional language. The syntax is defined by

(programs) D ::= {f1 7→ λx.e1, . . . , fm 7→ λx.em}
(expressions) e ::= x | f | λx.e | e1 e2 | n | op(e1, e2) | ifz e1 e2 e3

(values) v ::= f | λx.e | n
(types) τ ::= int | τ1 → τ2

Here, x and f are meta-variables ranging respectively over term variables and
names of top-level functions. The meta-variable n ranges over the set of bounded

Domains

(configurations) C ::= (I, E[e])
(eval. contexts) E ::= [] | E e | v E | op(E, e) | op(v,E) | ifz E e1 e2 | ret(h, i, E)

(interfaces) I ::=
{
h1

i17→ v1, . . . , hm
im7→ vm

}
(handles) h ::= n | f | ⌊h⌋i | ⌈h⌉i
(events) α ::= call(h1, i, h2) | ret(h1, i, h2)

Derivation Rules

(I, E[(λx.e) v])
ϵ−→ (I, E[[v/x]e]) (App)

n = [[op]](n1, n2)

(I, E[op(n1, n2)])
ϵ−→ (I, E[n])

(Op)

(I, E[ifz 0 e1 e2])
ϵ−→ (I, E[e1]) (IfZ)

n ̸= 0

(I, E[ifz n e1 e2])
ϵ−→ (I, E[e2])

(IfN)

C
ϵ
=⇒ C (Refl)

C
ϖ1−−→ C′′ C′′ ϖ2=⇒ C′

C
ϖ1·ϖ2====⇒ C′

(Tran)

C
ϖ−→ C′ C′ π

=⇒ ⊥

C
ϖ·π
==⇒ ⊥

(Tranω)

(h
i7→ v) ∈ I α = call(h, i, n)

I ′ = I
{
h

i+17→ v
}

(I, E[h n])
α−→ (I ′, E[ret(h, i, v n)])

(CInt)

v is a function

(h
i7→ v′) ∈ I α = call(h, i, ⌊h⌋i)
I ′ = I

{
h

i+17→ v′, ⌊h⌋i
07→ v

}
(I, E[h v])

α−→ (I ′, E[ret(h, i, v′ ⌊h⌋i)])
(CFun)

α = ret(h, i, n)

(I, E[ret(h, i, n)])
α−→ (I, E[n])

(RInt)

v is a function α = ret(h, i, ⌈h⌉i)
I ′ = I

{
⌈h⌉i

07→ v
}

(I, E[ret(h, i, v)])
α−→ (I ′, E[⌈h⌉i])

(RFun)

Fig. 1. Labeled Transition Relations (
ϖ
=⇒) and (

π
=⇒) for L

integers Zb = {nmin, · · · , nmax} ⊂ Z. For simplicity of presentation, L has the
type int of bounded integers as the only base type. op represents binary op-
erators such as +, −, ×, =, and >. The binary relations = and > return an
integer that encodes a boolean value (e.g., 1 for true and 0 for false). A pro-
gram D maps each top-level function name fi to its definition λx.ei. We write
dom(D) for {f1, . . . , fm}. We assume that D has the main function main of the
type int → int. The functions in D can be mutually recursive. Expressions
e comprise variables x, function names f , lambda abstractions λx.e, function
applications e1 e2, bounded integers n, binary operations op(v1, v2), and con-
ditional branches ifz e1 e2 e3. We assume that expressions are simply-typed.
As usual, the simple type system guarantees that an evaluation of a typed ex-
pression never causes a runtime type mismatch like 1 + λx.x. An expression
ifz e1 e2 e3 evaluates to e2 (resp. e3) if e1 evaluates to 0 (resp. a non-zero
integer). For example, the program Dtw in Section 1 is defined in L as follows:

Dtw
△
= {tw 7→ λf.λx.f (f x), inc 7→ λx.x+ 1, main 7→ λr.tw inc r}

(I1, main 0) I1
△
=

tw

07→ etw,

inc
07→ λx.x+ 1,

main
07→ λr.tw inc r

call(main,0,0)−−−−−−−−→ (I2, Emain[(λr.tw inc r) 0]) I2

△
= I1

{
main

17→ λr.tw inc r
}

−→ (I2, Emain[tw inc 0])
call(tw,0,⌊tw⌋0)−−−−−−−−−−→ (I3, Etw[(λf.λx.f (f x)) ⌊tw⌋0]) I3

△
= I2

{
tw

17→ etw, ⌊tw⌋0
07→ inc

}
−→ (I3, Etw[λx. ⌊tw⌋0 (⌊tw⌋0 x)])

ret(tw,0,⌈tw⌉0)−−−−−−−−−→ (I4, Emain[⌈tw⌉0 0]) I4
△
= I3

{
⌈tw⌉0

07→ e′tw

}
call(⌈tw⌉0,0,0)−−−−−−−−−→ (I5, E⌈tw⌉0 [(λx. ⌊tw⌋0 (⌊tw⌋0 x)) 0]) I5

△
= I4

{
⌈tw⌉0

17→ e′tw

}
−→ (I5, E⌈tw⌉0 [⌊tw⌋0 (⌊tw⌋0 0)])

call(⌊tw⌋0,0,0)−−−−−−−−−→ (I6, E⌊tw⌋0 [inc 0]) I6
△
= I5

{
⌊tw⌋0

17→ inc
}

call(inc,0,0)−−−−−−−−→ (I7, Einc[(λx.x+ 1) 0]) I7
△
= I6

{
inc

17→ λx.x+ 1
}

=⇒ (I7, Einc[1])
ret(inc,0,1)·ret(⌊tw⌋0,0,1)================⇒ (I7, E⌈tw⌉0 [⌊tw⌋0 1])
call(⌊tw⌋0,1,1)−−−−−−−−−→ (I8, E⌊tw⌋′0 [inc 1]) I8

