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Abstract
Existing approaches to temporal verification of higher-order func-

tional programs have either sacrificed compositionality in favor

of achieving automation or vice-versa. In this paper we present

a dependent-refinement type & effect system to ensure that well-

typed programs satisfy given temporal properties, and also give an

algorithmic approach—based on deductive reasoning over a fixpoint

logic—to typing in this system. The first contribution is a novel

type-and-effect system capable of expressing dependent temporal
effects, which are fixpoint logic predicates on event sequences and

program values, extending beyond the (non-dependent) temporal

effects used in recent proposals. Temporal effects facilitate compo-

sitional reasoning whereby the temporal behavior of program parts

are summarized as effects and combined to form those of the larger

parts. As a second contribution, we show that type checking and

typability for the type system can be reduced to solving first-order

fixpoint logic constraints. Finally, we present a novel deductive

system for solving such constraints. The deductive system consists

of rules for reasoning via invariants and well-founded relations,

and is able to reduce formulas containing both least and greatest

fixpoints to predicate-based reasoning.

CCS Concepts • Theory of computation → Programming
logic; Program verification; • Software and its engineering
→ Formal software verification;

Keywords higher-order programs, temporal verification, fixpoint

logic, dependent temporal effects, dependent refinement types
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1 Introduction
Recent years have seen many new approaches for verifying tempo-

ral properties of higher-order programs. At first, these works were

restricted to safety properties [9, 19, 22–24], termination [13, 27],

non-termination [14], or finite data [17]. Algorithmic reductions

based on higher-order recursion schemes [7, 8] and constrained
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Horn clause solving [3] have enjoyed automation success. Other

works have shown that the automata-theoretic reduction to fair-

termination [26] can be lifted to the higher-order setting [16]. Still

other works have permitted reasoning about angelic-vs-demonic

nondeterminism [25].

Meanwhile there has been a sub-community, whose aim is to

support temporal specifications directly in the type system, in the

form of temporal effects. The promise of this approach is that it may

lead to a more compositional verification strategy, where temporal

reasoning can be done locally (at the level of terms, expressions,

functions, etc.) and combined together via an orchestrating type

system to reason about the overall program [4, 12, 20]. These works,

however, required an over-approximation to cope with the effects of

recursive functions. In particular, the temporal effects in prior work

are simply sets of event traces that coarsely over-approximate the

actual temporal behavior of the program terms either via 𝜔-regular

sets [4] or else by allowing recursive functions to have any infinite

effect [12]. These treatments preclude specifying value-dependent

temporal properties as effects, and also, for infinite-state programs,

the over-approximation may result in loss of precision even when

the goal property to be verified is non-dependent.

In summary, while recent works have led to advanced non-
compositional algorithmic approaches, the state-of-the-art is that

we don’t have a clear theory to connect compositional type &

effect-based approaches with algorithmic verification techniques.

Bridging this gap could mean exploiting the best of both worlds.

In this paper, we bridge this gap, presenting methods for al-

gorithmic verification of temporal properties specified as effects.

Our first step is to raise the bar a little higher. We introduce the

concept of dependent temporal effects. Our types have the form

(𝜏 & (Φ` ,Φa )) where we use dependent-refinement types and, as in

prior work [4, 12, 20], the effects are a pair: Φ`
corresponding to the

finite effects and Φa
corresponding to the infinite effects. Unlike

prior work, we treat these (finite and infinite) effects of program

expressions as predicates on finite and infinite (respectively) event

sequences–i.e., a predicate on Σ∗ and a predicate on Σ𝜔–over some

alphabet of events Σ. As discussed below, the predicates are also on
program values, thus making the effects value-dependent. More-

over, we express these predicates in a fixpoint logic that permits

least- and greatest-fixpoints of predicate variables and has base

theories of integers and finite/infinite event sequences. We can

express, for example, that the effect of a function foo n is given by

the pair (Φ`

foo,Φ
a
foo) defined as:

Φ
`

foo ≜ _𝑥.⊥ Φa
foo ≜ _𝑥.𝑥 ∈ ((Ready · Sendn) | Wait)𝜔
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The effect predicate Φ`
specifies that there are no finite effects

whereas Φa
specifies that the infinite behavior is to repeatedly

generate either (i) a Ready event and n Send events or (ii) a single

Wait event. Notice, in particular, that n is a parameter to foo, making

this effect dependent with respect to foo’s argument.

Next, we provide dependent temporal effect typing rules, which
relate the effects of one program part to the effects of others, accu-

mulating proof obligations in the form of constraints along the way.

The recursive function definition rule highlights our treatment, as

well as the benefit of treating effects as finite/infinite predicates. In

prior work, over-approximations of effects were used. Here we in-

stead relate the effect Φ of the body of the function 𝑒 with the effect

of the overall recursive function rec(𝑓 , 𝑥, 𝑒) with two constraints:

a least fixpoint constraint relating finite effects Φ`
to the finite

effects of rec(𝑓 , 𝑥, 𝑒) and a greatest fixpoint constraint relating the

infinite effects Φa
to the infinite effects of rec(𝑓 , 𝑥, 𝑒). These effects

of recursive functions have the form:

Φ
`

foo = _𝑥 .(`𝑋` (𝑛, 𝑥). . . .) (𝑛, 𝑥) Φa
foo = _𝑥.(a𝑋a (𝑛, 𝑥) . . . .) (𝑛, 𝑥)

where 𝑋` and 𝑋a are effect predicate variables (cf. Sec.4.1). Our
treatment of effects as predicates is key to enabling an overall

type system that is able to remain precise, even in the context of

representing infinite behaviors. In our type system, constraints are

also imposed, for example, in instances of subtyping.

The question then remains: how do we solve these constraints?

Addressing this question leads to the next contribution of our work,

which achieves a marriage between type-and-effect-based temporal

specifications [4, 12, 20] and algorithmic verification approaches [8,

9, 13, 16, 19, 21–23]. We introduce a deductive system for reasoning

about these fixpoint constraints. The deductive proof rules let us

address least- and greatest-fixpoint constraints that appear in the

typing tree. The rules reduce the fixpoint subformula to reasoning

about invariants and well-founded relations. The use of invariants

and well-founded relations is motivated by their use in safety and

liveness verification of infinite state programs (as mentioned above),

and enables solving constraints that cannot be solved by a simple

unrolling of the fixpoint formula. Also, from an engineering point

of view, one can leverage existing tools to synthesize invariants

and well-founded relations. The particular strategy we employ

depends on the kind of fixpoint (least or greatest) and whether they

occur in negative or positive position in the formula. Our deductive

system then has a collection of further approximation rules, defined

inductively on the structure of the formula, that further reduce the

formulas to predicate-based reasoning.

Contributions. In summary, we make the following contributions:

1. Dependent temporal effects, expressed in a first-order fix-

point logic over theories of integers and finite/infinite event

sequences, wherein those integers can depend on program

values. (Sec. 3)

2. A type system for dependent temporal effects, supporting

programs written in an ML-like language with higher-order

features and ranging over infinite data. (Sec. 4.4)

3. A soundness proof of our type system. (Theorem 4.1)

4. A deductive proof system that employs invariants and well-

founded relations to solve formulas in the fixpoint logic

containing both least and greatest fixpoints. (Sec. 5)

5. A soundness proof for our deductive rules. (Theorem 5.2)

Organization. In the next section, we give an example and use it to

highlight our main contributions, as well as some further examples

to show the applicability of our work. In Sec. 3 we give our ML-like

language and in Sec. 4 we present our type system and associated

soundness theorem. Our deductive fixpoint proof system is given

in Sec. 5. We conclude with a discussion of related work in Sec. 6.

2 Overview
We now give a summary of our techniques, using the example

shown in Fig. 1. At the end of this section we provide further

examples (Fig. 2) that illustrate the applicability of our work.

Our type and effect system, extended with dependent temporal

effects can be illustratedwith this messenger example. This example

simulates a client interacting with a server. The messenger program

calls until_ready which will make a nondeterministic boolean

choice: in one case it will trigger the event Ready and otherwise

it will Wait and again call until_ready. If the Ready event ever

occurs, then until_ready will return, and send_msgs will generate

n instances of Send. Finally, messengerwill recur. This program has

no finite traces. Its infinite traces follow the form of the dependent
𝜔-regular expression ((Ready · Sendn) | Wait)𝜔 . Notice that this
effect depends on the input to the program n. Although this example

is simple, it already illustrates a property that cannot be expressed

in prior work [3, 9, 13, 14, 16, 19, 22–25, 27]. In fact, this effect

expression escapes classical LTL or the `-calculus.

We now discuss how our approach can conclude the above de-

pendent 𝜔-regular expression, highlighting the contributions along

the way. The typings for the recursive procedures in this example

can be found in Fig. 1. (The full type derivation for send_msgs is also

shown, and the type derivation for until_ready is given in Appen-

dix C.) The overall type for send_msgs is 𝜏send_msgs = (𝑛 : {𝑛 | 𝑛 ≥
0}) → (unit &Φsend_msgs). We assume that the reader is already fa-

miliar with dependent-refinement types such as above, which states

that send_msgs is a function from non-negative integers to unit,

having effects described by Φsend_msgs. As in prior work [4, 12],

effects are given as pairs, i.e., Φsend_msgs = (Φ`

send_msgs,Φ
a
send_msgs)

the first corresponding to the finite effects of send_msgs and the

latter to the infinite effects.

In this paper, we introduce dependent temporal effects. To this

end, we begin by treating each component’s effect as predicates. For
send_msgs, we have:

Φ
`

send_msgs = _𝑥.(`𝑋` (𝑛, 𝑥) .(𝑛 = 0 ∧ 𝑥 = 𝜖

∨𝑛 ≠ 0 ∧ ∃𝑦.𝑥 = Send · 𝑦 ∧ 𝑋` (𝑛 − 1, 𝑦))) (𝑛, 𝑥)
Φa
send_msgs = _𝑥.(a𝑋a (𝑛, 𝑥) .

𝑛 ≠ 0 ∧ ∃𝑦.𝑥 = Send · 𝑦 ∧ 𝑋a (𝑛 − 1, 𝑦)) (𝑛, 𝑥)

As discussed later, our type system is able to derive this judgment

from the syntax of the program. The first component Φ
`

send_msgs
describes the effects of the finite traces of send_msgs via a predicate

_𝑥._ where 𝑥 will be a candidate event sequence. The body is a least

fixpoint equation over a predicate variable 𝑋` , parameterized by

variables 𝑛 and 𝑥 . The fixpoint’s body has two cases: when 𝑛 = 0,

then the event sequence is simply empty, denoted 𝜖 . Otherwise,

the predicate specifies that 𝑥 will be the Send event, followed by

some event sequence 𝑦 and that 𝑋` (𝑛 − 1, 𝑦) must hold. Overall,

this fixpoint is applied to variables 𝑛 and 𝑥 .
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(a) Source Code (b) Typing Rules and Final Effect Approximations

let rec until_ready () =

if * then

(event[Ready]; ())

else

(event[Wait];

until_ready ())

let rec send_msgs n =

if n = 0 then ()

else

(event[Send];

send_msgs (n-1))

let rec messenger n =

until_ready ();

send_msgs n;

messenger n

Types

𝜏until_ready = unit → (unit & Φuntil_ready)
Φ
`

until_ready = _𝑥 .(`𝑋` (𝑥) .𝑥 = Ready ∨ ∃𝑦.𝑥 = Wait · 𝑦 ∧ 𝑋` (𝑦)) (𝑥)
Φa
until_ready = _𝑥 .(a𝑋a (𝑥) .∃𝑦.𝑥 = Wait · 𝑦 ∧ 𝑋a (𝑦)) (𝑥)
𝜏send_msgs = (𝑛 : {𝑛 | 𝑛 ≥ 0}) → (unit & Φsend_msgs)
Φ
`

send_msgs = _𝑥 .(`𝑋` (𝑛, 𝑥).
(
𝑛 = 0 ∧ 𝑥 = 𝜖 ∨ 𝑛 ≠ 0 ∧ ∃𝑦.𝑥 = Send · 𝑦 ∧ 𝑋` (𝑛 − 1, 𝑦)

)
) (𝑛, 𝑥)

Φa
send_msgs = _𝑥 .(a𝑋a (𝑛, 𝑥) .𝑛 ≠ 0 ∧ ∃𝑦.𝑥 = Send · 𝑦 ∧ 𝑋a (𝑛 − 1, 𝑦)) (𝑛, 𝑥)
𝜏messenger = (𝑛 : {𝑛 | 𝑛 ≥ 0}) → (unit & Φmessenger)
Φ
`
messenger = _𝑥 .(`𝑋` (𝑛, 𝑥).∃𝑦1, 𝑦2 .𝑥 = 𝑦1 · 𝑦2 ∧ (Φ′

until_ready · Φ
′
send_msgs)

` (𝑦1) ∧ 𝑋` (𝑛,𝑦2)) (𝑛, 𝑥)

Φa
messenger = _𝑥 .(a𝑋a (𝑛, 𝑥) .

©«
(Φ′

until_ready · Φ
′
send_msgs)

a (𝑥)∨
∃𝑦1, 𝑦2 .𝑥 = 𝑦1 · 𝑦2∧
(Φ′

until_ready · Φ
′
send_msgs)

` (𝑦1) ∧ 𝑋a (𝑛,𝑦2)

ª®®¬) (𝑛, 𝑥)
Final Effect Approximations

Φ′
until_ready = (_𝑥.𝑥 ∈ Wait∗ · Ready, _𝑥 .𝑥 ∈ Wait𝜔 )
Φ′
send_msgs = (_𝑥.𝑥 ∈ Send𝑛, _𝑥 .⊥)

Φ′
messenger = (_𝑥.⊥, _𝑥 .𝑥 ∈ (Ready · Send𝑛 | Wait)𝜔 )

(c) Type Derivation Tree for send_msgs, including Deductive Fixpoint Rules (⊩)
.
.
.

send_msgs : 𝜏, 𝑛 = 0 ⊢ () : 𝜎if

.

.

.

send_msgs : 𝜏, 𝑛 > 0 ⊢ ev[Send]; send_msgs (𝑛 − 1) : 𝜎if

send_msgs : 𝜏, 𝑛 ≥ 0 ⊢ if 𝑛 = 0 then ()
else (ev[Send]; send_msgs (𝑛 − 1)) : 𝜎if

⊢ rec(send_msgs, 𝑛, · · · ) : (𝑛 : 𝑛 ≥ 0) → (unit & Φsend_msgs)

A B

𝑛 ≥ 0 ⊢
(
(unit & Φsend_msgs)
<:(unit & Φ′

send_msgs)

)
.
.
.

⊢ rec(send_msgs, 𝑛, · · · ) : (𝑛 : 𝑛 ≥ 0) → (unit & Φ′
send_msgs)

𝜏 ≜ (𝑛 : 𝑛 ≥ 0) → (unit & (_𝑥 .𝑋` (𝑛, 𝑥), _𝑥 .𝑋a (𝑛, 𝑥)))
𝜎if ≜ (unit & (_𝑥 .𝑛 = 0 ∧ 𝑥 = 𝜖 ∨ 𝑛 ≠ 0 ∧ ∃𝑦.𝑥 = Send · 𝑦 ∧ 𝑋` (𝑛 − 1, 𝑦), _𝑥 .∃𝑦.𝑥 = Send · 𝑦 ∧ 𝑋a (𝑛 − 1, 𝑦)))

A :

|= (𝑛 = 0 ∧ 𝑥 = 𝜖 ∨ ∃𝑦.𝑥 = Send · 𝑦 ∧ 𝑦 ∈ Send𝑛−1) ⇒ 𝑥 ∈ Send𝑛
|= 𝑛 ≥ 0 ⇒ (𝑥 ∈ Send𝑛 ⇒ 𝑥 ∈ Send𝑛)
⊩ 𝑛 ≥ 0 ⇒ (𝑥 ∈ Send𝑛 ⇒ 𝑥 ∈ Send𝑛)

⊩ 𝑛 ≥ 0 ⇒ (Φ`

send_msgs (𝑥) ⇒ Φ′`
send_msgs (𝑥))

B :

|= (𝑝1 (𝑛, 𝑥) ∧ 𝑛 = 0) ⇒ ¬(𝑛 ≠ 0)
𝑋a (𝑛, 𝑥);𝑝1;𝑝2;𝑛 = 0 ↑ 𝑛 ≠ 0

|= (𝑝1 (𝑛, 𝑥) ∧ 𝑛 ≠ 0 ∧ 𝑥 ≠ Send · 𝑥 ′) ⇒ ¬(𝑥 = Send · 𝑥 ′)
𝑋a (𝑛, 𝑥);𝑝1;𝑝2;𝑛 ≠ 0 ∧ 𝑥 ≠ Send · 𝑥 ′ ↑ 𝑥 = Send · 𝑥 ′

|= (𝑝1 (𝑛, 𝑥) ∧ 𝑛 ≠ 0 ∧ 𝑥 = Send · 𝑥 ′)
⇒ (𝑝1 (𝑛 − 1, 𝑥 ′) ∧ 𝑝2 (𝑛, 𝑥, 𝑛 − 1, 𝑥 ′))

𝑋a (𝑛, 𝑥);𝑝1;𝑝2;𝑛 ≠ 0 ∧ 𝑥 = Send · 𝑥 ′ ↑𝑋a (𝑛 − 1, 𝑥 ′)
𝑋a (𝑛, 𝑥); 𝑝1;𝑝2;𝑛 ≠ 0 ↑ 𝑥 = Send · 𝑥 ′ ∧ 𝑋a (𝑛 − 1, 𝑥 ′)
𝑋a (𝑛, 𝑥);𝑝1;𝑝2;𝑛 ≠ 0 ↑ ∃𝑦.𝑥 = Send · 𝑦 ∧ 𝑋a (𝑛 − 1, 𝑦)

𝑋a (𝑛, 𝑥); 𝑝1;𝑝2;⊤ ↑ 𝑛 ≠ 0 ∧ ∃𝑦.𝑥 = Send · 𝑦 ∧ 𝑋a (𝑛 − 1, 𝑦)
|= 𝑛 ≥ 0 ⇒ (¬(𝑛 ≥ 0) ⇒ ⊥)
⊩ 𝑛 ≥ 0 ⇒ (¬(𝑛 ≥ 0) ⇒ ⊥)

⊩ 𝑛 ≥ 0 ⇒ (Φa
send_msgs (𝑥) ⇒ Φ′a

send_msgs (𝑥))

𝑝1 ≜ _(𝑛, 𝑥).𝑛 ≥ 0 𝑝2 ≜ _(𝑛1, 𝑥1, 𝑛2, 𝑥2).𝑛1 > 𝑛2 ≥ 0

Figure 1. Clockwise: (a) Source code for messenger; (b) Types & effects for recursive functions along with our final effect conclusions; and

(c) type derivation for send_msgs, including the use of our deductive proof rules (⊩) in subtrees A and B.

The second component Φa
send_msgs describes the infinite effects

of send_msgs. Not surprisingly, a greatest fixpoint equation is used,

with predicate variable 𝑋a again parameterized by 𝑛 and 𝑥 . The

𝑛 = 0 case is finite and not possible. We will see momentarily that

the other infinite case is also not possible.

Our typing judgments impose proof obligations in the form

of constraints. Most notably, the type rule for recursive function

definition (cf. T-Fun in Sec. 4) for a function 𝑓 requires that the

effect of a total application of 𝑓 be compatible with the effect of the

body of 𝑓 , which is itself derived from the typing rules. Roughly,

T-Fun works as follows. First, it checks that the body of 𝑓 has
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let rev l =

let rec aux l acc = match l with

| [] -> acc | h::t ->

event[Tick]; aux t (h::acc)

in aux l []

let is_empty (l1,l2) = l1 = [] && l2 = []

let enqueue e (l1,l2) = event[Enq];(l1,e::l2)

let rec dequeue (l1,l2) = match l1 with

| [] -> dequeue (rev l2, [])

| e::l1' -> event[Deq]; (e, (l1', l2))

let rec main (l1,l2) =

if * then main (enqueue 42 (l1,l2))

else if is_empty (l1,l2) then ()

else main (snd (dequeue (l1,l2)))

let rec zoom () =

event[Zoom]; zoom ()

let rec shrink t f d =

if f () <= 0 then

zoom ()

else

(event[Shrink];

let t' = f() - d in

shrink t' (fun x -> t') d)

let shrinker t d =

shrink t (fun x -> t) d

let rec listener npool pend =

if * && pend < npool then

(event[Accept];

listener npool (pend + 1))

else if pend > 0 then

(event[Handle];

listener npool (pend - 1))

else

(event[Wait];

listener npool pend)

let server npool =

listener npool 0

main : ((𝑙1, 𝑙2) : int list × int list) → (unit & Φ)
Φ` = _𝑥.#Enq (𝑥) + |𝑙2| = #Tick (𝑥) = #Deq (𝑥) − |𝑙1|
Φa = _𝑥.⊤

shrinker : (𝑡 : {𝑡 | 𝑡 ≥ 0}) →
(𝑑 : {𝑑 | 𝑑 > 0 ∧ 𝑡 mod 𝑑 = 0}) →
(unit & Φ)
Φ` = _𝑥.⊥
Φa = _𝑥.𝑥 ∈ Shrink𝑡/𝑑 · Zoom𝜔

server : (npool : {a | a ≥ 0}) →
(unit & (_𝑥 .⊥, _𝑥 .𝜙))

𝜙 =

(
𝑥 ∈ (Σ∗ · (Σ \ Accept)npool+1)𝜔
⇒ 𝑥 ∈ (Σ∗ · Wait)𝜔

)
Figure 2. Further examples of programs and corresponding dependent temporal effects that we are able to verify using our approach.

finite/infinite effect pair (Φ` ,Φa ), under a typing environment

where a total application of 𝑓 has some finite/infinite effect pair

(_𝑥 ∈ Σ∗ .𝑋` (𝑥, 𝑥), _𝑥 ∈ Σ𝜔 .𝑋a (𝑥, 𝑥)).𝑋` and𝑋a are finite and infi-

nite predicate variables, respectively. Given this, the effect of a total

application of the recursive function is then the effect pair (_𝑥 ∈
Σ∗ .𝑞` (𝑥, 𝑥), _𝑥 ∈ Σ𝜔 .𝑞a (𝑥, 𝑥)) where our type system requires that

𝑞` = `𝑋` (𝑥, 𝑥) .Φ` (𝑥) and 𝑞a = a𝑋a (𝑥, 𝑥).[𝑞`/𝑋` ]Φ` (𝑥). In this

way, we require that the finite (resp., infinite) effects of the recur-

sive function be given by a least (resp., greatest) fixpoint over a

predicate variable 𝑋` (resp., 𝑋a ). The type system also generates

constraints in other rules, such as the subtyping rules (S-Qual,

etc.) of the form (𝜏1 & Φ1) <: (𝜏2 & Φ2). In these cases, the type

system requires that the finite (resp., infinite) effects Φ
`

1
(resp., Φa

1
)

is approximated by the finite (resp., infinite) effects Φ
`

2
(resp., Φa

2
).

Addressing the recursive function rule in the type soundness

proof is a challenge due to the infinite effects. We use a seman-

tics of types and an infinite sequence of approximations for the

recursive function and its infinite effect. This infinite sequence of

approximations is used to construct the greatest fixpoint.

The types for messenger are given in the second column of Fig. 1.

Let us consider the send_msgs recursive function, whose overall

type is given by the dependent-refinement type 𝜏send_msgs, that

constrains input 𝑛 to be greater than or equal to 0. The overall effect

Φsend_msgs has two parts: the finite effect Φ
`

send_msgs and the infinite

effect Φa
send_msgs. These effect predicates involve predicate variables

𝑋` and𝑋a , quantifiedwith a least and greatest fixpoint, respectively.

Notice that 𝑋` and 𝑋a are parameterized by 𝑛, which is a program
variable: the input to messenger. This highlights our support for

dependent temporal effects, showing how they are treated intimately

with the fixpoint constraints on recursive functions.

Solving Fixpoints via Our Deductive Proof Rules. The deduc-
tive rules enable us to conclude the final effects:

Φ′
until_ready = (_𝑥.𝑥 ∈ Wait∗ · Ready, _𝑥 .𝑥 ∈ Wait𝜔 )
Φ′
send_msgs = (_𝑥.𝑥 ∈ Send𝑛, _𝑥 .⊥)

Φ′
messenger = (_𝑥.⊥, _𝑥 .𝑥 ∈ (Ready · Send𝑛 | Wait)𝜔 )

Intuitively, until_ready has finite behaviors that repeat Wait finitely

many times followed by Ready. The infinite behaviors of until_ready

are infinite repetition of Wait. send_msgs has only finite behaviors,

specifically, repetition of Send 𝑛 times, where 𝑛 is the input to

the overall program messenger. Finally, messenger has only infi-

nite effects, that arises from a combination of the other two func-

tions. Notice that our approach follows the classical compositional

spirit of type systems: conclusions about terms are derived inde-

pendently and then combined together to construct conclusions

about compound terms. Similarly, our conclusion about the depen-

dent temporal effects of method messenger is constructed after we
have reached conclusions about the effects of its callees (including

approximations of these callees).

So, how do we come to these final approximations of all func-

tions? Our sub-typing rules (cf. Fig. 7 in Sec. 4) allow us to introduce

an approximation effect predicate Φ′
of effect predicate Φ provided

that we can show that ∀𝑥 .Φ′(𝑥) ⇒ Φ(𝑥). For send_msgs, the sub-
typing appears in Fig. 1, with premises A and B.

Our deductive system comprises rules for reasoning about these

formulas that contained least- and greatest- fixpoint formulas buried

within them. The key idea is to reduce these tricky subformulas to

invariants and well-founded relations, both described as predicates,

and then symbolically manipulate the side-conditions that arise

until they can be handled by base solvers. The process begins with

one of four main rules, under- or over-approximate (as the case

may be) least and greatest fixpoints, depending on whether they

appear in a negative or positive position in the fixpoint formula.

We’ll now look at how two of the rules can be used for the example.
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First, looking at the finite effects of send_msgs, our rules allow us

to show, for example, that _𝑥 .𝑥 ∈ Send𝑛 approximates Φ
`

send_msgs
by using invariant predicates that over-approximate the least fix-

points. This can be seen in the deductive proof rule in subtree

A. We have a formula, where the least fixpoint occurs in a nega-

tive position, i.e., inside Φ
`

send_msgs. Our proof rule (Fp-Lfp
−
) lets

us approximate this buried least fixpoint with _(𝑛, 𝑥).𝑥 ∈ Send𝑛

by using the pre-fixpoint. In the first premise of the rule, we con-

sider only the fixpoint and must show that when we substitute

_(𝑛, 𝑥) .𝑥 ∈ Send𝑛 into the fixpoint formula, the result is approx-

imated by _(𝑛, 𝑥).𝑥 ∈ Send𝑛 . In the second premise, we use this

information, eliminating the fixpoint.

Next, looking at the infinite effects of send_msgs, our proof

system lets us show that the goal effect approximation _𝑥.⊥ of

Φa
send_msgs holds. This is done by, first, over-approximating the

greatest fixpoint subformula that occurs in a negative position us-

ing a predicate and a well-foundedness check. Note that the typing

judgments accumulate the invariant that 𝑛 ≥ 0, and that it is in-

corporated into the deductive proof rule in subtree B. The rule

(Fp-Gfp
−
) lets us replace the GFP formula (a𝑋 (𝑥).𝜓 ) (̃𝑡) by some

predicate ¬𝑝1 (̃𝑡). There is a side condition, however, that we must

also provide a relational well-foundedness predicate 𝑝2 which wit-

nesses that ¬𝑝1 over-approximates a𝑋 (𝑥) .⊤∧𝜓 . In the send_msgs

example, we use the predicate ¬(𝑛 ≥ 0) to approximate the GFP

formula in Φa
send_msgs. What remains is the side-condition, where

we use 𝑝2 = 𝑛1 > 𝑛2 ≥ 0 to witness that ¬𝑝1 over-approximates

𝑛 ≠ 0 ∧ ∃𝑦.𝑥 = Send · 𝑦 ∧ 𝑋a (𝑛 − 1, 𝑦).
We treat this side-condition of witnessing predicates’ approxi-

mations itself as a judgment (denoted 𝑋 (𝑥);𝑝1;𝑝2;⊤ ↑𝜓 ) as well as
an analogous least-fixpoint judgment (denoted 𝑋 (𝑥);𝑝1; 𝑝2;⊥ ↓ 𝜓 )
in another series of proof rules. These rules are inductively defined

over𝜓 , letting us discharge this obligation syntactically down to

predicate reasoning, as can be seen in the rest of proof subtree

B. Specifically, we use a rule for conjunction (Apx
a
-∧), existential

quantification (Apx
a
-∃), and then conjunction again. Each rule

has premises for each sub-formula(e) and predicate-oriented side

conditions. We will discuss these rules in Sec. 5.

Other Examples & Applications. The messenger example is in-

tended to be a small example that highlights some of the main

aspects of our work. In Fig. 2 we provide the source code and effect-

based temporal properties for more examples, demonstrating the

applicability of our approach. (The types for these examples are

given in Appendix C.) We now discuss each program.

Amortized Complexity. This example involves functions that ma-

nipulate a pair of integer lists. The main loop will nondeterministi-

cally enqueue a new integer, via enqueuewhich adds the element to

the l2 list. If main finds that the list is empty, it terminates. Other-

wise, it iterates, but only after applying dequeue to the list. dequeue

shuffles elements between l1 and l2: if l1 is empty, it moves every-

thing from l2 to l1 and, otherwise, it dequeues by returning a pair

of the dequeued item and the new queue (l1’,l2). Here, #a(𝑥) is
the number of a’s in 𝑥 . The temporal effect Φ of main asserts that,

when the program terminates, the number of enqueues plus the

length of l2 is equal to the number of dequeues minus the length

of l1, which is equal to the number of Tick’s.

Higher-Order Functions. The second example shrinker contains

a higher-order function shrink. The example is adopted from a

similar example in [12]. Here, shrink takes an argument f which

(events) a ::∈ Σ

(expressions) 𝑒 ::= 𝑥 | 𝑛 | 𝑣1 op 𝑣2 | rec(𝑓 , 𝑥, 𝑒) | 𝑣1 𝑣2 | ev[a]
| ifz 𝑣 then 𝑒1 else 𝑒2 | let 𝑥= 𝑒1 in 𝑒2

(values) 𝑣 ::= 𝑥 | 𝑛 | rec(𝑓 , 𝑥, 𝑒) �̃� (where |�̃� | < |𝑥 |)
(simple types) 𝑇 ::= int | 𝑇1 → 𝑇2

Figure 3. Syntax of L

is a function from unit to int, and an integer argument d. Then, it

recursively calls itself by passing a function that returns d less than

the given function, until f returns a non-positive value. Here, t is

a ghost parameter that is used to represent sufficient information

about the passed function (see., e.g., [24]). The effect Φ asserts that

shrinker never terminates, and its infinite executions emit the

event sequences Shrinkt/d · Zoom𝜔 . That is, shrink is called t/d
times, followed by infinitely many calls to zoom.

Server Fairness/Liveness. The function listener in this example

simulates a non-terminating loop within, e.g., a web server, that

awaits new incoming connections (Wait), accepts them (Accept)

and dispatches them to an appropriate handler (Handle). Argument

pend is the number of clients that have been accepted but not yet

dispatched and argument npool is an upper bound on the amount

of clients that can be accepted but yet undispatched at a given time.

The use of * indicates a non-deterministic boolean choice.

One critical property is that every accepted connection is even-

tually handled, i.e., that the pool of pending clients eventually

becomes empty. This is, however, not true in general since infin-

itely many new clients may preempt handling pending clients. The

property must be instead weakened to include a fairness constraint

that all infinite event streams satisfy (Σ∗ · (Σ \ {Accept})npool+1)𝜔 ,
i.e., that there will always eventually be a time when new connec-

tions won’t be accepted for npool + 1 steps. (Technically, this does

ensure that the pool of clients always eventually becomes empty,

even though less than npool + 1 steps may be needed.)

These examples demonstrate an interesting connection of our

method and works that have been focused on resource analysis and

cost semantics. One way of thinking about the execution time of

a program is by considering the events generated by the program

(as we discuss in Sec. 3, we require programs not to have infinite

event-less executions). Our dependent temporal effects are capable

of expressing specifications of programs that limit the number of

events that could possibly be generated, a phenomenon that corre-

sponds to an upper bound on computation time. We believe that

there is interesting future work to be explored at the intersection

of these two research tracks.

3 Target Language
The syntax of an ML-like (i.e., typed, higher-order, and call-by-

value) functional languageL is shown in Fig. 3. Here, 𝑛, 𝑥 , and a are

meta-variables ranging respectively over integers, term variables,

and events. Σ represents a finite set of events. We write 𝑥 for a

finite sequence of variables and |𝑥 | for the length of 𝑥 . We also

write 𝜖 for the empty sequence. We use a meta-variable 𝜛 (resp.

𝜋 ) to represent a finite (rep. infinite) sequence of events. We write

𝜛 · 𝜋 (resp. 𝜛 · 𝜛′
) for the concatenation of the finite 𝜛 and the

infinite 𝜋 (resp. finite 𝜛′
) sequences. op represents binary integer
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(formulas) 𝜙 ::= ⊤ | ⊥ | 𝐴 (̃𝑡) | ¬𝜙 | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2
| 𝜙1 ⇒ 𝜙2 | ∀𝑥 ∈ S.𝜙 | ∃𝑥 ∈ S.𝜙 | 𝑋 (̃𝑡)
| (`𝑋 (𝑥 : S̃).𝜙) (̃𝑡) | (a𝑋 (𝑥 : S̃).𝜙) (̃𝑡)

(terms) 𝑡 ::= 𝑥 | 𝑓 (̃𝑡) (predicates) 𝑝 ::= _𝑥 ∈ S̃.𝜙
(sorts) S ::∈ {Z, Σ∗, Σ𝜔 }

Figure 4. Syntax of fixpoint logic

operators such as +, −, ×, =, and <. We assume that boolean and

unit values are encoded as integers (e.g., true = 0 and false = 1).

We assume that expressions are simply-typed. An expression

ev[a] raises the event a. An expression ifz𝑣 then𝑒1else𝑒2 reduces

to 𝑒1 if 𝑣 = 0 and 𝑒2 otherwise. We abbreviate let𝑥=𝑒1 in𝑒2 as 𝑒1; 𝑒2
if 𝑥 does not occur in 𝑒2. An expression rec(𝑓 , 𝑥, 𝑒) represents a
(possibly recursive) function 𝑓 with the arguments 𝑥 (where |𝑥 | ≥ 1)

and the body 𝑒 . We assume that rec(𝑓 , 𝑥, 𝑒) is productive: if a run
of the function is non-terminating, it exhibits an infinite sequence

of events. The assumption can be easily enforced by inserting a

dummy event command in the beginning of each function definition.

Note that, for simplicity, we omit non-deterministic choice ∗ and
algebraic data structures such as lists, which are used in our running

examples, from the language L. It is easy to extend our type system

in Sec. 4 with these features (see, e.g., [23, 25]).

The operational semantics of L is defined by the set of inductive

and coinductive rules for deriving judgments of the form 𝑒 ⇓ 𝑣 &𝜛

and 𝑒 ⇑ ⊥ &𝜋 . The former is for terminating evaluations and means

that the evaluation of 𝑒 terminates with the final result value 𝑣

producing the finite sequence of events 𝜛. The latter is for non-

terminating evaluations and means that the evaluation of 𝑒 diverges

producing the infinite sequence of events 𝜋 . The rules are analogous

to the ones from [12] and described in Appendix A.

4 Type System
4.1 First-Order Fixpoint Logic
The types in our dependent-refinement type system embed predi-

cates in the first-order fixpoint logic over integers and finite and

infinite event sequences. Fig. 4 shows the syntax. Meta-variable 𝑋

represents predicate variables.𝐴 (̃𝑡) represents atomic formulas such

as the equality on integers and sequences. 𝑓 represents constants

such as integers 𝑛, the empty sequence 𝜖 , and singleton sequences a

as well as functions such as the sequence concatenation and integer

arithmetic operators. We write ⊤ and ⊥ respectively for tautology

and contradiction. The formula `𝑋 (𝑥 : T̃ ) .𝜙 (resp.a𝑋 (𝑥 : T̃ ) .𝜙) rep-
resents the least (resp. greatest) fixpoint (of the function _𝑋 ._𝑥 ∈
T̃ .𝜙). We assume that 𝑋 in `𝑋 (𝑥 : T̃ ).𝜙 and a𝑋 (𝑥 : T̃ ) .𝜙 occurs

only positively in 𝜙 . We sometimes omit sorts when they are ob-

vious from the context. We define (_𝑥.𝜙) (̃𝑡) ≜ [̃𝑡/𝑥]𝜙 and write

𝑝1 ⊑ 𝑝2 if ∀𝑥 .𝑝1 (𝑥) ⇒ 𝑝2 (𝑥) holds. We also write ¬_𝑥 .𝜙 for _𝑥 .¬𝜙 .
We write |= 𝜙 if 𝜙 is valid. We define the formal semantics of this

first-order fixpoint formulas in Appendix H. We write fv(𝜙) (resp.
fpv(𝜙)) for the set of free term (resp. predicate) variables in 𝜙 . We

also define fv(_𝑥.𝜙) ≜ fv(𝜙) \ {𝑥} and fpv(_𝑥.𝜙) ≜ fpv(𝜙).