△
= I7

{
⌊tw⌋0

27→ inc
}

call(inc,1,1)−−−−−−−−→ (I9, Einc′ [(λx.x+ 1) 1]) I9
△
= I8

{
inc

27→ λx.x+ 1
}

=⇒ (I9, Einc′ [2])
ret(inc,1,2)·ret(⌊tw⌋0,1,2)·ret(⌈tw⌉0,0,2)·ret(main,0,2)==================================⇒ (I9, 2)

etw
△
= λf.λx.f (f x)

Emain
△
= ret(main, 0, [])

E⌈tw⌉0
△
= Emain[ret(⌈tw⌉0 , 0, [])]

Einc
△
= E⌊tw⌋0 [ret(inc, 0, [])]

Einc′
△
= E⌊tw⌋′0 [ret(inc, 1, [])]

e′tw
△
= λx. ⌊tw⌋0 (⌊tw⌋0 x)

Etw
△
= Emain[ret(tw, 0, []) 0]

E⌊tw⌋0
△
= E⌈tw⌉0 [⌊tw⌋0 ret(⌊tw⌋0 , 0, [])]

E⌊tw⌋′0
△
= E⌈tw⌉0 [ret(⌊tw⌋0 , 1, [])]

Fig. 2. Example Trace of Dtw

We now introduce a trace semantics of the language L, which will be used
in Section 5 to define our model checking problems of higher-order programs.
In the trace semantics, a program execution trace is represented by a sequence
of function call and return events without an explicit representation of pointers
but with enough information to construct them. We will explain how to model
traces of L as HOTs by presenting a translation.

The trace semantics [[D]] of the language L is defined as [[D]]fin ∪ [[D]]inf

where [[D]]fin =
{
ϖ

∣∣∣ (I, main n) ϖ
=⇒ C

}
and [[D]]inf =

{
π
∣∣∣ (I, main n) π

=⇒ ⊥
}

are respectively the sets of finite and infinite execution traces obtained by eval-
uating main n for some integer n using trace-labeled multi-step reduction re-
lations

ϖ
=⇒ and

π
=⇒, which are presented in Figure 1, under the program I ={

f
07→ v

∣∣∣(f 7→ v) ∈ D
}

annotated with the number of calls to each function oc-

curred so far (i.e., initialized to 0). There, we use ϖ (resp. π) as a meta-variable
ranging over finite sequences α1 · · ·αm (resp. infinite sequences α1 · α2 · · ·) of
events αi. We write ϵ for the empty sequence, ϖ1 ·ϖ2 for the concatenation of
the sequences ϖ1 and ϖ2, and |ϖ| for the length of ϖ. An event α is either of
the form call(h1, i, h2) or ret(h1, i, h2), where a handle h represents a top-level
function or a runtime value exchanged among functions. An event call(h1, i, h2)
represents the (i + 1)th call to the function h1 with the argument h2. On the
other hand, an event ret(h1, i, h2) represents the return of the (i + 1)th call to
the function h1 with the return value h2. We thus equip call and return events
of h1 with the information about (1) the number i of the calls to h1 occurred
so far and (2) the runtime value h2 passed to or returned by h1, so that we can
construct pointers (see Definition 3 for details). Note here that handles h are
also equipped with meta-information necessary for constructing pointers. More
specifically, h is any of the following: a bounded integer n, a top-level function
name f ∈ dom(D), the special identifier ⌊h⌋i for the function argument of the
(i+1)th call to the higher-order function h, or the special identifier ⌈h⌉i for the
partially-applied function returned by the (i+1)th call to h. We thus use handles
to track for each function value where it is constructed and how many times it
is called. We shall assume that the syntax of expressions e and values v is also
extended with handles h. As we have seen, the finite traces [[D]]fin of a program
D are collected using the terminating trace-labeled multi-step reduction relation
ϖ
=⇒ on configurations. A configuration (I, E[e]) is a pair of an interface I and an
expression E[e] consisting of an evaluation context E and a sub-expression e
under evaluation. A special evaluation context ret(h, i, E) represents the calling
context of the (i+1)th call to h that waits for the return value computed by E.

An interface I is defined to be
{
h1

i17→ v1, . . . , hm
im7→ vm

}
that maps each func-

tion handle hj to its definition vj , where ij records the number of calls to the

function hj occurred so far. In the derivation rules for
ϖ−→, [[op]] represents the

integer function denoted by op, and I
{
h

i7→ v
}
represents the interface obtained

from I by adding (or replacing existing assignment to h with) the assignment

h
i7→ v. In the rule CInt (resp. RInt) for function calls (resp. returns) with an

integer n, the reduction relation is labeled with call(h, i, n) (resp. ret(h, i, n)).
By contrast, in the rule CFun (resp. RFun) for function calls (resp. returns)
with a function value v, the special identifier ⌊h⌋i (resp. ⌈h⌉i) for v is used in
the label call(h, i, ⌊h⌋i) (resp. ret(h, i, ⌈h⌉i)) of the reduction relation, and v in
the expression is replaced by the identifier. For example, as shown in Figure 2,
the following finite trace ϖtw is generated from the program Dtw:

call(main, 0, 0) · call(tw, 0, ⌊tw⌋0) · ret(tw, 0, ⌈tw⌉0) · call(⌈tw⌉0 , 0, 0)·
call(⌊tw⌋0 , 0, 0) · call(inc, 0, 0) · ret(inc, 0, 1) · ret(⌊tw⌋0 , 0, 1) · call(⌊tw⌋0 , 1, 1)·
call(inc, 1, 1) · ret(inc, 1, 2) · ret(⌊tw⌋0 , 1, 2) · ret(⌈tw⌉0 , 0, 2) · ret(main, 0, 2)