4.2 Syntax of Types and Effects
The syntax of types and effects is shown in Fig. 5. An effectΦ is a pair

of predicates _𝑥 ∈ Σ∗ .𝜙` and _𝑥 ∈ Σ𝜔 .𝜙a , which may contain free

term and predicate variables. We write Φ`
(resp. Φa

) for _𝑥 ∈ Σ∗ .𝜙`

(effects) Φ ::= (_𝑥 ∈ Σ∗ .𝜙` , _𝑥 ∈ Σ𝜔 .𝜙a )
(effect qualified types) 𝜎 ::= (𝜏 & Φ)

(dependent refinement types) 𝜏 ::= {𝑥 | 𝜙} | (𝑥 : 𝜏) → 𝜎

(type environments) Γ ::= ∅ | Γ, 𝑥 : 𝜏

Figure 5. Syntax of types and effects

(resp. _𝑥 ∈ Σ𝜔 .𝜙a ). Φ
`
specifies a set of valid finite event sequences

for terminating runs. On the other hand, Φa
specifies a set of valid

infinite event sequences for non-terminating runs. We define the

concatenation Φ1 · Φ2 of effects Φ1 and Φ2 as follows.
1

(_𝑥 ∈ Σ∗ .∃𝑥1, 𝑥2 ∈ Σ∗ .𝑥 = 𝑥1 · 𝑥2 ∧ Φ
`

1
(𝑥1) ∧ Φ

`

2
(𝑥2),

_𝑥 ∈ Σ𝜔 .Φa
1
(𝑥) ∨ (∃𝑦 ∈ Σ∗, 𝑧 ∈ Σ𝜔 .𝑥 = 𝑦 · 𝑧 ∧ Φ

`

1
(𝑦) ∧ Φa

2
(𝑧)))

We also define a special effect Φval ≜ (_𝑥 ∈ Σ∗ .𝑥 = 𝜖, _𝑥 ∈ Σ𝜔 .⊥).
Note that Φval is an identity with respect to ·, that is, Φval · Φ =

Φ · Φval = Φ for any Φ. We often abbreviate (𝜏 & Φval) as 𝜏 .
An effect qualified type is of the form (𝜏 & Φ) where 𝜏 is a depen-

dent refinement type (described below) and Φ is an effect. Roughly,

the qualified type (𝜏 & Φ) is the type of expressions 𝑒 such that, 1.)

for all terminating run 𝑒 ⇓ 𝑣 & 𝜛, 𝑣 conforms to the type 𝜏 and 𝜛

satisfies Φ`
, and 2.) for all non-terminating run 𝑒 ⇑ ⊥&𝜋 ,𝜛 satisfies

Φa
. Sec. 4.3 formally defines the semantics of the qualified types.

2

An integer refinement type {𝑥 | 𝜙} is the type of integers 𝑥 that

satisfy the formula 𝜙 . We often abbreviate {𝑥 | ⊤} as int. A depen-
dent function type (𝑥 : 𝜏) → 𝜎 is the type of functions that take an

argument 𝑥 of the type 𝜏 and behave according to the return type 𝜎 .

Note that the scope of 𝑥 is within 𝜎 , and hence effects in 𝜎 can de-

pend on the argument 𝑥 . For example, ((𝑥 : int) → (int&Φ1)&Φ2)
is the type of expressions that exhibit event sequences conform-

ing to Φ2 when evaluated, and cause event sequences conform-

ing to Φ1 when applied to some integer argument 𝑥 . We write

(𝑥 : 𝜏) → (𝜏 & Φ) for (𝑥1 : 𝜏1) → ((𝑥2 : 𝜏2) → (· · · (𝑥𝑛 : 𝜏𝑛) →
(𝜏 & Φ) · · · & Φval) & Φval), that is, the latent effect of partially ap-

plying the function is Φval . Note that a type of such a form can be

given to a recursive function rec(𝑓 , 𝑥, 𝑒) where |𝑥 | = |𝜏 | as partial
applications to 𝑓 (i.e., applying less than |𝑥 | many arguments) do

not raise any events. We abbreviate (𝑥 : 𝜏) → 𝜎 as 𝜏 → 𝜎 when 𝑥

does not occur in 𝜎 .

A type environment Γ is a sequence of variable bindings 𝑥 : 𝜏 .

We define Γ(𝑥) ≜ 𝜏 if 𝑥 : 𝜏 ∈ Γ. We abbreviate Γ, a : {a | 𝜙} as Γ, 𝜙
if a ∉ fv(𝜙) and a never occurs elsewhere. Note that type bindings

in type environments and arguments of function types are of the

form (𝑥 : 𝜏) instead of (𝑥 : 𝜎). This is because the target language
L is call-by-value, and hence variables are always bound to values

whose evaluation never exhibits temporal effects.

We define auxiliary functions sty(𝜎), fv(𝜎), and fpv(𝜎). sty(𝜎)
represents the simple type corresponding to the qualified type 𝜎 .

fv(𝜎) (resp. fpv(𝜎)) represents the set of free term (resp. predicate)

variables that occur in 𝜎 . The definitions are standard and deferred

to Appendix B We extend the notions to type environments and

define sty(Γ), fv(Γ), and fpv(Γ) in the obvious way.

1
Note that this generalizes the concatenation of non-dependent temporal effects from

previous works [4, 12].

2
Readers familiar with type and effect systems may find the qualified type notation

atypical. We use the notation to simplify the presentation: for example, subtyping and

subeffecting can be defined at once.



A Fixpoint Logic and Dependent Effects for
Temporal Property Verification LICS ’18, July 9–12, 2018, Oxford, United Kingdom

JΓ ⊢ 𝜎K ≜ {𝑒 | ∀\ ∈ sty(Γ) .(\ |= Γ) ⇒ \ (𝑒) ∈ J\ (𝜎)K}

J(𝜏 & Φ)K ≜
𝑒 ∈ sty(𝜏)

������ (∀𝜛,𝑤.(𝑒 ⇓ 𝑤 &𝜛) ⇒
(𝑤 ∈ J𝜏K) ∧ (|= Φ` (𝜛))) ∧
(∀𝜋.(𝑒 ⇑ ⊥ & 𝜋) ⇒ (|= Φa (𝜋)))


J{𝑥 | 𝜙}K ≜ {𝑛 | |= [𝑛/𝑥]𝜙}

J(𝑥 : 𝜏) → 𝜎K ≜
{
𝑤 ∈ sty(𝜏 → 𝜎)

�� ∀𝑤 ′ ∈ J𝜏K.𝑤 𝑤 ′ ∈ J[𝑤 ′/𝑥]𝜎K
}

Figure 6. Semantic typing

We remark that our type and effects are essentially the exten-

sion of the types from the previous work on dependent-refinement

type systems [12, 19, 22, 23, 27, 29] with dependent temporal ef-

fects which are first-order fixpoint logic predicates on program

values and (finite and infinite) event sequences. Note that, as in

the previous work, the dependent types are restricted to facilitate

(semi-)automated reasoning via modern SMT and constraint solv-

ing techniques. Namely, the types can only depend on non-function

and effect-free terms.

4.3 Semantic Typing
To formalize the type soundness theorem (cf. Theorem 4.1), we

define the semantics of qualified types. Fig. 6 defines the seman-

tics. Here, 𝑤 is a meta-variable ranging over closed values (i.e.,

fv(𝑤) = ∅). We write 𝑒 ∈ 𝑇 if the expression 𝑒 has the simple

type 𝑇 . Similarly, we write 𝑤 ∈ 𝑇 if the closed value 𝑤 has the

type 𝑇 . We write \ ∈ 𝐸 for a simple type environment 𝐸 and a

closed value substitution \ if dom(\ ) = dom(𝐸) and \ (𝑥) ∈ 𝐸 (𝑥)
for any 𝑥 ∈ dom(𝐸). Also, we write \ |= Γ if dom(\ ) = dom(Γ)
and ∀(𝑥 : 𝜏) ∈ Γ.\ (𝑥) ∈ J\ (𝜏)K hold.

Note that JΓ ⊢ 𝜎K denotes the set of open expressions that behave
according to 𝜎 under an environment conforming to Γ. Similarly,

J𝜎K (resp. J𝜏K) denotes the set of closed expressions (resp. values)

that behave according to 𝜎 (resp. 𝜏). For instance, for 𝜏 = (𝑥 : {𝑢 |
𝑢 ≥ 0}) → ({a | a > 𝑥} & Φ) where Φ = (_𝑧 ∈ Σ∗ .𝑧 ∈ a𝑥 , _𝑧 ∈
Σ𝜔 .⊥), J𝜏K are the set of closed functions from integers to integers

which, when given a non-negative integer 𝑥 as the argument, raises

the event a 𝑥 many times and returns an integer greater than 𝑥 .

We also define the semantics of subtyping relation as follows,

which says when a (qualified) type is a subtype of another in the

given type environment.

JΓ ⊢ 𝜎1 <: 𝜎2K ≜ ∀\ ∈ sty(Γ).(\ |= Γ) ⇒ J\ (𝜎1)K ⊆ J\ (𝜎2)K
JΓ ⊢ 𝜏1 <: 𝜏2K ≜ ∀\ ∈ sty(Γ) .(\ |= Γ) ⇒ J\ (𝜏1)K ⊆ J\ (𝜏2)K

Sec. 4.4 shows the rules for deriving subtyping judgments.

4.4 Typing Rules
Fig. 7 shows the typing rules. The rules derive judgments of the

form Γ ⊢ 𝑒 : 𝜎 , saying that 𝑒 behaves according to 𝜎 under a value

environment conforming to Γ.
We describe the typing rules. The rules T-Const for typing inte-

ger constants, T-VInt for typing integer-type term variables, and

T-VFun for typing function-type variables, T-Op for typing integer

operations, T-If for typing conditional branches are straightfor-

ward extension of those from the previous work on dependent-

refinement type systems [12, 19, 22, 23]. Note that Φval is assigned

as the effect of the expression in T-Const, T-VInt, T-VFun, and T-

Op because these expressions always terminate and raise no events.

Γ ⊢ 𝑛 : ({𝑥 | 𝑥 = 𝑛} & Φval)
T-Const

sty(Γ(𝑥)) = int

Γ ⊢ 𝑥 : ({𝑢 | 𝑢 = 𝑥} & Φval)
T-VInt

sty(Γ(𝑥)) ≠ int

Γ ⊢ 𝑥 : (Γ(𝑥) & Φval)
T-VFun

𝑥 ∉ fv(𝜏2) ∪ fv(Φ2) Γ ⊢ 𝑒1 : (𝜏1 & Φ1) Γ, 𝑥 : 𝜏1 ⊢ 𝑒2 : (𝜏2 & Φ2)
Γ ⊢ let 𝑥= 𝑒1 in 𝑒2 : (𝜏2 & Φ1 · Φ2)

T-Let

Γ ⊢ 𝑣1 : ((𝑥 : 𝜏) → (𝜏 ′ & Φ) & Φval) Γ ⊢ 𝑣2 : (𝜏 & Φval)
Γ ⊢ 𝑣1 𝑣2 : [𝑣2/𝑥] (𝜏 ′ & Φ)

T-App

Γ ⊢ 𝑣1 : (int & Φval) Γ ⊢ 𝑣2 : (int & Φval)
Γ ⊢ 𝑣1 op 𝑣2 : ({𝑥 | 𝑥 = 𝑣1 op 𝑣2} & Φval)

T-Op

Γ, 𝑣 = 0 ⊢ 𝑒1 : 𝜎 Γ, 𝑣 ≠ 0 ⊢ 𝑒2 : 𝜎
Γ ⊢ ifz 𝑣 then 𝑒1 else 𝑒2 : 𝜎

T-If

Φ = (_𝑥 ∈ Σ∗ .𝑥 = a, _𝑥 ∈ Σ𝜔 .⊥)
Γ ⊢ ev[a] : ({𝑥 | 𝑥 = 0} & Φ) T-Event

𝜏 ′
𝑓
= (𝑥 : 𝜏) → (𝜏 & (_𝑥 ∈ Σ∗ .𝑋` (𝑥, 𝑥), _𝑥 ∈ Σ𝜔 .𝑋a (𝑥, 𝑥)))

Γ, 𝑓 : 𝜏 ′
𝑓
, 𝑥 : 𝜏 ⊢ 𝑒 : (𝜏 & Φ)

𝑞` = `𝑋` (𝑥, 𝑥) .Φ` (𝑥) 𝑞a = a𝑋a (𝑥, 𝑥) .[𝑞`/𝑋` ]Φa (𝑥)
𝜏𝑓 = (𝑥 : 𝜏) → (𝜏 & (_𝑥 ∈ Σ∗ .𝑞` (𝑥, 𝑥), _𝑥 ∈ Σ𝜔 .𝑞a (𝑥, 𝑥)))

Γ ⊢ rec(𝑓 , 𝑥, 𝑒) : (𝜏𝑓 & Φval)
T-Fun

Γ ⊢ 𝑒 : 𝜎1 Γ ⊢ 𝜎1 <: 𝜎2
Γ ⊢ 𝑒 : 𝜎2

T-Sub

⊩ ⌊Γ ⊢ 𝜙1 ⇒ 𝜙2⌋
Γ ⊢ {𝑢 | 𝜙1} <: {𝑢 | 𝜙2}

S-Int

Γ ⊢ 𝜏1 <: 𝜏2
⊩ ⌊Γ ⊢ ∀𝑥 ∈ Σ∗ .Φ`

1
(𝑥) ⇒ Φ

`

2
(𝑥)⌋

⊩ ⌊Γ ⊢ ∀𝑥 ∈ Σ𝜔 .Φa
1
(𝑥) ⇒ Φa

2
(𝑥)⌋

Γ ⊢ (𝜏1 & Φ1) <: (𝜏2 & Φ2)
S-Qual

Γ ⊢ 𝜏2 <: 𝜏1 Γ, 𝑥 : 𝜏2 ⊢ 𝜎1 <: 𝜎2
Γ ⊢ (𝑥 : 𝜏1) → 𝜎1 <: (𝑥 : 𝜏2) → 𝜎2

S-Fun

Figure 7. Typing and subtyping rules

T-Fun types recursive function definitions. As described in Sec. 2,

the main idea here is to introduce predicate variables 𝑋` and 𝑋a

respectively representing the finite and infinite effects of the re-

cursive function 𝑓 being typed. Then, the rule types the body of

the function, 𝑒 , under the environment that 𝑓 has these temporal

effects (expressed by the binding 𝑓 : 𝜏 ′
𝑓
), to obtain the qualified

type (𝜏 & (Φ` ,Φa )). Then, the latent effect of the function can be

obtained by, for the finite part, taking the least fixpoint of Φ`
(i.e.,

𝑞` = `𝑋` (𝑥, 𝑥).Φ` (𝑥)), and the greatest fixpoint for the infinite

part using the least fixpoint solution for 𝑋` appearing in the for-

mula (i.e., a𝑋a (𝑥, 𝑥).[𝑞`/𝑋` ]Φa (𝑥)). The rule adopts the one from
[4] and extend it to dependent type and effects.

The rule T-Let for typing let expressions extends a similar rule

from the previous work [4, 12]. Note that concatenation is used

to obtain the effect of the expression in the conclusion, correctly

accounting for the fact that the possible event traces of the ex-

pression are the concatenation of those of 𝑒1 and 𝑒2. T-App types

function applications, and is a straightforward extension of those

from the previous work on dependent-refinement type systems

and (non-dependent) type-and-effect systems. As in a standard

type-and-effect system, the latent effect of the function, Φ, becomes
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|= 𝜓

⊩ 𝜓
Fp-Valid

|= [(_𝑥 .𝜓 ′)/𝑋 ]𝜓 ⇒ 𝜓 ′ ⊩ 𝐶− [ [̃𝑡/𝑥]𝜓 ′]
⊩ 𝐶− [(`𝑋 (𝑥) .𝜓 ) (̃𝑡)]

Fp-Lfp
−

|= 𝜓 ′ ⇒ [(_𝑥 .𝜓 ′)/𝑋 ]𝜓 ⊩ 𝐶+ [ [̃𝑡/𝑥]𝜓 ′]
⊩ 𝐶+ [(a𝑋 (𝑥) .𝜓 ) (̃𝑡)] Fp-Gfp

+

𝑋 (𝑥);𝑝1;𝑝2;⊤ ↓ nnf (𝜓 ) ⊩ 𝐶+ [𝑝1 (̃𝑡)] |= WF (𝑝2)
⊩ 𝐶+ [(`𝑋 (𝑥) .𝜓 ) (̃𝑡)] Fp-Lfp

+

𝑋 (𝑥);𝑝1;𝑝2;⊤ ↑ nnf (𝜓 ) ⊩ 𝐶− [¬𝑝1 (̃𝑡)] |= WF (𝑝2)
⊩ 𝐶− [(a𝑋 (𝑥) .𝜓 ) (̃𝑡)]

Fp-Gfp
−

Figure 8. Proof rules for the fixpoint logic

the effect of the function application. Note here that the variable

𝑥 may occur in the latent effect, which is substituted by 𝑣2 in the

conclusion to account for the dependency. T-Event types event

raising operations and is self-explanatory. Finally, T-Sub is the

subsumption rule.

Fig. 7 also shows the rules for deriving subtyping judgments.

There, auxiliary functions ⌊Γ⌋ and ⌊Γ ⊢ 𝜙⌋ are defined by:

⌊∅⌋ ≜ ⊤ ⌊Γ, 𝑥 : {𝑦 | 𝜙}⌋ ≜ ⌊Γ⌋ ∧ [𝑥/𝑦]𝜙
⌊Γ ⊢ 𝜙⌋ ≜ ⌊Γ⌋ ⇒ 𝜙 ⌊Γ, 𝑥 : (𝑦 : 𝜏) → 𝜎⌋ ≜ ⌊Γ⌋

The rules S-Int and S-Fun for subtyping refinement integer types

and dependent function types are equivalent to those from the

previous work on dependent-refinement type systems. The rule

S-Qual is for subtyping effect qualified types. It asserts that the

type part of the qualified types 𝜏1 and 𝜏2 are in the subtyping

relationship. Further, it checks that the left effect Φ1 is a subeffect of
the right effect Φ2. The subeffecting relation checks that the finite

(resp. infinite) part of Φ1 logically implies the finite (resp. infinite)

part of Φ2, under the assertions implied by the type environment Γ.
For example, in the typing of messenger from Sec. 2, a subtyping

judgment Γ ⊢ (𝜏 & Φsend_msgs) <: (int & Φ′
send_msgs) is discharged

where Γ = 𝑛 : {𝑥 | 𝑥 ≥ 0}, 𝜏 is the refinement integer type

obtained for send_msgs 𝑛, and Φsend_msgs and Φ′
send_msgs are from

Fig. 1. S-Qual checks the subtyping by asserting the validity of 𝑛 ≥
0 ⇒ ∀𝑥 ∈ Σ∗ .Φ`

send_msgs (𝑥) ⇒ Φ′`
send_msgs (𝑥) and 𝑛 ≥ 0 ⇒ ∀𝑥 ∈

Σ∗ .Φa
send_msgs (𝑥) ⇒ Φ′a

send_msgs (𝑥). Sec. 5 shows the deductive

system for solving such predicate fixpoint logic constraints.

We show that the type system is sound, that is, the judgments

derived by the typing rules respect the semantics. We define pred-
icate substitution 𝜌 to be a finite map from predicate variables to

closed predicates.

Theorem 4.1. If Γ ⊢ 𝑒 : 𝜎 , then 𝑒 ∈ J𝜌 (Γ) ⊢ 𝜌 (𝜎)K for any predicate
substitution 𝜌 with dom(𝜌) = fpv(Γ) ∪ fpv(𝜎).

We remark that the soundness holds for any background first-

order theory supporting basic integer arithmetic (i.e., those in L)

and concatenations of finite and infinite string over a finite alphabet.

Hence, our system can reap the benefits of recent advances in

automated deduction for various theories on integers, finite and

infinite string, and combinations thereof [1, 5].

5 Deductive Proof System For First-Order
Fixpoint Logic

We now present our deductive system for the first-order fixpoint

logic introduced in Sec. 4.1. The deductive system is intended, but

not limited, to be used to discharge proof obligations that arise

during the process of type checking and inference for the type

system presented in Sec. 4.4.

The deductive system comprises rules for reasoning via invari-

ants and well-founded relations, and is able to solve formulas con-

taining both least and greatest fixpoints. The key idea is to soundly

approximate formulas with fixpoints as formulas without fixpoints,

which may be checked by off-the-shelf first-order theorem provers

(SMT solvers) supporting the theories of integers and finite and

infinite strings over finite alphabet [1, 5].

A judgment ⊩ 𝜙 of the deductive system means that 𝜙 is valid.

The derivation rules for ⊩ 𝜙 are shown in Fig. 8. There, meta-

variable𝜓 ranges over formulas not containing fixpoint formulas

(i.e., those of the form (`𝑋 (𝑥).𝜙) (̃𝑡) and (a𝑋 (𝑥).𝜙) (̃𝑡)). The formula

nnf (𝜓 ) is the negation normal form of𝜓 , and |= WF (𝑝) means that

the predicate 𝑝 = _𝑥 .𝜙 is well-founded, that is, the arity of 𝑝 is 2×𝑛

for some 𝑛 and there is no infinite sequence �̃�1, �̃�2, . . . such that

|̃𝑡𝑖 | = 𝑛 and 𝑝 (̃𝑡𝑖 , �̃�𝑖+1) holds for all 𝑖 ≥ 1. 𝐶+
(resp. 𝐶−

) is a formula

context whose hole occurs in a positive (resp. negative) position.

We now describe the rules. The rule Fp-Valid checks the va-

lidity directly, and is applied when the given formula does not

contain fixpoint formulas. Fp-Lfp
−
over-approximates a least fix-

point `𝑋 (𝑥) .𝜓 that occurs in a negative position with a pre-fixpoint

_𝑥.𝜓 ′
of the function _𝑋 ._𝑥 .𝜓 . Note here that𝜓 and𝜓 ′

do not con-

tain fixpoints. An example of Fp-Lfp
−
can be seen in Sec. 2, where

we discuss proof subtree A. Meanwhile, Fp-Gfp
+
is a dual rule and

it under-approximates a greatest fixpoint a𝑋 (𝑥) .𝜓 that occurs in a

positive position with a post-fixpoint _𝑥.𝜓 ′
of _𝑋 ._𝑥 .𝜓 .

By contrast, Fp-Lfp
+
under-approximates a least fixpoint that

occurs in a positive position with a predicate 𝑝1. Here, the auxiliary

judgment𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↓ 𝜓 is used to check that the well-founded

predicate 𝑝2 witnesses that 𝑝1 under-approximates the least fixpoint

`𝑋 (𝑥) .𝜓 ′ ⇒ 𝜓 . In a dual manner, Fp-Gfp
−
over-approximates a

greatest fixpoint that occurs in a negative position with a predicate

¬𝑝1. The auxiliary judgment 𝑋 (𝑥); 𝑝1;𝑝2;𝜓 ′ ↑𝜓 checks that the

well-founded predicate 𝑝2 witnesses that ¬𝑝1 over-approximates

the greatest fixpoint a𝑋 (𝑥).𝜓 ′ ∧𝜓 . An example of Fp-Gfp
−
can be

seen in Sec. 2, where we discuss proof subtree B.
The rules in Fig. 8 reduce fixpoints to predicates but, in two cases,

lead to side conditions that the predicates indeed approximate the

fixpoints. These conditions are treated themselves as judgments in

the auxiliary relations 𝑋 (𝑥);𝑝1; 𝑝2;𝜓 ′ ↓ 𝜓 and 𝑋 (𝑥);𝑝1; 𝑝2;𝜓 ′ ↑𝜓 ,
defined in Fig. 9. There, we maintain the invariants that 𝜓 is in

the negation normal form, 𝜓 ′
does not contain 𝑋 , and 𝑋 may oc-

cur only positively in 𝜓 . The rules let us then manipulate the

judgments to further reduce to predicate reasoning. The rules

Apx
`
-∧ and Apx

`
-∀ are similar to standard ones for first-order

logic. Apx
`
-∨ splits a judgment with the succedent of the form

𝜓1 ∨ 𝜓2 into two judgments: one with the succedent 𝜓1 and the

antecedent conjuncted with𝜓 ′
1
and the other with the succedent

𝜓2 and the antecedent conjuncted with𝜓 ′
2
for some𝜓 ′

1
and𝜓 ′

2
such

that𝜓 ′
1
∨𝜓 ′

2
holds provided the original antecedent does. Apx

`
-∃

generalizes Apx
`
-∨ to judgments with the succedent of the form
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|= 𝑝1 (𝑥) ∧𝜓 ′ ⇒ 𝜓

𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↓ 𝜓 Apx
`
-Base

|= 𝑝1 (𝑥) ∧𝜓 ⇒ 𝑝1 (̃𝑡) ∧ 𝑝2 (𝑥, �̃�)
𝑋 (𝑥);𝑝1;𝑝2;𝜓 ↓ 𝑋 (̃𝑡) Apx

`
-Rec

𝑋 (𝑥); 𝑝1;𝑝2;𝜓 ↓ 𝜓1 𝑋 (𝑥);𝑝1;𝑝2;𝜓 ↓ 𝜓2
𝑋 (𝑥);𝑝1;𝑝2;𝜓 ↓ 𝜓1 ∧𝜓2

Apx
`
-∧

|= (𝑝1 (𝑥) ∧𝜓 ) ⇒ (𝜓 ′
1
∨𝜓 ′

2
) fv(𝜓 ′

𝑖
) ⊆ {𝑥} 𝑋 ∉ fpv(𝜓 ′

𝑖
)

𝑋 (𝑥);𝑝1;𝑝2;𝜓 ∧𝜓 ′
𝑖
↓ 𝜓𝑖 (𝑖 = 1, 2)

𝑋 (𝑥);𝑝1;𝑝2;𝜓 ↓ 𝜓1 ∨𝜓2
Apx

`
-∨

𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↓ [𝑥 ′/𝑥]𝜓
𝑥 ′ ∉ fv(𝜓 ′) ∪ fv(𝜓 ) ∪ {𝑥} ∪ fv(𝑝1) ∪ fv(𝑝2)

𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↓ ∀𝑥 .𝜓 Apx
`
-∀

|= (𝑝1 (𝑥) ∧𝜓 ′) ⇒ ∃𝑥 ′.𝜓 ′′ fv(𝜓 ′′) ⊆ {𝑥, 𝑥 ′} 𝑋 ∉ fpv(𝜓 ′′)
𝑋 (𝑥); 𝑝1;𝑝2;𝜓 ′ ∧𝜓 ′′ ↓ [𝑥 ′/𝑥]𝜓

𝑥 ′ ∉ fv(𝜓 ′) ∪ fv(𝜓 ) ∪ {𝑥} ∪ fv(𝑝1) ∪ fv(𝑝2)
𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↓ ∃𝑥 .𝜓 Apx

`
-∃

|= 𝑝1 (𝑥) ∧𝜓 ′ ⇒ ¬𝜓
𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↑𝜓

Apx
a
-Base

|= 𝑝1 (𝑥) ∧𝜓 ⇒ 𝑝1 (̃𝑡) ∧ 𝑝2 (𝑥, �̃�)
𝑋 (𝑥);𝑝1;𝑝2;𝜓 ↑𝑋 (̃𝑡)

Apx
a
-Rec

|= (𝑝1 (𝑥) ∧𝜓 ) ⇒ (𝜓 ′
1
∨𝜓 ′

2
) fv(𝜓 ′

𝑖
) ⊆ {𝑥} 𝑋 ∉ fpv(𝜓 ′

𝑖
)

𝑋 (𝑥);𝑝1;𝑝2;𝜓 ∧𝜓 ′
𝑖
↑𝜓𝑖 (𝑖 = 1, 2)

𝑋 (𝑥);𝑝1;𝑝2;𝜓 ↑𝜓1 ∧𝜓2
Apx

a
-∧

𝑋 (𝑥);𝑝1;𝑝2;𝜓 ↑𝜓1 𝑋 (𝑥);𝑝1; 𝑝2;𝜓 ↑𝜓2
𝑋 (𝑥);𝑝1;𝑝2;𝜓 ↑𝜓1 ∨𝜓2

Apx
a
-∨

|= (𝑝1 (𝑥) ∧𝜓 ′) ⇒ ∃𝑥 ′.𝜓 ′′ fv(𝜓 ′′) ⊆ {𝑥, 𝑥 ′} 𝑋 ∉ fpv(𝜓 ′′)
𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ∧𝜓 ′′ ↑ [𝑥 ′/𝑥]𝜓

𝑥 ′ ∉ fv(𝜓 ′) ∪ fv(𝜓 ) ∪ {𝑥} ∪ fv(𝑝1) ∪ fv(𝑝2)
𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↑ ∀𝑥 .𝜓

Apx
a
-∀

𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↑ [𝑥 ′/𝑥]𝜓
𝑥 ′ ∉ fv(𝜓 ′) ∪ fv(𝜓 ) ∪ {𝑥} ∪ fv(𝑝1) ∪ fv(𝑝2)

𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↑ ∃𝑥 .𝜓
Apx

a
-∃

Figure 9. Fixpoint approximation rules

∃𝑥 .𝜓 . Apx` -Base exploits an external validity checker for formu-

las without fixpoints to discharge a judgment with the succedent

𝜓 , by assuming the predicate variables (including 𝑋 ) that occur

in𝜓 uninterpreted. Apx
`
-Rec checks that the arguments �̃� to the

recursive occurrence of 𝑋 satisfy 𝑝1 and the pair (𝑥, �̃�) satisfies
the well-founded predicate 𝑝2 for any sequence of arguments 𝑥 of

𝑋 , in order to ensure that 𝑋 is interpreted as an unbounded but

finite unfolding of `𝑋 (𝑥).𝜓 . The rules Apxa -∗ are defined in a dual

manner to Apx
`
-∗. Note that the roles of ∧ and ∨ (also ∀ and ∃) are

switched. In the send_msgs derivation in Fig. 1, we used the greatest

fixpoint rules for conjunction (Apx
a
-∧), existential quantification

(Apx
a
-∃), and conjunction again.

Lemma 5.1 shows that the approximation rules correctly un-

der/over approximate least/greatest fixpoints. The soundness result

(Theorem 5.2 immediately follows.

Lemma5.1. Suppose that𝜓 is in negation normal form,𝑋 ∉ fpv(𝜓 ′),
and |= WF (𝑝2). We have:

1. if 𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↓ 𝜓 , then |= 𝑝1 (𝑥) ⇒ (`𝑋 (𝑥).¬𝜓 ′∨𝜓 ) (𝑥),
2. if 𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↑𝜓 , then |= (a𝑋 (𝑥).𝜓 ′ ∧𝜓 ) (𝑥) ⇒ ¬𝑝1 (𝑥).

Theorem 5.2. If ⊩ 𝜙 , then |= 𝜙 .

The decidability of the deduction problem depends on the back-

ground first-order theory. It is undecidable for the fragment used

by our type system (indeed, it is already so with just linear integer

arithmetic). See Appendix H for details.

6 Related Work
Verification of higher-order programs is an active topic of research.

In recent years, numerous approaches have been proposed for

automatically (or semi-automatically) verifying a wide range of

temporal properties, including safety properties [6, 9, 18, 19, 22–24,

30, 31], termination [13, 27], non-termination [3, 14], and properties

expressed in linear `-calculus [12, 16].

However, the existing proposals employ rather disparate tech-

niques to verify the different classes of properties. For instance,

the safety property verification method of [9] applies predicate ab-

straction with CEGAR to iteratively reduce the problem to that of

higher-order model checking [7, 17], whereas the termination veri-

fication method of [13] and linear `-calculus verification method of

[16] are based on a reduction to binary reachability analysis via pro-

gram transformation. By contrast, we propose a unified type-based

approach to verify an expressive range of temporal properties given

as dependent-refinement types carrying dependent temporal effects.

The class of properties supported by our method subsumes those

considered in the previous work mentioned above aside from the

non-termination property handled by [3, 14]. (Non-termination is

not within the scope of our work because it is a branching property.

See below for further discussion.)

An important classes of properties that are not addressed in this

paper are branching properties, such as those expressible in the

branching `-calculus. Sound and complete methods for the class

exist for well-typed finite-data higher-order programs (i.e., higher-

order recursion schemes) [8, 17]. For infinite-data higher-order pro-

grams, a recent work by Unno et al. [25] proposes a type system that

can uniformly deduce some restricted forms of branching properties

such as conditional non-safety and conditional non-termination.

However, their work does not address general temporal properties

(even for the linear subclass). We leave the extension to branching

properties as future work.

The dependent effects of our work are inspired by temporal

effects from the previous work on type-and-effect systems for tem-

poral property verification [4, 12, 20]. Like in our work, temporal

effects facilitate compositional reasoning whereby the temporal

behavior of program sub-terms are summarized as effects and com-

bined to derive those of larger parts. However, the effects there were

non-dependent and also often coarsely over-approximate the actual

temporal behavior. For instance, [4, 20] only allow (𝜔-)regular sets
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of event sequences, and [12] (without oracles) always assigns Σ𝜔

as the infinite effect part of a recursive function. Our work extends

the effects to dependent effects, which are fixpoint predicates on

event sequences and program values that can precisely capture

the temporal behavior, thereby enabling precise specification and

verification of rich value-dependent temporal properties.

Our dependent temporal effects are first-order predicate fixpoint
logic formulas on event sequences and program values. While fix-

point logics such as `-calculus are prevalent in temporal property

verification, most existing works only focus on the propositional

fragment (even for verification of infinite state systems [12, 16]),

and few considers temporal properties specified in a general predi-

cate fixpoint logic. In [21], a system for deriving entailments in a

predicate fixpoint logic using well-founded induction is presented.

However, verification is not within the scope of their work.

An orthogonal direction of extension to the fixpoint logic is

to include higher-order propositions (or predicates) [15, 28]. In a

recent work, Kobayashi et al. [11] have proposed to apply such

higher-order fixpoint logic (HFL) for verification of higher-order

programs. Similar to our approach, they encode the verification

problem as problems in the fixpoint logic. More concretely, their

approach encodes the given higher-order program as a HFL formula

so that the verification problem is reduced to a model checking

problem for HFL. However, their work does not present concrete

means to solve the obtained fixpoint logic problem (besides the case

for the propositional fragment which they show to be equivalent

to model checking of higher-order recursion schemes [10, 11]),

whereas we propose a deductive system for solving the fixpoint

logic constraints generated by the type-based verification process.

On the other hand, compared to our work that uses first-order

fixpoint logic, the use of higher-order logicmay prove advantageous

in being able to more naturally model verification problems for

higher-order programs, analogous to the recent proposal of higher-
order constrained Horn clauses for safety verification of higher-order

programs [2]. We leave as future work for a deeper investigation

of the relation.

7 Conclusion and Future Work
Wehave presented a novel method for reasoning about the temporal

properties of higher-order programs. We use a type-based, compo-

sitional approach that is, in contrast to prior work [12], nonetheless

amenable to algorithmic verification. Also, our treatment with effect

predicates and predicate variables, has led to least/greatest-fixpoint

typing rules that do not sacrifice precision, as was the case in other

prior work. We also present a deductive fixpoint proof system that

allows us to introduce approximations in the form of invariants

and well-founded relations.

In future work, we plan to build on our type system and develop

type inference algorithms, automating our type system and deduc-

tive fixpoint proof system. We also plan to explore relationships

between our dependent temporal events and works on resource

analysis, as discussed with the amortized complexity example at

the end of Sec. 2.
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A Operational Semantics of L
The big-step operational semantics of L is defined in Fig. 10. There

JopK represents the binary integer function denoted by op. For
example, J+K(3, 4) = 7. The relation 𝑒 ⇓ 𝑣 & 𝜛 means that the

evaluation of the expression 𝑒 terminates with the final value 𝑣

producing the finite sequence 𝜛 of events. By contrast, the relation

𝑒 ⇑ ⊥ & 𝜋 means that the evaluation of 𝑒 diverges producing the
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𝑣 ⇓ 𝑣 & 𝜖
RT-Val

J𝑜𝑝K(𝑣1, 𝑣2) = 𝑣

𝑣1 op 𝑣2 ⇓ 𝑣 & 𝜖
RT-Op

|𝑥 | = |�̃� | [rec(𝑓 , 𝑥, 𝑒)/𝑓 , �̃�/𝑥]𝑒 ⇓ 𝑣 &𝜛

rec(𝑓 , 𝑥, 𝑒) �̃� ⇓ 𝑣 &𝜛
RT-App

𝑒1 ⇓ 𝑣 &𝜛

ifz 0 then 𝑒1 else 𝑒2 ⇓ 𝑣 &𝜛
RT-IfTrue

𝑛 ≠ 0 𝑒2 ⇓ 𝑣 &𝜛

ifz 𝑛 then 𝑒1 else 𝑒2 ⇓ 𝑣 &𝜛
RT-IfFalse

𝑒1 ⇓ 𝑣 &𝜛1 [𝑣/𝑥]𝑒2 ⇓ 𝑣 ′ &𝜛2

let 𝑥= 𝑒1 in 𝑒2 ⇓ 𝑣 ′ &𝜛1 · 𝜛2

RT-Let

ev[a] ⇓ 0 & a
RT-Event

|𝑥 | = |�̃� | [rec(𝑓 , 𝑥, 𝑒)/𝑓 , �̃�/𝑥]𝑒 ⇑ ⊥ & 𝜋

rec(𝑓 , 𝑥, 𝑒) �̃� ⇑ ⊥ & 𝜋
RN-App

𝑒1 ⇑ ⊥ & 𝜋

ifz 0 then 𝑒1 else 𝑒2 ⇑ ⊥ & 𝜋
RN-IfTrue

𝑛 ≠ 0 𝑒2 ⇑ ⊥ & 𝜋

ifz 𝑛 then 𝑒1 else 𝑒2 ⇑ ⊥ & 𝜋
RN-IfFalse

𝑒1 ⇑ ⊥ & 𝜋

let 𝑥= 𝑒1 in 𝑒2 ⇑ ⊥ & 𝜋
RN-Let1

𝑒1 ⇓ 𝑣 &𝜛 [𝑣/𝑥]𝑒2 ⇑ ⊥ & 𝜋

let 𝑥= 𝑒1 in 𝑒2 ⇑ ⊥ &𝜛 · 𝜋 RN-Let2

Figure 10. The big-step operational semantics of L

sty((𝜏 & Φ)) ≜ sty(𝜏) sty({𝑥 | 𝜙}) ≜ int

sty((𝑥 : 𝜏) → 𝜎) ≜ sty(𝜏) → sty(𝜎)

fv((𝜏 & Φ)) ≜ fv(𝜏) ∪ fv(Φ) fv({𝑥 | 𝜙}) ≜ fv(𝜙) \ {𝑥}
fv((𝑥 : 𝜏) → 𝜎) ≜ fv(𝜏) ∪ (fv(𝜎) \ {𝑥})

fv(Φ) ≜ fv(Φ` ) ∪ fv(Φa )

fpv((𝜏 & Φ)) ≜ fpv(𝜏) ∪ fpv(Φ) fpv({𝑥 | 𝜙}) ≜ fpv(𝜙)
fpv((𝑥 : 𝜏) → 𝜎) ≜ fpv(𝜏) ∪ fpv(𝜎)

fpv(Φ) ≜ fpv(Φ` ) ∪ fpv(Φa )

Figure 11. Auxiliary functions on types

infinite sequence 𝜋 of events. Note that the derivation rules for

𝑒 ⇓ 𝑣 & 𝜛 are defined inductively, while those for 𝑒 ⇑ ⊥ & 𝜋 are

defined coinductively. The rule RT-Event evaluates ev[a] to 0,

raising the event a.

B Auxiliary Functions
Fig. 11 defines the auxiliary functions sty(𝜎), fv(𝜎), and fpv(𝜎).
sty(𝜎) represents the simple type corresponding to the qualified

type 𝜎 . fv(𝜎) (resp. fpv(𝜎)) represents the set of free term (resp.

predicate) variables that occur in 𝜎 . We extend the notions to type

environments and define sty(Γ), fv(Γ), and fpv(Γ) in the obvious

way.