Similarly, the infinite traces [[D]]inf of a program D are collected using the non-

terminating trace-labeled reduction relation C
π
=⇒ ⊥ on configurations. Intu-

itively, C
π
=⇒ ⊥ means that an execution from the configuration C diverges,

producing an infinite event sequence π. In the rule Tranω, the double horizon-
tal line represents that the rule is interpreted co-inductively.

We now define the translation from traces [[D]]fin to HOTs with ΣT
call =

{call(f, n), call(f, •) | f ∈ dom(D), n ∈ Zb},ΣA
call = {call(•, n), call(•, •) | n ∈ Zb},

and Σret = {ret(f, n), ret(f, •), ret(•, n), ret(•, •) | f ∈ dom(D), n ∈ Zb}. We
shall write Σ(D) for ΣT

call ∪ ΣA
call ∪ Σret. Note that Σ(D) is finite because

dom(D) and Zb are finite. We write |α| for the element of Σ(D) obtained from
the event α by dropping the second argument and replacing ⌊h⌋i and ⌈h⌉i by •.
For example, we get |call(tw, 0, ⌊tw⌋0)| = call(tw, •).

Definition 3 (Finite Traces to HOTs). Given a finite trace ϖ = α1 · · ·αm ∈
[[D]]fin with m > 0, the corresponding HOT Gϖ = (Vϖ, λϖ, νϖ) is defined by:

– Vϖ = {1, . . . ,m},
– λϖ = {j 7→ |αj | | j ∈ Vϖ}, and
– νϖ is the smallest relation that satisfies: for any j1, j2 ∈ Vϖ,

• j1 ≺N j2 if j2 = j1 + 1,
• j1 ≺CR j2 if ∃h, h′, h′′, i. αj1 = call(h, i, h′) ∧ αj2 = ret(h, i, h′′),
• j1 ≺CC j2 if ∃h, h′, h′′, i, i′. αj1 = call(h′, i, h) ∧ αj2 = call(h, i′, h′′),
• j1 ≺RC j2 if ∃h, h′, h′′, i, i′. αj1 = ret(h′, i, h) ∧ αj2 = call(h, i′, h′′).

For example, the HOT Gtw in Section 1 is translated from the finite trace
ϖtw defined above (with the call and return events of main omitted).

For an infinite trace π = α1 · α2 · · · ∈ [[D]]inf, the HOT Gπ = (Vπ, λπ, νπ) is
defined similarly for Vπ = {j ∈ N | j ≥ 1} and λπ = {j 7→ |αj | | j ∈ Vπ}.

3 Propositional Dynamic Logic over Higher-Order Traces

This section presents HOT-PDL, a propositional dynamic logic (PDL) defined
over HOTs (see [16] for a general exposition of PDL). HOT-PDL extends path
expressions of PDL with →ret and →call for traversing edges of HOTs labeled
respectively with CR and CC/RC. The syntax is defined by:

(formulas) ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | [π]ϕ
(path expressions) π ::= → | →call | →ret | {ϕ}? | π1 · π2 | π1 + π2 | π∗

Here, p is a meta-variable ranging over atomic propositions AP. Let ⊤ and ⊥
denote tautology and contradiction, respectively. Path expressions π are defined
using a syntax based on regular expressions: we have concatenation π1 · π2,
alternation π1+π2, and Kleene star π∗. We write π+ for π ·π∗. Path expressions
→, →ret, and →call are for traversing edges labeled with N, CR, and CC or
RC, respectively. A path expression {ϕ}? is for testing if ϕ holds at the current
node. A formula [π]ϕ means that ϕ always holds if one moves along any path
represented by the path expression π. The dual formula ⟨π⟩ϕ is defined by
¬ [π]¬ϕ and means that there is a path represented by π such that ϕ holds if
one moves along the path. ⟨π⟩ and [π] have the same priority as ¬.

1

2

3

4

5

6

7

8

CRCR

CR

CR

9

10

CR

CR CR

11

12

13

14

FF

F

F

F

F

1 : call(main, 0), 2 : call(tw, •), 3 : ret(tw, •), 4 : call(•, 0), 5 : call(•, 0),
6 : call(inc, 0), 7 : ret(inc, 1), 8 : ret(•, 1), 9 : call(•, 1), 10 : call(inc, 1),

11 : ret(inc, 2), 12 : ret(•, 2), 13 : ret(•, 2), 14 : ret(main, 2)

Fig. 3. The pairs of nodes in Gtw related by CR or ↗F

We now define the semantics of HOT-PDL. For a given HOT G = (V, λ, ν)
with Σ = AP, λ(u) represents the atomic proposition satisfied at the node
u ∈ V . We define the semantics [[ϕ]]G of a formula ϕ as the set of all nodes u ∈ V
where ϕ is satisfied, and the semantics [[π]]G of a path expression π as the set of
all pairs (u1, u2) ∈ V × V such that one can move along π from u1 to u2.

[[p]]G = {u ∈ V | p = λ(u)} [[ϕ1 ∧ ϕ2]]G = [[ϕ1]]G ∩ [[ϕ2]]G [[¬ϕ]]G = V \ [[ϕ]]G
[[[π]ϕ]]G = {u ∈ V | ∀u′. ((u, u′) ∈ [[π]]G ⇒ u′ ∈ [[ϕ]]G)}
[[→]]G = ≺N [[→ret]]G = ≺CR [[→call]]G = ≺CC ∪ ≺RC

[[{ϕ}?]]G = {(u, u) ∈ V × V | u ∈ [[ϕ]]G}
[[π1 · π2]]G = {(u1, u3) ∈ V × V | ∃u2 ∈ V. (u1, u2) ∈ [[π1]]G ∧ (u2, u3) ∈ [[π2]]G}

[[π1 + π2]]G = [[π1]]G ∪ [[π2]]G [[π∗]]G =
∪

m≥0 [[π]]
m
G

Here, for a binary relation R, Rm denotes the m-th power of R. Note that this
semantics can interpret a given HOT-PDL formula over both finite and infinite
HOTs. [[p]]G consists of all nodes labeled by p. [[[π]ϕ]]G contains all nodes from
which we always reach to a node in [[ϕ]]G if we take a path represented by π. [[→]]G,
[[→ret]]G, and [[→call]]G contain the pairs of nodes linked by an edge labeled byN,
CR, andCC orRC, respectively. We write G |= ϕ if 0G ∈ [[ϕ]]G. For example, let
us consider the HOT Gtw and AP = Σ(Dtw). Then, [[⟨→⟩ ret(tw, •)]]Gtw

consists
of the node labeled by call(tw, •). [[⟨→ret⟩ ret(•, 2)]]Gtw

consists of a node labeled
by call(•, 0) and the node labeled by call(•, 1). [[⟨→call⟩ call(•, 0)]]Gtw

consists
of the two nodes respectively labeled by call(tw, •) and ret(tw, •). The example
properties of Dtw discussed in Section 1 can be expressed as follows:

Prop.1: [→∗]
∧

x∈Zb
((call(tw, •) ∧ ⟨→ret · →call⟩ call(•, x)) ⇒ ⟨→call⟩ call(•, x))

Prop.2: [→∗] ((call(tw, •) ∧ ¬ ⟨→ret · →call⟩⊤) ⇒ ¬⟨→call⟩⊤)

RC

CC

1

2

3

4

5

6

7

8

CR
CR

CR

9

10
CR

CR

CR

11

12

13

14

CR
H H H

CC

1 : call(main, 0), 2 : call(tw, •), 3 : ret(tw, •), 4 : call(•, 0), 5 : call(•, 0),
6 : call(inc, 0), 7 : ret(inc, 1), 8 : ret(•, 1), 9 : call(•, 1), 10 : call(inc, 1),

11 : ret(inc, 2), 12 : ret(•, 2), 13 : ret(•, 2), 14 : ret(main, 2)

Fig. 4. The pairs of nodes in Gtw related by CR, CC, RC, or ↗H

Here,
∧

x∈Zb
ϕ abbreviates [nmin/x]ϕ ∧ · · · ∧ [nmax/x]ϕ.

In Section 4, we show further examples that express interesting properties
of higher-order programs, including stack based access control properties and
those definable using dependent refinement types. We here prepare notations
used there. First, we overload the symbols Σcall, Σret, and Σ

T
call to denote the

path expressions {
∨
Σcall}?, {

∨
Σret}?, and

{∨
ΣT

call

}
?, respectively. We write

→F for the path expression →ret· →, which is used to move from a call event to
the next event of the caller (by skipping to the next event of the corresponding
return event). We also write ↗F for the path expression Σcall· → · →∗

F ·Σcall,
which is used to move from a call event to any call event invoked by the callee.
Figure 3 illustrates the pairs of nodes in Gtw related by ↗F . To capture control
flow of higher-order programs, where function callers and callees may exchange
functions as values, we need to use CC- and RC-labeled edges. For example, an
event raised by the function argument farg of a higher-order function f could
be regarded as an event of the caller g of f , because farg is constructed by
g. Similarly, an event raised by the (partially-applied) function fret returned
by a function f could be regarded as an event of f . To formalize the idea, we
introduce variants →H and ↗H of →F and ↗F with higher-order control flow
taken into consideration: →H denotes (→ret· →) + (→call· →) and ↗F denotes
ΣT

call· → · →∗
H ·ΣT

call. Note that the source and the target of ↗H are restricted
to call events of top-level functions. Figure 4 illustrates the pairs of nodes in Gtw

related by ↗H , where nodes labeled with events of the same function (in the
sense discussed above) are arranged in the same horizontal line.

4 Applications of HOT-PDL

We show how to encode dependent refinement types and stack-based access
control properties using HOT-PDL.