C Types for Other Examples
The types of the functions in the examples are listed in Figures 12,

13, and 14. There, 𝜏foo represents a type of a function foo, Φfoo

represents the effect of foo, and Φ′
foo represents an approximation

of Φfoo sufficient for type checking.

D Proof of Theorem 5.2
We first prove Lemma 5.1 which states the correctness of the fix-

point approximation rules. The following are lemmas used to show

Lemma 5.1.

LemmaD.1. If |= 𝜙 ⇒ (`𝑋 (𝑥) .𝜓1) (𝑥) and |= 𝜙 ⇒ (`𝑋 (𝑥).𝜓2) (𝑥),
then |= 𝜙 ⇒ (`𝑋 (𝑥) .𝜓1 ∧𝜓2) (𝑥)
Lemma D.2. If |= 𝜙 ⇒ (`𝑋 (𝑥).𝜓 ) (𝑥) and |= 𝜙 ⇒ (𝜓 ⇒ 𝜓 ′), then
|= 𝜙 ⇒ (`𝑋 (𝑥) .𝜓 ′) (𝑥)
LemmaD.3. If |= 𝜙 ⇒ (`𝑋 (𝑥).[𝑥 ′/𝑥]𝜓 ) (𝑥) and 𝑥 ′ ∉ fv(𝜓 ) ∪{𝑥},
then |= 𝜙 ⇒ (`𝑋 (𝑥) .∀𝑥 .𝜓 ) (𝑥)
Lemma D.4. If |= 𝜙 ⇒ (`𝑋 (𝑥).(𝜓 ′ ∧ 𝜓 ′′) ⇒ [𝑥 ′/𝑥]𝜓 ) (𝑥) and
|= (𝜙 ∧𝜓 ′) ⇒ ∃𝑥 ′.𝜓 ′′, then |= 𝜙 ⇒ (`𝑋 (𝑥) .𝜓 ′ ⇒ ∃𝑥 .𝜓 ) (𝑥).
LemmaD.5. If |= (a𝑋 (𝑥) .𝜓1) (𝑥) ⇒ 𝜙 and |= (a𝑋 (𝑥).𝜓2) (𝑥) ⇒ 𝜙 ,
then |= (a𝑋 (𝑥) .𝜓1 ∨𝜓2) (𝑥) ⇒ 𝜙

Lemma D.6. If |= (a𝑋 (𝑥) .𝜓 ) (𝑥) ⇒ 𝜙 and |= ¬𝜙 ⇒ (𝜓 ′ ⇒ 𝜓 ),
then |= (a𝑋 (𝑥) .𝜓 ′) (𝑥) ⇒ 𝜙

Lemma D.7. If |= (a𝑋 (𝑥) .𝜓 ′ ∧ 𝜓 ′′ ∧ [𝑥 ′/𝑥]𝜓 ) (𝑥) ⇒ 𝜙 and |=
(¬𝜙 ∧𝜓 ′) ⇒ ∃𝑥 ′.𝜓 ′, then |= (a𝑋 (𝑥) .𝜓 ′ ∧ ∀𝑥 .𝜓 ) (𝑥) ⇒ 𝜙

LemmaD.8. If |= (a𝑋 (𝑥).[𝑥 ′/𝑥]𝜓 ) (𝑥) ⇒ 𝜙 with 𝑥 ′ ∉ fv(𝜓 )∪{𝑥},
then |= (a𝑋 (𝑥) .∃𝑥 .𝜓 ) (𝑥) ⇒ 𝜙 for some 𝑡

Proof of Lemma 5.1.
1. By induction on the derivation of 𝑋 (𝑥); 𝑝1;𝑝2;𝜓 ′ ↓ 𝜓 .

• Case Apx` -Base:We have |= 𝑝1 (𝑥) ∧𝜓 ′ ⇒ 𝜓 . Therefore,

we get |= 𝑝1 (𝑥) ⇒ ¬𝜓 ′∨𝜓 . Because 𝑋 in ¬𝜓 ′∨𝜓 is a free

predicate variable, by substituting `𝑋 (𝑥) .¬𝜓 ′∨𝜓 to 𝑋 we

get |= 𝑝1 (𝑥) ⇒ [`𝑋 (𝑥).¬𝜓 ′ ∨ 𝜓/𝑋 ] (¬𝜓 ′ ∨ 𝜓 ). Because
[`𝑋 (𝑥).¬𝜓 ′∨𝜓/𝑋 ] (¬𝜓 ′∨𝜓 ) iff (`𝑋 (𝑥) .¬𝜓 ′∨𝜓 ) (𝑥), we
obtain |= 𝑝1 (𝑥) ⇒ (`𝑋 (𝑥) .¬𝜓 ′ ∨𝜓 ) (𝑥).

• Case Apx` -Rec:We have

– 𝜓 = 𝑋 (̃𝑡)
– |= (𝑝1 (𝑥) ∧𝜓 ′) ⇒ (𝑝1 (̃𝑡) ∧ 𝑝2 (𝑥, �̃�))
We define𝜓𝑖 as following:

𝜓0 = ⊥
𝜓𝑖+1 = ¬𝜓 ′ ∨ [̃𝑡/𝑥]𝜓𝑖

By |= 𝑝1 (𝑥) ∧ 𝜓 ′ ⇒ 𝑝1 (̃𝑡), we get |= 𝑝1 (𝑥) ∧ 𝜓 ′ ⇒
¬𝜓 ′ ∨ [̃𝑡/𝑥]𝑝1 (̃𝑡). Repeatedly, we get |= 𝑝1 (𝑥) ∧ 𝜓 ′ ⇒
¬𝜓 ′ ∨ [̃𝑡/𝑥] (¬𝜓 ′ ∨ · · · [̃𝑡/𝑥]𝑝1 (̃𝑡) · · · ). But by |= 𝑝1 (𝑥) ∧
𝜓 ′ ⇒ 𝑝2 (𝑥, �̃�) and |= WF (𝑝2), |= ¬[̃𝑡/𝑥]𝑖𝑝1 (̃𝑡) for some

𝑖 . So |= 𝑝1 (𝑥) ∧ 𝜓 ′ ⇒ ∃𝑖 .𝜓𝑖 holds. Therefore we get

|= 𝑝1 (𝑥) ∧ 𝜓 ′ ⇒
𝜔∨
𝑖=0

𝜓𝑖 . By Lemma E.4, we obtain |=

𝑝1 (𝑥) ∧𝜓 ′ ⇒ (`𝑋 (𝑥).¬𝜓 ′∨𝑋 (̃𝑡)) (𝑥). Therefore we have
|= 𝑝1 (𝑥) ⇒ ¬𝜓 ′ ∨ (`𝑋 (𝑥) .¬𝜓 ′ ∨ 𝑋 (̃𝑡)) (𝑥), and then by

¬𝜓 ′ ∨ (`𝑋 (𝑥).¬𝜓 ′ ∨ 𝑋 (̃𝑡)) (𝑥) = (`𝑋 (𝑥) .¬𝜓 ′ ∨ 𝑋 (̃𝑡)) (𝑥)
we get |= 𝑝1 (𝑥) ⇒ (`𝑋 (𝑥) .¬𝜓 ′ ∨ 𝑋 (̃𝑡)) (𝑥)
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𝜏aux = (𝑙 : int list × int list) → (𝑎 : int list × int list) → ({𝑙 ′ | |𝑙 ′ | = |𝑙 | + |𝑎 |} & Φaux)
Φ
`
aux = _𝑥.(`𝑋` (𝑙, 𝑎, 𝑥) .𝑙 = 0 ∧ 𝑥 = 𝜖 ∨ 𝑙 ≠ 0 ∧ ∃𝑦, 𝑙 ′, 𝑎′.𝑥 = Tick · 𝑦 ∧ |𝑙 ′ | = |𝑙 | − 1 ∧ |𝑎′ | = |𝑎 | + 1 ∧ 𝑋` (𝑙 ′, 𝑎′, 𝑦)) (𝑙, 𝑎, 𝑥)

Φa
aux = _𝑥.(a𝑋a (𝑙, 𝑎, 𝑥).𝑙 ≠ 0 ∧ ∃𝑦, 𝑙 ′, 𝑎′.𝑥 = Tick · 𝑦 ∧ |𝑙 ′ | = |𝑙 | − 1 ∧ |𝑎′ | = |𝑎 | + 1 ∧ 𝑋a (𝑙 ′, 𝑎′, 𝑦)) (𝑙, 𝑎, 𝑥)

Φ′
aux = (_𝑥.𝑥 ∈ Tick𝑙 , _𝑥 .⊤)
𝜏rev = (𝑙 : int list) → ({𝑢 | |𝑢 | = |𝑙 |} & Φrev)
Φrev = [0/𝑎]Φaux

Φ′
rev = (_𝑥.𝑥 ∈ Tick𝑙 , _𝑥 .⊥)

𝜏is_empty = (𝑙1, 𝑙2) : int list × int list → ({𝑢 | 𝑢 = (𝑙1 = 0) ∧ (𝑙2 = 0)} & Φis_empty)
Φis_empty = (_𝑥.(`𝑋` ((𝑙1, 𝑙2), 𝑥).𝑥 = 𝜖) ((𝑙1, 𝑙2), 𝑥), _𝑥 .(a𝑋a ((𝑙1, 𝑙2), 𝑥) .⊥)((𝑙1, 𝑙2), 𝑥))
Φ′
is_empty = Φval

𝜏enqueue = (𝑒 : int) → (𝑙1, 𝑙2) : int list × int list → ({(𝑙1, 𝑙 ′2) | |𝑙
′
2
| = 1 + |𝑙2 |} & Φenqueue)

Φenqueue = (_𝑥.(`𝑋` (𝑒, (𝑙1, 𝑙2), 𝑥) .𝑥 = Enq) (𝑒, (𝑙1, 𝑙2), 𝑥), _𝑥 .(a𝑋a (𝑒, (𝑙1, 𝑙2), 𝑥) .⊥)(𝑒, (𝑙1, 𝑙2), 𝑥))
Φ′
enqueue = (_𝑥.𝑥 = Enq, _𝑥 .⊥)
𝜏dequeue = ((𝑙1, 𝑙2) : int list × int list) → ({(𝑒, (𝑙 ′

1
, 𝑙 ′
2
)) | 𝑙1 = 0 ∧ 𝑙 ′

1
= 𝑙2 ∧ 𝑙 ′

2
= 0 ∨ 𝑙1 ≠ 0 ∧ 𝑙 ′

1
= 𝑙1 − 1 ∧ 𝑙 ′

2
= 𝑙2} & Φdequeue)

Φ
`

dequeue = _𝑥.(`𝑋` ((𝑙1, 𝑙2), 𝑥).
(
𝑙1 = 0 ∧ ∃𝑦1, 𝑦2 .𝑥 = 𝑦1 · 𝑦2 ∧ [𝑙2/𝑙]Φ`

rev (𝑦1) ∧ 𝑋` (𝑙2, 0, 𝑦2)∨
𝑙1 ≠ 0 ∧ 𝑥 = Deq

)
) ((𝑙1, 𝑙2), 𝑥)

Φa
dequeue = _𝑥.(a𝑋a ((𝑙1, 𝑙2), 𝑥) .𝑙1 = 0 ∧ ∃𝑦1, 𝑦2 .𝑥 = 𝑦1 · 𝑦2 ∧ [𝑙2/𝑙]Φa

rev (𝑦1) ∧ 𝑋a (𝑙2, 0, 𝑦2)) ((𝑙1, 𝑙2), 𝑥)
Φ′
dequeue = (_𝑥.𝑥 ∈ Tick𝑟 · Deq, _𝑥 .⊥)
𝜏main = ((𝑙1, 𝑙2) : int list × int list) → (unit & Φmain)

Φ
`

main = _𝑥.(`𝑋` ((𝑙1, 𝑙2), 𝑥).
©«

(∃𝑦1, 𝑦2 .𝑥 = 𝑦1 · 𝑦2 ∧ [42/𝑒]Φ`
enqueue (𝑦1) ∧ 𝑋` ((𝑙1, 𝑙2 + 1), 𝑦2))∨

(𝑙1 = 0 ∧ 𝑙2 = 0 ∧ 𝑥 = 𝜖)∨
(𝑙1 = 0 ∧ 𝑙2 ≠ 0 ∧ ∃𝑦1, 𝑦2 .𝑥 = 𝑦1 · 𝑦2 ∧ Φdequeue (𝑦1) ∧ 𝑋` ((𝑙2 − 1, 0), 𝑦2))∨
(𝑙1 ≠ 0 ∧ ∃𝑦1, 𝑦2 .𝑥 = 𝑦1 · 𝑦2 ∧ Φdequeue (𝑦1) ∧ 𝑋` ((𝑙1 − 1, 𝑙2), 𝑦2))

ª®®®¬) ((𝑙1, 𝑙2), 𝑥)
Φa
main = _𝑥.⊥

Figure 12. Types and effects for the Amortized Complexity example in Figure 2.

• Case Apx` -∧:We have

– 𝜓 = 𝜓1 ∧𝜓2
– 𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↓ 𝜓1
– 𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↓ 𝜓2
By I.H. we obtain

– |= 𝑝1 (𝑥) ⇒ (`𝑋 (𝑥) .¬𝜓 ′ ∨𝜓1) (𝑥)
– |= 𝑝1 (𝑥) ⇒ (`𝑋 (𝑥) .¬𝜓 ′ ∨𝜓2) (𝑥)
By Lemma D.1, we obtain |= 𝑝1 (𝑥) ⇒ (`𝑋 (𝑥).¬𝜓 ′ ∨𝜓1 ∧
𝜓2) (𝑥)

• Case Apx` -∨:We have

– 𝜓 = 𝜓1 ∨𝜓2
– |= (𝑝1 (𝑥) ∧𝜓 ′) ⇒ (𝜓 ′

1
∨𝜓 ′

2
)

– fv(𝜓 ′
𝑖
) ⊆ {𝑥}

– 𝑋 ∉ fpv(𝜓 ′
𝑖
)

– 𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ∧𝜓 ′
𝑖
↓ 𝜓𝑖

– 𝑖 = 1, 2

By I.H., we get

|= 𝑝1 (𝑥) ⇒ (`𝑋 (𝑥).¬(𝜓 ′ ∧ 𝜓 ′
𝑖
) ∨ 𝜓𝑖 ) (𝑥) for 𝑖 = 1, 2 By

Lemma D.1, we get |= 𝑝1 (𝑥) ⇒ (`𝑋 (𝑥).¬𝜓 ′ ∨ (𝜓1 ∨
¬𝜓 ′

1
) ∧ (𝜓2 ∨ ¬𝜓 ′

2
)) (𝑥). Therefore, we have |= 𝑝1 (𝑥) ⇒

(`𝑋 (𝑥) .¬𝜓 ′ ∨ (𝜓1 ∨ ¬𝜓 ′
1
) ∧ (𝜓2 ∨ ¬𝜓 ′

2
) ∧ (𝜓 ′

1
∨𝜓 ′

2
)) (𝑥).

Because |= (¬𝜓 ′ ∨ (𝜓1 ∨𝜓 ′
1
) ∧ (𝜓2 ∨𝜓 ′

2
) ∧ (𝜓 ′

1
∨𝜓 ′

2
)) ⇒

(𝑝1 (𝑥) ⇒ ¬𝜓 ′ ∨ (𝜓1 ∨ 𝜓2)) and Lemma D.2, we obtain

|= 𝑝1 (𝑥) ⇒ (`𝑋 (𝑥) .¬𝜓 ′ ∨ (𝜓1 ∨𝜓2)) (𝑥).

• Case Apx` -∀:We have

– 𝜓 = ∀𝑥 .𝜓1
– 𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↓ [𝑥 ′/𝑥]𝜓1
– 𝑥 ′ ∉ fv(𝜓 ′) ∪ fv(𝜓1) ∪ {𝑥} ∪ fv(𝑝1) ∪ fv(𝑝2)
By I.H., we get |= 𝑝1 (𝑥) ⇒ (`𝑋 (𝑥) .¬𝜓 ′ ∨ [𝑥 ′/𝑥]𝜓1) (𝑥).
By Lemma D.3 and that 𝑥 ′ ∉ fv(𝜓1) ∪ {𝑥}, we have |=
𝑝1 (𝑥) ⇒ (`𝑋 (𝑥) .¬𝜓 ′ ∨ ∀𝑥 .𝜓1) (𝑥)

• Case Apx` -∃:We have

– 𝜓 = ∃𝑥 .𝜓1
– |= (𝑝1 (𝑥) ∧𝜓 ′) ⇒ ∃𝑥 ′.𝜓 ′′

– fv(𝜓 ′′) ⊆ {𝑥} ∪ {𝑥 ′}
– 𝑋 ∉ fpv(𝜓 ′′)
– 𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ∧𝜓 ′′ ↓ [𝑥 ′/𝑥]𝜓1
– 𝑥 ′ ∉ fv(𝜓 ′) ∪ fv(𝜓1) ∪ {𝑥} ∪ fv(𝑝1) ∪ fv(𝑝2)
By I.H., we obtain |= 𝑝1 (𝑥) ⇒ (`𝑋 (𝑥).(𝜓 ′ ∧ 𝜓 ′′) ⇒
[𝑥 ′/𝑥]𝜓1) (𝑥). By LemmaD.4, we have |= 𝑝1 (𝑥) ⇒ (`𝑋 (𝑥).𝜓 ′ ⇒
∃𝑥 .𝜓1) (𝑥)

2. By induction on the derivation of 𝑋 (𝑥); 𝑝1;𝑝2;𝜓 ′ ↑𝜓 .
• Case Apx

a
-Base: We have |= 𝑝1 (𝑥) ∧ 𝜓 ′ ⇒ ¬𝜓 . We

then get |= 𝑝1 (𝑥) ⇒ ¬𝜓 ′ ∨ ¬𝜓 . By contraposition, we

get |= 𝜓 ′ ∧ 𝜓 ⇒ ¬𝑝1 (𝑥). Because 𝑋 in 𝜓 ′ ∧ 𝜓 is a free

predicate variable, by substituting a𝑋 (𝑥) .𝜓 ′ ∧ 𝜓 to 𝑋
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𝜏zoom = unit → (unit & Φzoom)
Φ
`
zoom = _𝑥 .(`𝑋` (𝑥) .∃𝑦.𝑥 = Zoom · 𝑦 ∧ 𝑋` (𝑥)) (𝑥)

Φa
zoom = _𝑥 .(a𝑋a (𝑥) .∃𝑦.𝑥 = Zoom · 𝑦 ∧ 𝑋a (𝑥)) (𝑥)

Φ′`
zoom = _𝑥 .⊥

Φ′a
zoom = _𝑥 .𝑥 ∈ Zoom𝜔

approximated by our deductive system with


𝑝1 = _((), 𝑥) .𝑥 ∉ Zoom𝜔

𝑝2 =
_((), 𝑥, (), 𝑦) .∃𝑥1, 𝑦1 ∈ Σ∗, 𝑐1, 𝑐2 ∈ Σ, 𝑥2, 𝑦2 ∈ Σ𝜔 .
𝑥 = 𝑥1 · 𝑐1 · 𝑥2 ∧ 𝑦 = 𝑦1 · 𝑐2 · 𝑦2 ∧ |𝑥1 | > |𝑦1 | ≥ 0

𝜏shrink = (𝑡 : {𝑡 | 𝑡 ≥ 0}) → (𝑓 : unit → {𝑢 | 𝑢 = 𝑡}) → (𝑑 : {𝑑 | 𝑑 > 0 ∧ 𝑡 mod 𝑑 = 0}) → (unit & Φshrink)
Φ
`

shrink = _𝑥 .(`𝑋 (𝑡, 𝑑, 𝑥) .(𝑡 ≤ 0 ∧ Φ
`
zoom (𝑥)) ∨ (𝑡 > 0 ∧ ∃𝑦.𝑥 = Shrink · 𝑦 ∧ 𝑋` (𝑡 − 𝑑, 𝑑,𝑦))) (𝑡, 𝑑, 𝑥)

Φa
shrink = _𝑥 .(a𝑋 (𝑡, 𝑑, 𝑥).(𝑡 ≤ 0 ∧ Φa

zoom (𝑥)) ∨ (𝑡 > 0 ∧ ∃𝑦.𝑥 = Shrink · 𝑦 ∧ 𝑋` (𝑡 − 𝑑,𝑑,𝑦))) (𝑡, 𝑑, 𝑥)
Φ′`

shrink = _𝑥 .⊥

Φ′a
shrink = _𝑥 .𝑥 ∈ Shrink𝑡/𝑑 · Zoom𝜔

approximated by our deductive system with

{
𝑝1 = _𝑥 .𝑥 ∉ Shrink𝑡/𝑑 · Zoom𝜔
𝑝2 = _(𝑡1, 𝑑1, 𝑥1, 𝑡2, 𝑑2, 𝑥2).𝑡1 > 𝑡2 ≥ 0

𝜏shrinker = (𝑡 : {𝑡 | 𝑡 ≥ 0}) → (𝑑 : {𝑑 | 𝑑 > 0 ∧ 𝑡 mod 𝑑 = 0}) → (unit & Φshrinker)
Φ
`

shrinker = _𝑥 .(`𝑋 (𝑡, 𝑑, 𝑥) .Φ`

shrink (𝑥)) (𝑡, 𝑑, 𝑥)
Φa
shrinker = _𝑥 .(a𝑋 (𝑡, 𝑑, 𝑥).Φ`

shrink (𝑥)) (𝑡, 𝑑, 𝑥)
Φ′

shrinker = _𝑥 .Φ
`

shrink (𝑥)
Φ′

shrinker = _𝑥 .Φa
shrink (𝑥)

Figure 13. Types and effects for the Shrinker example in Figure 2.

𝜏listener = (npool : {a | a ≥ 0}) → (pend : {a | a ≥ 0}) → (unit & Φlistener)

Φ
`

listener = _𝑥 .(`𝑋 (npool, pend, 𝑥) . ©«
(pend < npool) ∧ ∃𝑦.𝑥 = Accept · 𝑦 ∧ 𝑋 (npool, pend + 1, 𝑦)∨
(pend > 0) ∧ ∃𝑦.𝑥 = Handle · 𝑦 ∧ 𝑋 (npool, pend − 1, 𝑦)∨
(pend ≤ 0) ∧ ∃𝑦.𝑥 = Wait · 𝑦 ∧ 𝑋 (npool, pend, 𝑦)

ª®¬) (npool, pend, 𝑥)
Φa
listener = _𝑥 .(a𝑋 (npool, pend, 𝑥) . ©«

(pend < npool) ∧ ∃𝑦.𝑥 = Accept · 𝑦 ∧ 𝑋 (npool, pend + 1, 𝑦)∨
(pend > 0) ∧ ∃𝑦.𝑥 = Handle · 𝑦 ∧ 𝑋 (npool, pend − 1, 𝑦)∨
(pend ≤ 0) ∧ ∃𝑦.𝑥 = Wait · 𝑦 ∧ 𝑋 (npool, pend, 𝑦)

ª®¬) (npool, pend, 𝑥)
Φ′`

listener = _𝑥 .⊥
Φ′a

listener = _𝑥 .𝑥 ∈ (Σ∗ · (Σ \ Accept)npool+pend+1)𝜔 ⇒ 𝑥 ∈ (Σ∗ · Wait)𝜔

approximated by our deductive system with


𝑝1 = _(npool, pend, 𝑥) .¬(𝑥 ∈ (Σ∗ · (Σ \ Accept)npool+pend+1)𝜔 ) ⇒ 𝑥 ∈ (Σ∗ · Wait)𝜔

𝑝2 =
_(npool

1
, pend

1
, 𝑥, npool

2
, pend

2
, 𝑦).∃𝑥1, 𝑦1 ∈ Σ∗, 𝑥2, 𝑦2 ∈ Σ𝜔 .

𝑥 = 𝑥1 · Wait · 𝑥2 ∧ 𝑦 = 𝑦1 · Wait · 𝑦2 ∧ |𝑥1 | > |𝑦1 | ≥ 0

𝜏server = (npool : {a | a ≥ 0}) → (unit & Φserver)
Φ
`
server = _𝑥 .(`𝑋 (npool, 𝑥) .[0/pend]Φ`

listener (𝑥)) (npool, 𝑥)
Φa
server = _𝑥 .(a𝑋 (npool, 𝑥) .[0/pend]Φa

listener (𝑥)) (npool, 𝑥)
Φ′`

server = _𝑥 .⊥
Φ′a

server = _𝑥 .[0/pend]Φ′a
server (𝑥)

Figure 14. Types and effects for the server example in Figure 2.
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Type Derivation for until_ready

.

.

.

until_ready : 𝜏 ⊢ ev[R]; () : 𝜎R

.

.

.

until_ready : 𝜏 ⊢ ev[W]; until_ready () : 𝜎W
until_ready : 𝜏 ⊢ ifz * then (ev[R]; ()) else (ev[W]; until_ready ()) : (unit & Φifz)

⊢ until_ready : unit → (unit & Φ′
until_ready)

A B
⊢ (unit & Φuntil_ready) <: (unit & Φ′

until_ready)
.
.
.

⊢ until_ready : unit → (unit & Φ′
until_ready)

A :

|= (𝑥 = R ∨ ∃𝑦.𝑥 = W · 𝑦 ∧ 𝑦 ∈ W∗ · R) ⇒ 𝑥 ∈ W∗ · R
|= 𝑝1 (𝑥) ⇒ 𝑥 ∈ W∗ · R
⊩ 𝑝1 (𝑥) ⇒ 𝑥 ∈ W∗ · R

⊩ (`𝑋` (𝑥).𝑥 = R ∨ ∃𝑦.𝑥 = W · 𝑦 ∧ 𝑋` (𝑦)) (𝑥) ⇒ 𝑥 ∈ W∗ · R

B :

|= (𝑝1 (𝑥) ∧ 𝑥 ≠ W · 𝑥 ′) ⇒ ¬(𝑥 = W · 𝑥 ′)
𝑋a (𝑥);𝑝1;𝑝2;𝑥 ≠ W · 𝑥 ′ ↑ 𝑥 = W · 𝑥 ′

|= (𝑝1 (𝑥) ∧ 𝑥 = W · 𝑥 ′) ⇒ (𝑝1 (𝑥 ′) ∧ 𝑝2 (𝑥, 𝑥 ′))
𝑋a (𝑥);𝑝1;𝑝2;𝑥 = W · 𝑥 ′ ↑𝑋a (𝑥 ′)

𝑋a (𝑥);𝑝1; 𝑝2;⊤ ↑ 𝑥 = W · 𝑥 ′ ∧ 𝑋a (𝑥 ′)
𝑋a (𝑥);𝑝1;𝑝2;⊤ ↑ ∃𝑦.𝑥 = W · 𝑦 ∧ 𝑋a (𝑦) ⊩ ¬𝑝1 (𝑥) ⇒ 𝑥 ∈ W𝜔

⊩ (a𝑋a (𝑥) .∃𝑦.𝑥 = W · 𝑦 ∧ 𝑋a (𝑦)) (𝑥) ⇒ 𝑥 ∈ W𝜔

𝜏 ≜ (_𝑥 .𝑋` (𝑥), _𝑥 .𝑋a (𝑥))

Φifz ≜

(
_𝑥.𝑥 = R ∨ ∃𝑦.𝑥 = W · 𝑦 ∧ 𝑋` (𝑦)
_𝑥.∃𝑦.𝑥 = W · 𝑦 ∧ 𝑋a (𝑦)

)
Φ′
until_ready ≜ (_𝑥.𝑥 ∈ W∗ · R, _𝑥 .𝑥 ∈ W𝜔 )

𝑝1 = _𝑥.𝑥 ∉ W𝜔

𝜎R ≜ (unit & (_𝑥 .𝑥 = R, _𝑥 .⊥))

𝜎W ≜ (unit &
(
_𝑥.∃𝑦.𝑥 = W · 𝑦 ∧ 𝑋` (𝑦)
_𝑥.∃𝑦.𝑥 = W · 𝑦 ∧ 𝑋a (𝑦)

)
)

Φuntil_ready ≜

(
_𝑥 .(`𝑋` (𝑥) .𝑥 = R ∨ ∃𝑦.𝑥 = W · 𝑦 ∧ 𝑋` (𝑦)) (𝑥)
_𝑥.(a𝑋a (𝑥).∃𝑦.𝑥 = W · 𝑦 ∧ 𝑋a (𝑦)) (𝑥)

)
𝑝2 = _𝑥1, 𝑥2 .(first position of non-W in 𝑥1) > (first position of non-W in 𝑥1) ≥ 0

Figure 15. Type derivation for until_ready.

we obtain |= [a𝑋 (𝑥) .𝜓 ′ ∧ 𝜓/𝑋 ] (𝜓 ′ ∧ 𝜓 ) ⇒ ¬𝑝1 (𝑥). Be-
cause [a𝑋 (𝑥).𝜓 ′ ∧ 𝜓/𝑋 ] (𝜓 ′ ∧ 𝜓 ) iff (a𝑋 (𝑥).𝜓 ′ ∧ 𝜓 ) (𝑥),
we obtain|= (a𝑋 (𝑥).𝜓 ′ ∧𝜓 ) (𝑥) ⇒ ¬𝑝1 (𝑥).

• Case Apxa -Rec:We have

– 𝜓 = 𝑋 (̃𝑡)
– 𝑝1 (̃𝑡) ∧𝜓 ′ ⇒ 𝑝1 (̃𝑡) ∧ 𝑝2 (𝑥, �̃�)
In a similar to Apx

a
-Rec, we have |= 𝑝1 (𝑥) ∧𝜓 ′ ⇒ ∃𝑖 .𝜓𝑖 .

We define𝜓 ′
𝑖
= ¬𝜓𝑖 , that is

𝜓 ′
0
= ⊤

𝜓 ′
𝑖+1 = 𝜓 ′ ∧ [̃𝑡/𝑥]𝜓 ′

𝑖

By |= 𝑝1 (𝑥) ∧𝜓 ′ ⇒ ∃𝑖 .𝜓𝑖 , we get |= 𝑝1 (𝑥) ∧𝜓 ′ ⇒ ∃𝑖 .¬𝜓 ′
𝑖
.

Therefore, we have |= 𝑝1 (𝑥) ∧ 𝜓 ′ ⇒ ¬∀𝑖 .𝜓 ′
𝑖
. So, we

obtain |= 𝑝1 (𝑥) ∧ 𝜓 ′ ⇒ ¬
𝜔∧
𝑖=0

𝜓 ′
𝑖
. By Lemma E.5, we

get |= 𝑝1 (𝑥) ∧𝜓 ′ ⇒ ¬(a𝑋 (𝑥) .𝜓 ′ ∧ 𝑋 (̃𝑡)) (𝑥). Therefore,
|= 𝜓 ′ ∧ (a𝑋 (𝑥).𝜓 ′ ∧𝑋 (̃𝑡)) (𝑥) ⇒ ¬𝑝1 (𝑥) holds. Finaly, we
obtain |= (a𝑋 (𝑥).𝜓 ′ ∧ 𝑋 (̃𝑡)) (𝑥) ⇒ ¬𝑝1 (𝑥)

• Case Apxa -∧:We have

– 𝜓 = 𝜓1 ∧𝜓2
– |= (𝑝1 (𝑥) ∧𝜓 ′) ⇒ (𝜓 ′

1
∨𝜓 ′

2
)

– fv(𝜓 ′
𝑖
) ⊆ {𝑥}

– 𝑋 ∉ fpv(𝜓 ′
𝑖
)

– 𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ∧𝜓 ′
𝑖
↑𝜓𝑖

– 𝑖 = 1, 2

By I.H., we obtain |= (a𝑋 (𝑥).𝜓 ′∧𝜓 ′
𝑖
∧𝜓𝑖 ) (𝑥) ⇒ ¬𝑝1 (𝑥) for

𝑖 = 1, 2. Therefore, by Lemma D.5, we get |= (a𝑋 (𝑥).𝜓 ′ ∧
((𝜓 ′

1
∧𝜓1)∨ (𝜓 ′

2
∧𝜓2))) (𝑥) ⇒ ¬𝑝1 (𝑥). Therefore, we have

|= (a𝑋 (𝑥).𝜓 ′∧ ((𝜓 ′
1
∧𝜓1) ∨ (𝜓 ′

2
∧𝜓2)) ∧ (𝜓 ′

1
∨𝜓 ′

2
)) (𝑥) ⇒

¬𝑝1 (𝑥). Because |= 𝑝1 (𝑥) ⇒ (𝜓 ′ ∧ (𝜓1 ∨ 𝜓2)) ⇒ (𝜓 ′ ∧
((𝜓 ′

1
∧𝜓1) ∨ (𝜓 ′

2
∧𝜓2)) ∧ (𝜓 ′

1
∨𝜓 ′

2
)) and D.6, we obtain

|= (a𝑋 (𝑥) .𝜓 ′ ∧ (𝜓1 ∨𝜓2)) (𝑥) ⇒ ¬𝑝1 (𝑥)
• Case Apxa -∨:We have

– 𝜓 = 𝜓1 ∨𝜓1
– 𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↑𝜓1
– 𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↑𝜓2
By I.H., we obtain

– |= (a𝑋 (𝑥) .𝜓 ′ ∧𝜓1) (𝑥) ⇒ ¬𝑝1 (𝑥)
– |= (a𝑋 (𝑥) .𝜓 ′ ∧𝜓2) (𝑥) ⇒ ¬𝑝1 (𝑥)
By Lemma D.5, we have |= (a𝑋 (𝑥).𝜓 ′ ∧ (𝜓1 ∨𝜓2)) (𝑥) ⇒
¬𝑝1 (𝑥).

• Case Apxa -∀: have
– 𝜓 = ∀𝑥 .𝜓1
– |= (𝑝1 (𝑥) ∧𝜓 ′) ⇒ ∃𝑥 ′.𝜓 ′′

– fv(𝜓 ′′) ⊆ {𝑥} ∪ {𝑥 ′}
– 𝑋 ∉ fpv(𝜓 ′′)
– 𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ∧𝜓 ′′ ↑ [𝑥 ′/𝑥]𝜓1
– 𝑥 ′ ∉ fv(𝜓 ′) ∪ fv(𝜓1) ∪ {𝑥} ∪ fv(𝑝1) ∪ fv(𝑝2)
By I.H., we obtain |= (a𝑋 (𝑥) .𝜓 ′ ∧𝜓 ′′ ∧ [𝑥 ′/𝑥]𝜓1) (𝑥) ⇒
¬𝑝1 (𝑥). By |= (𝑝1 (𝑥) ∧ 𝜓 ′) ⇒ ∃𝑥 ′.𝜓 ′′

and Lemma D.7,

we get (a𝑋 (𝑥) .𝜓 ′ ∧ ∀𝑥 .𝜓1) (𝑥) ⇒ ¬𝑝1 (𝑥).
• Case Apxa -∃:We have

– 𝜓 = ∃𝑥 .𝜓1
– 𝑋 (𝑥);𝑝1;𝑝2;𝜓 ′ ↑ [𝑥 ′/𝑥]𝜓1
– 𝑥 ′ ∉ fv(𝜓 ′) ∪ fv(𝜓1) ∪ {𝑥} ∪ fv(𝑝1) ∪ fv(𝑝2)
By I.H., we obtain |= (a𝑋 (𝑥) .𝜓 ′∧[𝑥 ′/𝑥]𝜓1) (𝑥) ⇒ ¬𝑝1 (𝑥).
By LemmaD.8 and𝑥 ′ ∉ fv(𝜓1)∪{𝑥}, we obtain |= (a𝑋 (𝑥) .𝜓 ′∧
∃𝑥 .𝜓1) (𝑥) ⇒ ¬𝑝1 (𝑥).
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□

Theorem 5.2 follows from Lemma 5.1.

Proof of Theorem 5.2. By induction on the derivation of ⊩ 𝜙 .

• Case Fp-Valid:We immediately obtain |= 𝜓 .

• Case Fp-Lfp−:We obtain

– 𝜙 = 𝐶− [(`𝑋 (𝑥) .𝜓 ) (̃𝑡)]
– |= [_𝑥 .𝜓 ′/𝑋 ]𝜓 ⇒ 𝜓 ′

– ⊩ 𝐶− [ [̃𝑡/𝑥]𝜓 ′]
By I.H., we obtain |= 𝐶− [ [̃𝑡/𝑥]𝜓 ′]. It then follows that |=
(`𝑋 (𝑥) .𝜓 ) (𝑥) ⇒ 𝜓 ′

. Thus, we get |= 𝐶− [(`𝑋 (𝑥) .𝜓 ) (̃𝑡)].
• Case Fp-Gfp+:We have

– 𝜙 = 𝐶+ [(a𝑋 (𝑥) .𝜓 ) (̃𝑡)]
– |= 𝜓 ′ ⇒ [_𝑥 .𝜓 ′/𝑋 ]𝜓
– ⊩ 𝐶+ [ [̃𝑡/𝑥]𝜓 ′]
By I.H., we get |= 𝐶+ [ [̃𝑡/𝑥]𝜓 ′]. Therefore, we have |= 𝜓 ′ ⇒
(a𝑋 (𝑥).𝜓 ) (𝑥). We thus get |= 𝐶+ [(a𝑋 (𝑥) .𝜓 ) (̃𝑡)].

• Case Fp-Lfp+:We obtain

– 𝜙 = 𝐶+ [(`𝑋 (𝑥).𝜓 ) (̃𝑡)]
– 𝑋 (𝑥);𝑝1;𝑝2;⊤ ↓ nnf (𝜓 )
– ⊩ 𝐶+ [𝑝1 (̃𝑡)]
– |= WF (𝑝2)
By I.H., we get |= 𝐶+ [𝑝1 (̃𝑡)]. By Lemma 5.1, we obtain |=
𝑝1 (𝑥) ⇒ (`𝑋 (𝑥) .𝜓 ) (𝑥). We thus get |= 𝐶+ [(`𝑋 (𝑥) .𝜓 ) (̃𝑡)].

• Case Fp-Gfp−:We have

– 𝑋 (𝑥);𝑝1;𝑝2;⊤ ↑ nnf (𝜓 )
– ⊩ 𝐶− [¬𝑝1 (̃𝑡)]
– |= WF (𝑝2)
By I.H., we get |= 𝐶− [¬𝑝1 (̃𝑡)]. By Lemma 5.1, we obtain |=
(a𝑋 (𝑥).𝜓 ) (𝑥) ⇒ ¬𝑝1 (𝑥). Therefore, we get |= 𝐶− [(a𝑋 (𝑥).𝜓 ) (̃𝑡)].