4.1 Dependent Refinement Types

HOT-PDL can specify pre- and post-conditions of higher-order functions, by
encoding dependent refinement types τ for partial [29, 33, 40] and total [23, 27, 34,

36, 39] correctness verification, defined as: τ ::= {ν | ψ} | (x : τ1) → τQ2 . Here, Q
is either ∀ or ∃. An integer refinement type {ν | ψ} is the type of bounded integers
ν that satisfy the refinement formula ψ over bounded integers. A dependent
function type (x : τ1) → τ∀2 is the type of functions that, for any argument x
conforming to the type τ1, if terminating, return a value conforming to the type
τ2. By contrast, (x : τ1) → τ∃2 is the type of functions that, for any argument
x conforming to τ1, always terminate and return a value conforming to τ2. For
example, Prop.3 and Prop.4 of Dtw are expressed by the following types of tw:

Prop.3: (f : (x : int) → {ν | ν > x}∀) →
(
(x : int) → {ν | ν > x}∀

)∀

Prop.4: (f : (x : int) → int∃) →
(
(x : int) → int∃

)∀
We here write int for {ν | ⊤}. These types can be encoded in HOT-PDL as:

Prop.3: call(tw, •) ⇒ ([→call] incr(•)) ∧ [→ret]
(
ret(tw, •) ⇒ [→call] incr(•)

)
Prop.4: call(tw, •) ⇒ ([→call] term(•)) ∧ [→ret]

(
ret(tw, •) ⇒ [→call] term(•)

)
Here, incr(g) =

∧
x∈Zb

call(g, x) ⇒ [→ret]
∧

y∈Zb
(ret(g, y) ⇒ y > x) and

term(g) =
∧

x∈Zb
(call(g, x) ⇒ ⟨→ret⟩⊤) for g ∈ {•} ∪ {f | f ∈ dom(D)}. We

now define a translation F from types to HOT-PDL formulas as follows:

F (g, (x : τ1) → τQ2) =
∧

x∈|τ1|

(
call(g, x) ⇒ Farg(x, τ1) ∧ Fret(g, τ

Q
2)

)
|(x : τ1) → τQ2 | = {•} | {x | ψ} | = Zb

Farg(•, τ) = [→call]F (•, τ) Farg(n, {x | ψ}) =

{
⊤ (if |= [n/x]ψ)

⊥ (if ̸|= [n/x]ψ)

Fret(g, τ
∀) = [→ret]

∧
x∈|τ |

(ret(g, x) ⇒ F (x, τ))

Fret(g, τ
∃) = (⟨→ret⟩⊤) ∧ Fret(g, τ

∀)

4.2 Stack-Based Access Control Properties

As briefly summarized in Section 1, stack-based access control [13] ensures that
a security-critical function (e.g., file access) is invoked only if all the (immediate
and indirect) callers in the current call stack are trusted, or one of the callers

is a privileged function and its callees are all trusted. We here use HOT-PDL
to specify stack-based access control properties for higher-order programs. Let
Critical, Trusted, and Priv be HOT-PDL formulas that tell whether the cur-
rent node is labeled with a call event of security-critical, trusted, and privileged
functions, respectively. We assume that Critical, Priv, and ¬Trusted do not
overlap each other, and a function in Priv can be directly called only from a
function in Trusted. Then, one may think we can express the specification as:

¬
⟨
↗∗

F · {¬Trusted}? · (↗F · {¬Priv}?)+
⟩
Critical

Here, the path expression ↗F introduced in Section 3 is used to traverse the call
stack bottom-up. The above formula says that an invalid call stack never occurs,
where a call stack is called invalid if it contains a call to an untrusted function
(represented by the part ↗∗

F {¬Trusted}?), followed by a call to a critical func-
tion (represented by Critical), with no intervening call to a privileged function
(represented by (↗F · {¬Priv}?)+).

This definition, however, is not sufficient for our higher-order language. Let
us consider the following program Dpa , which involves a partial application:

let untrusted () = λu.critical u

let main () = untrusted () ()

Here, untrusted ̸∈ Trusted and critical ∈ Critical. Intuitively, Dpa should
be regarded as unsafe because critical in the body of untrusted is called.
However,Dpa satisfies the specification above (under the assumption that anony-
mous functions are in Trusted), because the partial application untrusted ()
never causes a call to critical but just returns the anonymous (and trusted)
function λu.critical u. The following higher-order program Dho is yet another
unsafe example that satisfies the specification:

let privileged f = f ()

let trusted f = if test () then privileged f else ()

let untrusted () = trusted (λx.crash (); critical ())

let main () = untrusted ()

Here, privileged ∈ Priv, trusted ∈ Trusted, untrusted ̸∈ Trusted, and
critical ∈ Critical. Note that critical in the body of untrusted is called
as follows: the anonymous function λx.crash (); critical () is first passed to
trusted and then to privileged (if test () returns true), and is finally called
by privileged, causing a call to critical.

To remedy the limitation, we introduce a new refined variant of stack-based
access control properties for higher-order programs, formalized in HOT-PDL
from the point of view of interactions among callers and callees as follows:

¬
⟨
↗∗

H · {¬Trusted}? · (↗H · {¬Priv}?)+
⟩
Critical

Note that this is obtained from the previous version by just replacing ↗F with
↗H , which takes into account which function constructed each function value

exchanged among functions. The refined version rejects the unsafe Dpa and Dho

as intended: Dpa (resp. Dho) is rejected because the call event of λu.critical u
(resp. λx.crash (); critical ()) is regarded as an event of untrusted.