□

E Proof of Theorem 4.1
Lemma E.1. If |= ⌊Γ ⊢ 𝜙⌋, then |= \ (𝜌 (𝜙)) for any predicate substi-
tution 𝜌 and value substitution\ such that fpv(Γ)∪fpv(𝜙) ⊆ dom(𝜌)
and \ |= 𝜌 (Γ).

Lemma E.2 (Soundness of Subtyping).
• If Γ ⊢ 𝜎1<:𝜎2, then J𝜌 (Γ) ⊢ 𝜌 (𝜎1) <: 𝜌 (𝜎2)K for any predicate
substitution 𝜌 with dom(𝜌) = fpv(Γ) ∪ fpv(𝜎1) ∪ fpv(𝜎2).

• If Γ ⊢ 𝜏1 <:𝜏2, then J𝜌 (Γ) ⊢ 𝜌 (𝜏1) <: 𝜌 (𝜏2)K for any predicate
substitution 𝜌 with dom(𝜌) = fpv(Γ) ∪ fpv(𝜏1) ∪ fpv(𝜏2).

Proof. By mutual induction on the derivations of Γ ⊢ 𝜏1 <: 𝜏2 and
Γ ⊢ 𝜎1 <: 𝜎2. Let \ be a value substitution such that \ |= 𝜌 (Γ).

• Case S-Int: We have

– 𝜏1 = {𝑢 | 𝜙1}, 𝜏2 = {𝑢 | 𝜙2}
– ⊩ ⌊Γ ⊢ 𝜙1 ⇒ 𝜙2⌋
By Theorem 5.2 and Lemma E.1, we get |= \ (𝜌 (𝜙1 ⇒ 𝜙2)).
We then get {𝑛 | |= [𝑛/𝑢]\ (𝜌 (𝜙1))} ⊆ {𝑛 | |= [𝑛/𝑢]\ (𝜌 (𝜙2))}.
By the definition of J{𝑢 | 𝜙}K, we obtain J{𝑢 | \ (𝜌 (𝜙1))}K ⊆
J{𝑢 | \ (𝜌 (𝜙2))}K. Therefore, we have

J𝜌 (Γ) ⊢ 𝜌 ({𝑢 | 𝜙1}) <: 𝜌 ({𝑢 | 𝜙2})K
• Case S-Fun: We have

– 𝜏1 = (𝑥 : 𝜏 ′
1
) → 𝜎 ′

1
, 𝜏2 = (𝑥 : 𝜏 ′

2
) → 𝜎 ′

2

– Γ ⊢ 𝜏 ′
2
<: 𝜏 ′

1

– Γ, 𝑥 : 𝜏 ′
2
⊢ 𝜎 ′

1
<: 𝜎 ′

2

By I.H., we get

– J𝜌 (Γ) ⊢ 𝜌 (𝜏 ′
2
) <: 𝜌 (𝜏 ′

1
)K

– J𝜌 (Γ, 𝑥 : 𝜏 ′
2
) ⊢ 𝜌 (𝜎 ′

1
) <: 𝜌 (𝜎 ′

2
)K

We then get

J\ (𝜌 (𝜏 ′
2
))K ⊆ J\ (𝜌 (𝜏 ′

1
))K (1)

and∀\ ′ ∈ sty(Γ, 𝑥 : 𝜏 ′
2
).(\ ′ |= 𝜌 (Γ, 𝑥 : 𝜏 ′

2
)) ⇒ J\ ′(𝜌 (𝜎 ′

1
))K ⊆

J\ ′(𝜌 (𝜎 ′
2
))K. Therefore, we have

∀𝑤 ′ ∈ J\ (𝜌 (𝜏 ′
2
))K.J\ (𝜌 ( [𝑤 ′/𝑥]𝜎 ′

1
))K ⊆ J\ (𝜌 ( [𝑤 ′/𝑥]𝜎 ′

2
))K (2)

Suppose that ∀𝑤 ′ ∈ J\ (𝜌 (𝜏 ′
1
))K.𝑤 𝑤 ′ ∈ J\ (𝜌 ( [𝑤 ′/𝑥]𝜎 ′

1
))K

for 𝑤 ∈ sty((𝑥 : 𝜏 ′
1
) → 𝜎 ′

1
). Then, by (1) and (2), we have

∀𝑤 ′ ∈ J\ (𝜌 (𝜏 ′
2
))K.𝑤 𝑤 ′ ∈ J\ (𝜌 ( [𝑤 ′/𝑥]𝜎 ′

2
))K. Therefore, we

get

{𝑤 | ∀𝑤 ′ ∈ J\ (𝜌 (𝜏 ′
1
))K.𝑤 𝑤 ′ ∈ J\ (𝜌 ( [𝑤 ′/𝑥]𝜎 ′

1
))K}

⊆ {𝑤 | ∀𝑤 ′ ∈ J\ (𝜌 (𝜏 ′
2
))K.𝑤 𝑤 ′ ∈ J\ (𝜌 ( [𝑤 ′/𝑥]𝜎 ′

2
))K}

By the definition of J𝜏K, we have J(𝑥 : \ (𝜌 (𝜏 ′
1
))) → \ (𝜌 (𝜎 ′

1
))K ⊆

J(𝑥 : \ (𝜌 (𝜏 ′
2
))) → \ (𝜌 (𝜎 ′

2
))K.We then get J\ (𝜌 ((𝑥 : 𝜏 ′

1
) → 𝜎 ′

1
))K ⊆

J\ (𝜌 ((𝑥 : 𝜏 ′
2
) → 𝜎 ′

2
))K. Therefore, we have

J𝜌 (Γ) ⊢ 𝜌 ((𝑥 : 𝜏 ′
1
) → 𝜎 ′

1
) <: 𝜌 ((𝑥 : 𝜏 ′

2
) → 𝜎 ′

2
)K

• Case S-Qual:
– 𝜎1 = (𝜏 ′

1
& Φ1), 𝜎2 = (𝜏 ′

2
& Φ2)

– Γ ⊢ 𝜏 ′
1
<: 𝜏 ′

2

– ⊩ ⌊Γ ⊢ ∀𝜛.Φ`

1
(𝜛) ⇒ Φ

`

2
(𝜛)⌋

– ⊩ ⌊Γ ⊢ ∀𝜋.Φa
1
(𝜋) ⇒ Φa

2
(𝜋)⌋

By I.H., Theorem 5.2, and Lemma E.1, we obtain

J\ (𝜌 (𝜏 ′
1
))K ⊆ J\ (𝜌 (𝜏 ′

2
))K (3)

|= ∀𝜛.\ (𝜌 (Φ`

1
(𝜛) ⇒ Φ

`

2
(𝜛))) (4)

|= ∀𝜋.\ (𝜌 (Φa
1
(𝜋) ⇒ Φa

2
(𝜋))) (5)

Let 𝑒 ∈ J\ (𝜌 ((𝜏 ′
1
& Φ1)))K. By the definition of J𝜎K, we have

(∀𝜛,𝑤 ∈ sty(𝜏 ′
1
).𝑒 ⇓ 𝑤 & 𝜛 ⇒ (𝑤 ∈ J\ (𝜌 (𝜏 ′

1
))K ∧ (\ |=

𝜌 (Φ`

1
(𝜛))))) ∧ (∀𝜋.𝑒 ⇑ ⊥ & 𝜋 ⇒ (\ |= 𝜌 (Φa

1
(𝜋)))). By

(3), (4), and (5), we get, (∀𝜛,𝑤 ∈ sty(𝜏 ′
1
) .𝑒 ⇓ 𝑤 & 𝜛 ⇒

(𝑤 ∈ J\ (𝜌 (𝜏 ′
2
))K ∧ (\ |= 𝜌 (Φ`

2
(𝜛))))) ∧ (∀𝜋.𝑒 ⇑ ⊥ & 𝜋 ⇒

(\ |= 𝜌 (Φa
2
(𝜋)))) It follows that 𝑒 ∈ J\ (𝜌 (𝜏 ′

2
& Φ2))K. We get

J(𝜏 ′
1
& Φ1)K ⊂ J(𝜏 ′

2
& Φ2)K. Therefore, we have

J𝜌 (Γ) ⊢ 𝜌 ((𝜏 ′
1
& Φ1)) <: 𝜌 ((𝜏 ′2 & Φ2))K

□

Lemma E.3 (Effect Composition). For any Φ1 and Φ2, we have:
• For any 𝜛1 and 𝜛2, if |= Φ

`

1
(𝜛1) and |= Φ

`

2
(𝜛2), then |= (Φ1 ·

Φ2)` (𝜛1 · 𝜛2).
• For any 𝜛1 and 𝜋2, if |= Φ

`

1
(𝜛1) and |= Φa

2
(𝜋2), then |= (Φ1 ·

Φ2)a (𝜛1 · 𝜋2).
• For any 𝜋1, if |= Φa

1
(𝜋1), then |= (Φ1 · Φ2)a (𝜋1).

Lemma E.4. Let 𝐹 = _𝑋 ._𝑥 .𝜓 with 𝑋 may occur only positively in

𝜓 . We have `𝑋 (𝑥).𝜓 ⊑
𝜔∨
𝑖=0

𝐹 𝑖 (_𝑥.⊥).

Proof. |= 𝐹 (
𝜔∨
𝑖=0

𝐹 𝑖 (_𝑥 .⊥)) ⊑
𝜔∨
𝑖=0

𝐹 𝑖 (_𝑥.⊥) is obtained by the conti-

nuity of 𝐹 , which is proved by induction on the structure of𝜓 . □

Lemma E.5. Let 𝐹 = _𝑋 ._𝑥 .𝜓 with 𝑋 may occur only positively in

𝜓 . We have
𝜔∧
𝑖=0

𝐹 𝑖 (_𝑥.⊤) ⊑ a𝑋 (𝑥) .𝜓 .
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Proof. |=
𝜔∧
𝑖=0

𝐹 𝑖 (_𝑥 .⊤) ⊑ 𝐹 (
𝜔∧
𝑖=0

𝐹 𝑖 (_𝑥 .⊤))) is obtained by the co-

continuity of 𝐹 , which we get by induction on the structure of

𝜓 . □

Lemma E.6. Let 𝜏 ′
𝑓

= (𝑥 : 𝜏) → (𝜏 & (_𝑥 ∈ Σ∗ .𝑋` (𝑥, 𝑥), _𝑥 ∈
Σ𝜔 .𝑋a (𝑥, 𝑥))) and 𝜌 be a predicate substitution with dom(𝜌) =

fpv(𝜏 ′
𝑓
)\{𝑋` , 𝑋a }. Suppose that 𝑒 ∈ J𝜌 (𝑓 : 𝜌 ′(𝜏 ′

𝑓
), 𝑥 : 𝜏) ⊢ 𝜌 (𝜏 & 𝜌 ′(Φ))K

for any 𝜌 ′ with dom(𝜌 ′) = {𝑋` , 𝑋a }. We then have rec(𝑓 , 𝑥, 𝑒) ∈
J(𝜌 (𝜏𝑓 ) & Φval)K, where

• 𝑞` = `𝑋` (𝑥, 𝑥) .Φ` (𝑥)
• 𝑞a = a𝑋a (𝑥, 𝑥).[𝑞`/𝑋` ]Φa (𝑥)
• 𝜏𝑓 = (𝑥 : 𝜏) → (𝜏 & (_𝑥 ∈ Σ∗ .𝑞` (𝑥, 𝑥), _𝑥 ∈ Σ𝜔 .𝑞a (𝑥, 𝑥)))

Proof. By Theorem 5.2 and Lemma E.1, for any predicate substi-

tution 𝜌 ′ with dom(𝜌 ′) = {𝑋` , 𝑋a } and value substitution \ with

\ |= 𝜌 (𝑓 : 𝜌 ′(𝜏 ′
𝑓
), 𝑥 : 𝜏), we obtain

∀𝑤,𝜛.(\ (𝑒) ⇓ 𝑤 &𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= \ (𝜌 (𝜌 ′(Φ` ))) (𝜛)
(6)

∀𝜋.(\ (𝑒) ⇑ ⊥ & 𝜋) ⇒|= \ (𝜌 (𝜌 ′(Φa ))) (𝜋) (7)

We first show

∀𝑤,𝜛.(rec(𝑓 , 𝑥, 𝑒) \ (𝑥) ⇓ 𝑤 &𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= \ (𝜌 (𝑞` (𝑥,𝜛)))

To this end, we define 𝑣
`

𝑖
and 𝑝

`

𝑖
as follows:

𝑣
`

0
= rec(𝑓 , 𝑥, 𝑒` ) 𝑝

`

0
= _(𝑥, 𝑥) .⊥

𝑣
`

1
= rec(𝑓 , 𝑥, [𝑣`

0
/𝑓 ]𝑒 ′) 𝑝

`

1
= _(𝑥, 𝑥) .[𝑝`

0
/𝑋` ]Φ` (𝑥)

.

.

.
.
.
.

𝑣
`

𝑖+1 = rec(𝑓 , 𝑥, [𝑣`
𝑖
/𝑓 ]𝑒) 𝑝

`

𝑖+𝑖 = _(𝑥, 𝑥) .[𝑝`
𝑖
/𝑋` ]Φ` (𝑥)

.

.

.
.
.
.

Here, 𝑒` is a closed expression such that 𝑒` ⇓ 𝑤 &𝜛 does not hold

for any𝑤 and 𝜛. By mathematical induction, we will prove that for

all 𝑖,𝑤,𝜛:

(𝑣`
𝑖+1 \ (𝑥) ⇓ 𝑤 &𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= \ (𝜌 ( [𝑝`

𝑖
/𝑋` ]Φ` (𝜛)))

(8)

• We show that (8) holds for 𝑖 = 0. Because 𝑒` is closed, we

get \ (𝑒` ) = 𝑒` = [𝑣`
0
/𝑓 , \ (𝑥)/𝑥]𝑒` . By (6), we get

∀𝑤,𝜛.( [𝑣𝑚𝑢0/𝑓 , \ (𝑥)/𝑥]𝑒` ⇓ 𝑤 &𝜛) ⇒
𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= \ (𝜌 (𝜌 ′(Φ` ))) (𝜛)

Let 𝜌 ′ = {𝑋` ↦→ 𝑝
`

0
, 𝑋a ↦→ _(𝑥, 𝑥).⊤}. Then, by RT-App,

we obtain ∀𝑤,𝜛.(𝑣`
1
\ (𝑥) ⇓ 𝑤 & 𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |=

\ (𝜌 ( [𝑝`/0/𝑋` ]Φ` )) (𝜛).
• We assume that (8) holds for 𝑖 = 𝑘 and prove that (8) holds

for 𝑖 = 𝑘 + 1. We have ∀𝑤,𝜛.(𝑣`
𝑘+1 \ (𝑥) ⇓ 𝑤 & 𝜛) ⇒ 𝑤 ∈

J\ (𝜌 (𝜏))K∧ |= \ (𝜌 ( [𝑝`
𝑘
/𝑋` ]Φ` (𝜛))). It follows immediately

that ∀𝜋.(𝑣`
𝑘+1 \ (𝑥) ⇑ ⊥ & 𝜋) ⇒|= \ (𝜌 (_𝑥 .⊤)(𝜋)). We then

get

𝑣
`

𝑘+1 \ (𝑥) ∈ J\ (𝜌 (𝜏 & (_𝑥 ∈ Σ∗ .[𝑝`
𝑘
/𝑋` ]Φ` (𝑥), _𝑥 ∈ Σ𝜔 .⊤)))K

Therefore, we have 𝑣
`

𝑘+1 ∈ J\ (𝜌 ( [𝑝`
𝑘+1/𝑋` , _(𝑥, 𝑥).⊤/𝑋a ]𝜏 ′𝑓 ))K.

By (6) with 𝜌 ′ = {𝑋` ↦→ 𝑝
`

𝑘+1, 𝑋a ↦→ _(𝑥, 𝑥).⊤}, we obtain

∀𝑤,𝜛.(\ (𝑒) ⇓ 𝑤&𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= 𝜌 ( [𝑝`
𝑘+1/𝑋` ]Φ` ) (𝜛).

Because we have

𝑣
`

𝑘+1 ∈ J\ (𝜌 ( [𝑝`
𝑘+1/𝑋` , _(𝑥, 𝑥).⊤/𝑋a ]𝜏 ′𝑓 ))K,

we obtain∀𝑤,𝜛.(\ ( [𝑣`
𝑘+1/𝑓 ]𝑒) ⇓ 𝑤&𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |=

𝜌 ( [𝑝`
𝑘+1/𝑋` ]Φ` ) (𝜛). Therefore, we get

∀𝑤,𝜛.(𝑣`
𝑘+2 \ (𝑥) ⇓ 𝑤 &𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= 𝜌 ( [𝑝`

𝑘+1/𝑋` ]Φ` ) (𝜛)

Suppose that rec(𝑓 , 𝑥, 𝑒) \ (𝑥) ⇓ 𝑤 & 𝜛. By the construction of 𝑣
`

𝑖
,

we get ∃𝑖 .𝑣`
𝑖
\ (𝑥) ⇓ 𝑤 &𝜛.

By (8), it follows that𝑤 ∈ J\ (𝜌 (𝜏))K ∧ ∃𝑖 . |= \ (𝜌 (𝑝`
𝑖
(𝑥,𝜛))). By

LemmaE.4, |=
𝜔∨
𝑖=0

\ (𝜌 (𝑝`
𝑖
(𝑥,𝜛))) implies |= \ (𝜌 (`𝑋 (𝑥, 𝑥).Φ` (𝑥)) (𝑥,𝜛)).

Therefore, we get

∀𝑤,𝜛.(rec(𝑓 , 𝑥, 𝑒) \ (𝑥) ⇓ 𝑤 &𝜛) ⇒
𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= \ (𝜌 (`𝑋 (𝑥, 𝑥) .Φ` (𝑥)) (𝑥,𝜛))

We next prove

∀𝜋.(rec(𝑓 , 𝑥, 𝑒) \ (𝑥) ⇑ ⊥ & 𝜋) ⇒|= \ (𝜌 (𝑞a (𝑥, 𝜋))
To this end, we define 𝑣𝜋

𝑖
and 𝑝a

𝑖
as follows.

𝑣𝜋
0
= rec(𝑓 , 𝑥, 𝑒𝜋 ) 𝑝a

0
= _(𝑥, 𝑥) .⊤

𝑣𝜋
1
= rec(𝑓 , 𝑥, [𝑣𝜋

0
/𝑓 ]𝑒) 𝑝a

1
= _(𝑥, 𝑥) .[𝑝a

0
/𝑋a ]Φa (𝑥)

.

.

.
.
.
.

𝑣𝜋𝑖+1 = rec(𝑓 , 𝑥, [𝑣𝜋𝑖 /𝑓 ]𝑒) 𝑝a𝑖+1 = _(𝑥, 𝑥) .[𝑝a𝑖 /𝑋a ]Φa (𝑥)
.
.
.

.

.

.

Here, 𝑒𝜋 is a closed expression such that 𝑒𝜋 ⇑ ⊥ & 𝜋 . By mathemat-

ical induction, we prove that for all 𝑖, 𝜋, 𝜋 ′,𝑤,𝜛:

((𝑣𝜋
𝑖+1 \ (𝑥) ⇑ ⊥ & 𝜋 ′) ⇒|= \ (𝜌 ( [𝑞`/𝑋` , 𝑝

a
𝑖
/𝑋a ]Φa (𝜋 ′))))∧

((𝑣𝜋
𝑖+1 \ (𝑥) ⇓ 𝑤 &𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= 𝜌 (𝑞` ) (\ (𝑥), 𝜛))

(9)

• We show that (9) holds for 𝑖 = 0. Because 𝑒𝜋 is closed, we

get \ (𝑒𝜋 ) = 𝑒𝜋 = [𝑣𝜋
0
/𝑓 , \ (𝑥)/𝑥]𝑒𝜋 . By (7) and (6), we have

∀𝜋 ′.( [𝑣𝜋
0
/𝑓 , \ (𝑥)/𝑥]𝑒𝜋 ⇑ ⊥ & 𝜋 ′) ⇒|= \ (𝜌 (𝜌 ′(Φa ))) (𝜋 ′).