Fournet et al. [13] have studied variants of stack-based access control proper-
ties for a call-by-value higher-order language. We conclude this section by com-
paring ours with one of theirs called “stack inspection with frame capture”.2

The ideas behind the two are similar but what follows illustrates the difference:

let untrusted f = crash (); f ()

let trusted x = untrusted (λx.if test () then critical () else ())

let main () = trusted ()

This program satisfies ours but violates theirs. Note that ours allows a function
originally constructed by a trusted function to invoke a critical function even
if the function is passed around by an untrusted function. By contrast, in their
definition, a trusted function value gets “contaminated” (i.e., disabled to invoke
a critical function) once it is passed to or returned by an untrusted function.
In some cases, their conservative policy is useful, but we believe ours would be
more semantically robust (e.g., even works well with the CPS transformation).

5 HOT-PDL Model Checking

In this section, we define HOT-PDL model checking problems for higher-order
functional programs over bounded integers and sketch a proof of the decidability.

Definition 4 (HOT-PDL model checking). Given a program D and a HOT-
PDL formula ϕ with AP = Σ(D), HOT-PDL model checking is the problem of
deciding whether Gϖ |= ϕ and Gπ |= ϕ for all ϖ ∈ [[D]]fin and π ∈ [[D]]inf.

Theorem 1 (Decidability). HOT-PDL model checking is decidable.

We show this by a reduction to modal µ-calculus (µ-ML) model checking
of higher-order recursion schemes (HORSs), which is known decidable [21, 28].
A HORS is a grammar for generating a (possibly infinite) ranked tree, and
HORSs are essentially simply-typed lambda calculus with general recursion, tree
constructors, and finite data domains such as booleans and bounded integers.

In the reduction, we encode the set of HOTs that are generated from the given
program D as a single tree (generated by a HORS). For example, Figure 5 shows
such a tree that encodes the HOTs of Dtw.

3 There, a node labeled with end rep-
resents the termination of the program. Note that the branching at the root node
is due to the input to the function main. The subtree with the root node labeled
with call(main, 0) is obtained from the HOT Gtw by appending a special node
labeled with end, adding, for each edge with the label γ ∈ {N,CR,CC,RC},
2 We do not compare with the other variants in [13] because they are too syntactic to
be preserved by simple program transformations like inlining.

3 There, for simplicity, we illustrate an unranked tree and omit the label of branching
nodes. In the formalization, we express an unranked tree as a binary tree using a
special node label br of the arity 2 representing a binary branching.

call(tw, ·)

N CR CC

RC

ret(tw, ·)

N

call(·, 0)

end

call(·, 1)

end

call(·, 0)

CC

call(main, nmin) call(main, nmax)call(main, 0)

ret(tw, ·)

Fig. 5. A tree encoding the HOTs generated from Dtw

a new node labeled
with γ, and expand-
ing the resulting DAG
into a tree. Thus, the
edge labels of Gtw are
turned into node la-
bels of the tree.

It is also worth
mentioning here that
we are allowed to ex-
pand DAGs into trees
because the truth value
of a HOT-PDL for-
mula is not affected
by node-sharing in
the given HOT. This
nice property is lost
if we extend the path
expressions of HOT-
PDL, for example, with
intersections. Thus, the
decidability of model checking for extensions of HOT-PDL is an open problem.

We next explain our translation from a HOT-PDL formula into a µ-ML
formula interpreted over trees that encode HOTs. Our translation is based on
an existing one for ordinary PDL [11]. The syntax of µ-ML is defined as follows:

φ ::= X | p | ¬φ | φ ∧ φ | □φ | νX.φ | µX.φ

Here, X represents a propositional variable and p represents an atomic propo-
sition. A formula □φ means that φ holds for any child of the current node. A
formula µX.φ (resp. νX.φ) represents the least (resp. greatest) fixpoint of the
function λX.φ. Here, we assume X occurs only positively in φ. For example, the
HOT-PDL formulas [→] p, [→ret] p, and [→call] p are respectively translated to
µ-ML formulas: □(νX.(N ⇒ □p) ∧ (br ⇒ □X)), □(νX.(CR ⇒ □p) ∧ (br ⇒
□X)), and □(νX.((CC ∨ RC) ⇒ □p) ∧ (br ⇒ □X)), where the greatest fix-
points are used to skip the branching nodes labeled with br (that may repeat
infinitely).

Finally, we explain how to obtain a HORS for generating a tree that encodes
the set of HOTs generated from the given program D. We here need to simulate
pointer traversals of HOT-PDL by using purely functional features of HORSs be-
cause µ-ML does not support pointers. Intuitively, we obtain the desired HORS
from D by embedding an event monitor and an event handler. Whenever the
monitor detects a function call or return event during the execution of D, the
handler creates a new node labeled with the event or ignores the event until a
certain event is detected by the monitor, depending on the current mode of the
handler. The handler has the following three modes:

mN: The handler always creates and links two new nodes uN and uα labeled
respectively with N and the event α observed. The handler then continues
as follows, depending on the form of the event α:
call(g, n): Spawns a new handler with the mode mret. Then, the two han-

dlers of the modes mN and mret continue to create subtrees of uα.
call(g, •): Spawns two new handlers with the modes mret and mcall. The

three handlers of mN, mret, and mcall continue to create subtrees of uα.
ret(g, n): The handler of the mode mN continues to create a subtree of uα.
ret(g, •): Spawns a new handler with the mode mcall. Then, the two han-

dlers of the modes mN and mcall continue to create subtrees of uα.
mret: The handler ignores all events but the return event corresponding to the

call event that caused the spawn of the handler. If not ignored, the handler
creates and links new nodes uCR and uα labeled with CR and the event α.
The handler changes its mode to mN and continues creating a subtree of uα.

mcall: The handler ignores all events but the call event of the function passed to
or returned by the call or return event that caused the spawn of the handler.
If not ignored, the handler creates and links new nodes u and uα labeled
respectively with CC or RC and the event α, duplicates itself, and changes
the mode of the original to mN. The handler of the mode mN (resp. mcall)
continues to create a subtree of uα (resp. the parent of u).

For simplicity of the construction, we assume that D is in the Continuation-
Passing Style (CPS). This does not lose generality because we can enforce this
form by the CPS transformation. Because CPS explicates the order of function
call and return events, it simplifies event monitoring, handling, and tracking of
the current mode of the monitors, which often changes as monitoring proceeds.

6 Related Work

HOT-PDL can specify temporal trace properties of higher-order programs. An
extension for specifying branching properties, however, remains a future work.

There have been proposed logics and formal languages on richer structures
than words. Regular languages of nested words, or equivalently, Visibly Push-
down Languages (VPLs) have been introduced by Alur and Madhusudan [7]. An
(ω-)nested word is a (possibly infinite) word with additional well-nested point-
ers from call events to the corresponding return events. Compared to temporal
logics CaRet [5] and NWTL [4] over (ω-)nested words, HOT-PDL is defined
over HOTs that have richer structures. Recall that a HOT is equipped with
two kinds of pointers: one kind with the label CR, which is the same as the
pointers of nested words, and the other kind with the label CC or RC, which
is newly introduced to capture higher-order control flow. Bollig et al. proposed
nested traces as a generalization of nested words for modeling traces of concur-
rent (first-order) recursive programs, and presented temporal logics over nested
traces [8]. Nested traces, however, cannot model traces of higher-order programs.
We expect a combination of our work with theirs enables us to specify temporal
trace properties of concurrent and higher-order recursive programs. Cyriac et

al. have recently introduced an extension of PDL defined over traces of order-
2 collapsible pushdown systems (CPDS) [3]. Interestingly, their traces are also
equipped with two kinds of pointers: one kind of pointers captures the correspon-
dence between ordinary push and pop stack operations, and the other captures
the correspondence between order-2 push and pop operations for second-order
stacks. Our work deals with higher-order programs that correspond to order-n
CPDS for arbitrary n.

Finally, we compare HOT-PDL with existing logics defined over words. It
is well known that LTL is less expressive than ω-regular languages [38]. To
remedy the limitation of LTL, Wolper introduced ETL [38] that allows users
to define new temporal operators using right-linear grammars. Henriksen and
Thiagarajan proposed DLTL [17] that generalizes the until operator of LTL using
regular expressions. Leucker and Sánchez proposed RLTL [25] that combines LTL
and regular expressions. Vardi and Giacomo have introduced Linear Dynamic
Logic (LDL), a variant of PDL interpreted over infinite words [15, 35]. LDLf ,
a variant of PDL interpreted over finite words, has also been studied in [15].
ETL, DLTL, RLTL, and LDL are as expressive as ω-regular languages. Note
that HOT-PDL subsumes (ω-)regular languages because LDL and LDLf can
be naturally embedded in HOT-PDL. (ω-)VPLs strictly subsume (ω-)regular
languages. Though CaRet [5] and NWTL [4] are defined over nested words, they
do not capture the full class of VPLs [10]. To remedy the limitation, VLTL [10]
combines LTL and VRE [9] in the style of RLTL, where VRE is a generalization
of regular expressions for VPLs. VLDL [37] extends LDL by replacing the path
expressions with VPLs over finite words. VLTL and VLDL exactly characterize
ω-VPLs. Because VPLs and HOT-PDL are incomparable, it remains future work
to extend HOT-PDL to subsume (ω-)VPLs.

7 Conclusion and Future Work

We have presented HOT-PDL, an extension of PDL defined over HOTs that
model execution traces of call-by-value and higher-order programs. HOT-PDL
enables a precise specification of temporal trace properties of higher-order pro-
grams and consequently provides a foundation for specification in various appli-
cation domains including stack-based access control and dependent refinement
types. We have also studied HOT-PDL model checking and presented a reduction
method to modal µ-calculus model checking of higher-order recursion schemes.

To further widen the scope of our approach, it is worth investigating how
to adapt HOTs and HOT-PDL to call-by-name and/or effectful languages. To
this end, it is natural to incorporate more ideas from achievements of game
semantics [1, 20, 32] and extend HOTs with new kinds of events and pointers for
capturing call-by-name and/or effectful computations.

Acknowledgments We would like to thank anonymous referees for their use-
ful comments. This work was supported by JSPS KAKENHI Grant Numbers
15H05706, 16H05856, 17H01720, and 17H01723.