We get∀𝑤,𝜛.( [𝑣𝜋
0
/𝑓 , \ (𝑥)/𝑥]𝑒 ⇓ 𝑤&𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |=

\ (𝜌 (𝜌 ′(Φ` ))) (𝜛). Let 𝜌 ′ = {𝑋` ↦→ 𝑞` , 𝑋a ↦→ 𝑝a
0
}, byRN-App

and RT-App, we obtain

∀𝜋 ′.(𝑣𝜋
1
\ (𝑥) ⇑ ⊥ & 𝜋 ′) ⇒|= \ (𝜌 ( [𝑞`/𝑋` , 𝑝

a
0
/𝑋a ]Φa (𝜋)))

and

∀𝑤,𝜛.(𝑣𝜋
1
\ (𝑥) ⇓ 𝑤&𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= 𝜌 (𝑞` ) (\ (𝑥), 𝜛).

• We assume that (9) holds for 𝑖 = 𝑘 and prove (9) holds

for 𝑖 = 𝑘 + 1. We have ∀𝜋, 𝜋 ′.(𝑣𝜋
𝑘+1 \ (𝑥) ⇑ ⊥ & 𝜋 ′) ⇒|=

\ (𝜌 ( [𝑞`/𝑋` , 𝑝
a
𝑘
/𝑋a ]Φa (𝜋 ′))) and ∀𝜋,𝑤,𝜛.(𝑣𝜋

𝑘+1\ (𝑥) ⇓ 𝑤 &

𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= 𝜌 (𝑞` ) (\ (𝑥), 𝜛). We then get

𝑣𝜋
𝑘+1 ∈ J\ (𝜌 (𝜏 & (_𝑥.𝑞` (𝑥, 𝑥), _𝑥 .[𝑞`/𝑋` ]𝑝a𝑘+1 (𝑥))))K. There-
fore, we get 𝑣𝜋

𝑘+1 ∈ J\ (𝜌 ( [𝑞`/𝑋` , 𝑝
a
𝑘+1/𝑋a ]𝜏 ′𝑓 ))K. By (6) and

(7) with 𝜌 ′ = {𝑋` ↦→ 𝑞` , 𝑋a ↦→ 𝑝a
𝑘+1}, we have

– ∀𝑤,𝜛.(\ (𝑒) ⇓ 𝑤 &𝜛) ⇒
𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= 𝜌 ( [𝑞`/𝑋` , 𝑝

a
𝑘+1/𝑋a ]Φ` ) (𝜛)

– ∀𝜋.(\ (𝑒) ⇑ ⊥ & 𝜋) ⇒|= 𝜌 ( [𝑞`/𝑋` , 𝑝
a
𝑘+1/𝑋a ]Φa ) (𝜋)

Because 𝑣𝜋
𝑘+1 ∈ J\ (𝜌 ( [𝑞`/𝑋` , 𝑝

a
𝑘+1/𝑋a ]𝜏 ′𝑓 ))K holds, we have

∀𝑤,𝜛.(\ ( [𝑣𝜋
𝑘+1/𝑓 ]𝑒) ⇓ 𝑤 &𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= \ (𝜌 (𝑞` (𝑥, 𝑥)))

∀𝜋.(\ ( [𝑣𝜋
𝑘+1/𝑓 ]𝑒) ⇑ ⊥ & 𝜋) ⇒|= 𝜌 ( [𝑞`/𝑋` , 𝑝

a
𝑘+1/𝑋` ]Φa ) (𝜛)
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Therefore, by RT-App and RN-App, we get

∀𝑤,𝜛.(rec(𝑓 , 𝑥, [𝑣𝜋
𝑘+1/𝑓 ]𝑒) \ (𝑥) ⇓ 𝑤 &𝜛) ⇒

𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= \ (𝜌 (𝑞` (𝑥, 𝑥)))
∀𝜋.(rec(𝑓 , 𝑥, [𝑣𝜋

𝑘+1/𝑓 ]𝑒) \ (𝑥) ⇑ ⊥ & 𝜋) ⇒
|= 𝜌 ( [𝑞`/𝑋` , 𝑝

a
𝑘+1/𝑋a ]Φa )

We then get∀𝑤,𝜛.(𝑣𝜋
𝑘+2\ (𝑥) ⇓ 𝑤 &𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |=

\ (𝜌 (𝑞` (𝑥, 𝑥))).
We get ∀𝜋.(𝑣𝜋

𝑘+2\ (𝑥) ⇑ ⊥&𝜋) ⇒|= 𝜌 ( [𝑞`/𝑋` , 𝑝
a
𝑘+1/𝑋a ]Φa ).

By (9), we have

∀𝑖, 𝜋, 𝜋 ′.(𝑣𝜋𝑖+1 \ (𝑥) ⇑ ⊥ & 𝜋 ′) ⇒|= \ (𝜌 ( [𝑞`/𝑋` , 𝑝
a
𝑖 /𝑋a ]Φa (𝜋 ′)))

We then get∀𝑖, 𝜋, 𝜋 ′.(𝑣𝜋
𝑖+1\ (𝑥) ⇑ ⊥&𝜋 ′) ⇒|= \ (𝜌 ( [𝑞`/𝑋` ]𝑝a𝑖+1 (𝑥, 𝜋

′))).
Suppose that rec(𝑓 , 𝑥, 𝑒)\ (𝑥) ⇑ ⊥&𝜋 . By the construction of 𝑣𝜋

𝑖
, we

get∀𝑖 .∃𝜋 ′.𝑣𝜋
′

𝑖+1\ (𝑥) ⇑ ⊥&𝜋 .We then get∀𝑖 . |= \ (𝜌 ( [𝑞a/𝑋a ]𝑝a𝑖+1 (𝑥, 𝜋))).

By Lemma E.5, |=
𝜔∧
𝑖=0

\ (𝜌 ( [𝑞`/𝑋a ]𝑝a𝑖 (𝑥, 𝜋))) implies

|= \ (𝜌 ((a𝑋 (𝑥, 𝑥) .[𝑞`/𝑋` ]Φa (𝑥)) (𝑥, 𝑥))). Therefore, we get
∀𝜋.(rec(𝑓 , 𝑥, 𝑒) \ (𝑥) ⇑ ⊥ & 𝜋) ⇒|= \ (𝜌 (𝑞a (𝑥, 𝜋)))

Thus, we obtain

rec(𝑓 , 𝑥, 𝑒) \ (𝑥) ∈ J𝜌 (𝜏 & (_𝑥 ∈ Σ∗ .𝑞` (𝑥, 𝑥), _𝑥 ∈ Σ𝜔 .𝑞a (𝑥, 𝑥)))K

By the definition of J(𝑥 : 𝜏) → 𝜎K,
we obtain rec(𝑓 , 𝑥, 𝑒) ∈ J(𝜌 (𝜏𝑓 ) & Φval)K. □

Proof of Theorem 4.1. By induction on the derivation of Γ ⊢ 𝑒 : 𝜎 .

Let \ be a value substitution such that \ |= 𝜌 (Γ).
• Case T-Const:We have

– 𝑒 = 𝑛

– 𝜎 = ({𝑥 | 𝑥 = 𝑛} & Φval)
There is no 𝜋 such that 𝑛 ⇑ ⊥ & 𝜋 because no rule for

Non Terminating Run applies to 𝑛. Then, we get ∀𝜋.(𝑛 ⇑
⊥ & 𝜋) ⇒|= Φa

val (𝜋).
Also, RT-Val is the only rule for Terminating Run that ap-

plies to 𝑛. Therefore, if 𝑛 ⇓ 𝑤 & 𝜛, then 𝑤 = 𝑛 and 𝜛 = 𝜖 .

We then get ∀𝜛,𝑤.𝑛 ⇓ 𝑤 & 𝜛 ⇒ (|= 𝑤 = 𝑛 ∧ Φ
`

val (𝜛)).
We have 𝑛 ∈ J({𝑥 | 𝑥 = 𝑛} & Φval)K. Because \ (𝑛) = 𝑛 and

\ (𝜌 ({𝑥 | 𝑥 = 𝑛} & Φval)) = ({𝑥 | 𝑥 = 𝑛} & Φval), we
have \ (𝑛) ∈ J\ (𝜌 ({𝑥 | 𝑥 = 𝑛} & Φval))K. Thus, we get 𝑛 ∈
J𝜌 (Γ) ⊢ 𝜌 ({𝑥 | 𝑥 = 𝑛} & Φval)K.

• Case T-Fun: We have

– 𝑒 = rec(𝑓 , 𝑥, 𝑒 ′), 𝜎 = (𝜏𝑓 & Φval)
– 𝜏 ′

𝑓
= (𝑥 : 𝜏) → (𝜏& (_𝑥 ∈ Σ∗ .𝑋` (𝑥, 𝑥), _𝑥 ∈ Σ𝜔 .𝑋a (𝑥, 𝑥)))

– Γ, 𝑓 : 𝜏 ′
𝑓
, 𝑥 : 𝜏 ⊢ 𝑒 ′ : (𝜏 & Φ)

– 𝑝` = `𝑋` (𝑥, 𝑥).Φ` (𝑥), 𝑝a = a𝑋a (𝑥, 𝑥).Φa (𝑥)
– 𝜏𝑓 = (𝑥 : 𝜏) → (𝜏 & (_𝑥 ∈ Σ∗ .𝑞` (𝑥, 𝑥), _𝑥 ∈ Σ𝜔 .𝑞a (𝑥, 𝑥)))
By I.H., we get \ (𝑒 ′) ∈ J\ (𝜌 (𝑓 : 𝜏 ′

𝑓
, 𝑥 : 𝜏)) ⊢ \ (𝜌 (𝜏 & Φ))K.

Because 𝑋` and 𝑋a in 𝜏 ′
𝑓
and Φ are free, they can be substi-

tuted with any predicates.

Therefore, for any predicate substitution 𝜌 ′ with dom(𝜌 ′) =
{𝑋` , 𝑋a },\ (𝑒 ′) ∈ J\ (𝜌 (𝑓 : 𝜌 ′(𝜏 ′

𝑓
), 𝑥 : 𝜏)) ⊢ \ (𝜌 (𝜏 & 𝜌 ′(Φ)))K

holds. By Lemma E.6, \ (rec(𝑓 , 𝑥, 𝑒 ′)) ∈ J\ (𝜌 (𝜏𝑓 ) & Φval)K.
Therefore, we get rec(𝑓 , 𝑥, 𝑒 ′) ∈ J𝜌 (Γ) ⊢ 𝜌 (𝜏𝑓 & Φval)K.

• Case T-VInt:We have

– 𝑒 = 𝑥

– 𝜎 = ({𝑢 | 𝑢 = 𝑥} & Φval)

– sty(Γ(𝑥)) = int

We have \ (𝑥) ∈ J𝜌 ({𝑢 | 𝑢 = \ (𝑥)} & Φval)K, because \ (𝑥) is
an integer value. Because \ (𝑥) ∈ J\ (𝜌 ({𝑢 | 𝑢 = 𝑥} & Φval))K,
we have 𝑥 ∈ J𝜌 (Γ) ⊢ 𝜌 ({𝑢 | 𝑢 = 𝑥} & Φval)K.

• Case T-VFun:We have

– 𝑒 = 𝑥

– 𝜎 = (Γ(𝑥) & Φval)
– sty(Γ(𝑥)) ≠ int

By the definition of\ |= 𝜌 (Γ), we obtain\ (𝑥) ∈ J\ (𝜌 (Γ(𝑥)))K.
Because \ (𝑥) is a value, \ (𝑥) ∈ J\ (𝜌 (Γ(𝑥) & Φval))K holds.
We therefore get 𝑥 ∈ J𝜌 (Γ) ⊢ 𝜌 (Γ(𝑥) & Φval)K.

• Case T-Let:We have

– 𝑒 = let 𝑥= 𝑒1 in 𝑒2
– 𝜎 = (𝜏2 & Φ1 · Φ2)
– Γ ⊢ 𝑒1 : (𝜏1 & Φ1)
– Γ, 𝑥 : 𝜏1 ⊢ 𝑒2 : (𝜏2 & Φ2)
– 𝑥 ∉ fv(𝜏2) ∪ fv(Φ2)
By I.H., Theorem 5.2, and Lemma E.1, we get

– ∀𝑤,𝜛.(\ (𝑒1) ⇓ 𝑤&𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏1))K∧ |= \ (𝜌 (Φ`

1
)) (𝜛)

– ∀𝜋.(\ (𝑒1) ⇑ ⊥ & 𝜋) ⇒|= \ (𝜌 (Φa
1
)) (𝜋)

– ∀𝑤,𝜛,𝑤1 ∈ J\ (𝜌 (𝜏1))K.( [𝑤1/𝑥]\ (𝑒2) ⇓ 𝑤 & 𝜛) ⇒ 𝑤 ∈
J[𝑤1/𝑥]\ (𝜌 (𝜏2))K∧ |= [𝑤1/𝑥]\ (𝜌 (Φ`

2
)) (𝜛)

– ∀𝜋,𝑤1 ∈ J\ (𝜌 (𝜏1))K.
( [𝑤1/𝑥]\ (𝑒2) ⇑ ⊥ & 𝜋) ⇒|= [𝑤1/𝑥]\ (𝜌 (Φa

2
)) (𝜋)

RT-Let is the only rule for Terminating Run that applies

to let 𝑥= \ (𝑒1) in \ (𝑒2). By Lemma E.3, we get

∀𝑤,𝜛.(let𝑥=\ (𝑒1)in\ (𝑒2) ⇓ 𝑤 &𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏2))K∧ |=
\ ((𝜌 (Φ1 ·Φ2))` ) (𝜛). RT-Let1 and RT-Let2 are only rules for
NonTerminating Run that apply to let 𝑥= \ (𝑒1) in \ (𝑒2).
– Case RN-Let1:
Weobtain∀𝜋.(let𝑥=\ (𝑒1)in\ (𝑒2) ⇑ ⊥&𝜋) ⇒|= \ (𝜌 (Φa

1
)) (𝜋).

By Lemma E.3, we get ∀𝜋.(let 𝑥= \ (𝑒1) in \ (𝑒2) ⇑ ⊥ &

𝜋) ⇒|= \ (𝜌 ((Φ1 · Φ2)a )) (𝜋).
– Case RN-Let2:
By Lemma E.3, we obtain ∀𝜋.(let 𝑥= \ (𝑒1) in \ (𝑒2) ⇑
⊥ & 𝜋) ⇒|= \ (𝜌 ((Φ1 · Φ2)a )) (𝜋).

Therefore, we have ∀𝜋.(let 𝑥= \ (𝑒1) in \ (𝑒2) ⇑ ⊥ & 𝜋) ⇒
\ (𝜌 ((Φ1 · Φ2)a )) (𝜋).
We then get \ (let 𝑥= 𝑒1 in 𝑒2) ∈ J\ (𝜌 (𝜏2 & Φ1 · Φ2))K. We

thus have let 𝑥= 𝑒1 in 𝑒2 ∈ J𝜌 (Γ) ⊢ 𝜌 (𝜏2 & Φ1 · Φ2)K.
• Case T-App:We have

– 𝑒 = 𝑣1 𝑣2
– 𝜎 = [𝑣2/𝑥] (𝜏 ′ & Φ)
– Γ ⊢ 𝑣1 : ((𝑥 : 𝜏) → (𝜏 ′ & Φ) & Φval)
– Γ ⊢ 𝑣2 : (𝜏 & Φval)
By I.H., Theorem 5.2, and Lemma E.1, we get

\ (𝑣1) ∈ J\ (𝜌 ((𝑥 : 𝜏) → (𝜏 ′ & Φ)) & Φval)K ⊆ J\ (𝜌 ((𝑥 : 𝜏) → (𝜏 ′ & Φ)))K
Therefore, we have

∀𝑤 ′ ∈ J\ (𝜌 (𝜏))K.\ (𝑣1) 𝑤 ′ ∈ J[𝑤 ′/𝑥]\ (𝜌 (𝜏 ′ & Φ))K
\ (𝑣2) ∈ J\ (𝜌 (𝜏 & Φval))K ⊆ J\ (𝜌 (𝜏))K
We then get \ (𝑣1)\ (𝑣2) ∈ J[\ (𝑣2)/𝑥]\ (𝜌 (𝜏 ′ & Φ))K. We have

\ (𝑣1 𝑣2) ∈ J\ (𝜌 ( [𝑣2/𝑥] (𝜏 ′ & Φ)))K. We then get

𝑣1 𝑣2 ∈ J𝜌 (Γ) ⊢ 𝜌 ( [𝑣2/𝑥] (𝜏 ′ & Φ))K.
• Case T-Op:We have

– 𝑒 = 𝑣1 op 𝑣2
– 𝜎 = ({𝑥 | 𝑥 = 𝑣1 op 𝑣2} & Φval)
– Γ ⊢ 𝑣1 : (int & Φval)
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– Γ ⊢ 𝑣2 : (int & Φval)
By I.H., we obtain

𝑣1 ∈ JΓ ⊢ (int & Φval)K and 𝑣2 ∈ JΓ ⊢ (int & Φval)K. Because
there is no rule for Non Terminating Run that applies to

\ (𝑣1 op 𝑣2), there is no 𝜋 such that \ (𝑣1 op 𝑣2) ⇑ ⊥ & 𝜋 . We

then get ∀𝜋.(\ (𝑣1 op 𝑣2) ⇑ ⊥ & 𝜋) ⇒|= \ (𝜌 (Φa
val)) (𝜋). Also,

Rt-Op is the only rule for Terminating Run that applies

to \ (𝑣1 op 𝑣2). Therefore, if \ (𝑣1 op 𝑣2) ⇓ 𝑤 & 𝜛, then 𝑤 =

JopK(\ (𝑣1), \ (𝑣2)) and 𝜛 = 𝜖 . We have ∀𝜛,𝑤.\ (𝑣1 op 𝑣2) ⇓
𝑤 & 𝜛 ⇒|= 𝑤 = 𝜌 (JopK(\ (𝑣1), \ (𝑣2))) ∧ \ (𝜌 (Φ`

val)) (𝜛). We

then get \ (𝑣1 op 𝑣2) ∈ J\ (𝜌 ({𝑥 | 𝑥 = 𝑣1 op 𝑣2} & Φval))K. It
follows that 𝑣1 op 𝑣2 ∈ J𝜌 (Γ) ⊢ 𝜌 ({𝑥 | 𝑥 = 𝑣1 op 𝑣2} & Φval)K.

• Case T-If: We have

– 𝑒 = ifz 𝑣 then 𝑒1 else 𝑒2
– 𝜎 = (𝜏 & Φ)
– Γ, 𝑣 = 0 ⊢ 𝑒1 : (𝜏 & Φ)
– Γ, 𝑣 ≠ 0 ⊢ 𝑒2 : (𝜏 & Φ)
By I.H., Theorem 5.2, and Lemma E.1, we get

– |= \ (𝑣) = 0∧∀𝑤,𝜛.(\ (𝑒1) ⇓ 𝑤 &