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information
and Computation 163, 409–470 (2000)

2. Abramsky, S., McCusker, G.: Call-by-value games. In: CSL ’98. LNCS, vol. 1414,
pp. 1–17. Springer (1998)

3. Aiswarya, C., Gastin, P., Saivasan, P.: Nested words for order-2 pushdown systems.
arXiv:1609.06290 (2016)

4. Alur, R., Arenas, M., Barcelo, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. Logical Methods in Computer Science
Volume 4, Issue 4 (2008)

5. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: TACAS ’04. pp. 467–481. Springer (2004)

6. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC ’04. pp. 202–
211. ACM (2004)

7. Alur, R., Madhusudan, P.: Adding nesting structure to words. Journal of the ACM
56(3), 16:1–16:43 (2009)

8. Bollig, B., Cyriac, A., Gastin, P., Zeitoun, M.: Temporal logics for concurrent
recursive programs: Satisfiability and model checking. Journal of Applied Logic
12(4), 395 – 416 (2014)

9. Bozzelli, L., Sánchez, C.: Visibly rational expressions. In: FSTTCS ’12. LIPIcs,
vol. 18, pp. 211–223. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2012)

10. Bozzelli, L., Sánchez, C.: Visibly linear temporal logic. In: IJCAR ’14. LNCS,
vol. 8562, pp. 418–433. Springer (2014)

11. Carreiro, F., Venema, Y.: PDL inside the µ-calculus: A syntactic and an automata-
theoretic characterization. Advances in Modal Logic 10, 74–93 (2014)

12. Disney, T., Flanagan, C., McCarthy, J.: Temporal higher-order contracts. In: ICFP
’11. pp. 176–188. ACM (2011)

13. Fournet, C., Gordon, A.D.: Stack inspection: Theory and variants. In: POPL ’02.
pp. 307–318. ACM (2002)

14. Fujima, K., Ito, S., Kobayashi, N.: Practical alternating parity tree automata model
checking of higher-order recursion schemes. In: APLAS ’13. LNCS, vol. 8301, pp.
17–32. Springer (2013)

15. Giacomo, G.D., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI ’13. pp. 854–860. AAAI Press (2013)

16. Harel, D., Tiuryn, J., Kozen, D.: Dynamic Logic. MIT Press (2000)

17. Henriksen, J.G., Thiagarajan, P.: Dynamic linear time temporal logic. Annals of
Pure and Applied Logic 96(1), 187 – 207 (1999)

18. Hofmann, M., Chen, W.: Abstract interpretation from Büchi automata. In: CSL-
LICS ’14. pp. 51:1–51:10. ACM (2014)

19. Honda, K., Yoshida, N.: Game theoretic analysis of call-by-value computation. In:
ICALP ’97. LNCS, vol. 1256, pp. 225–236. Springer (1997)

20. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I, II, and III. Informa-
tion and Computation 163, 285–408 (2000)

21. Kobayashi, N., Ong, C.H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: LICS ’09. pp. 179–188. IEEE
(2009)

22. Kobayashi, N., Tsukada, T., Watanabe, K.: Higher-order program verification via
HFL model checking. In: ESOP ’18. pp. 711–738. Springer (2018)

23. Koskinen, E., Terauchi, T.: Local temporal reasoning. In: CSL-LICS ’14. pp. 59:1–
59:10. ACM (2014)

24. Lester, M.M., Neatherway, R.P., Ong, C.H.L., Ramsay, S.J.: Model checking
liveness properties of higher-order functional programs. URL http://mjolnir.

comlab.ox.ac.uk/papers/thors.pdf (2011)
25. Leucker, M., Sánchez, C.: Regular linear temporal logic. In: ICTAC ’07. pp. 291–

305. Springer (2007)
26. Murase, A., Terauchi, T., Kobayashi, N., Sato, R., Unno, H.: Temporal verification

of higher-order functional programs. In: POPL ’16. pp. 57–68. ACM (2016)
27. Nanjo, Y., Unno, H., Koskinen, E., Terauchi, T.: A fixpoint logic and dependent

effects for temporal property verification. In: LICS ’18. ACM (2018)
28. Ong, C.H.L.: On model-checking trees generated by higher-order recursion

schemes. In: LICS ’06. pp. 81–90. IEEE (2006)
29. Rondon, P., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI ’08. pp. 159–169.

ACM (2008)
30. Satake, Y., Unno, H.: Propositional dynamic logic for higher-order functional pro-

grams. Extended version, available from http://www.cs.tsukuba.ac.jp/~uhiro/

(2018)
31. Suzuki, R., Fujima, K., Kobayashi, N., Tsukada, T.: Streett automata model check-

ing of higher-order recursion schemes. In: FSCD ’17. LIPIcs, vol. 84, pp. 32:1–32:18.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2017)

32. Tzevelekos, N.: Nominal game semantics. Ph.D. thesis, University of Oxford (2008)
33. Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: PPDP

’09. pp. 277–288. ACM (2009)
34. Unno, H., Satake, Y., Terauchi, T.: Relatively complete refinement type system

for verification of higher-order non-deterministic programs. Proc. ACM Program.
Lang. 2(POPL), 12:1–12:29 (Dec 2017)

35. Vardi, M.Y.: The rise and fall of LTL. GandALF (2011)
36. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Peyton Jones, S.L.: Refinement

types for Haskell. In: ICFP ’14. pp. 269–282. ACM (2014)
37. Weinert, A., Zimmermann, M.: Visibly linear dynamic logic. In: FSTTCS ’16.

LIPIcs, vol. 65, pp. 28:1–28:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik
(2016)

38. Wolper, P.: Temporal logic can be more expressive. Information and Control 56(1),
72–99 (1983)

39. Xi, H.: Dependent types for program termination verification. In: LICS ’01. pp.
231–242. IEEE (2001)

40. Xi, H., Pfenning, F.: Dependent types in practical programming. In: POPL ’99.
pp. 214–227. ACM (1999)

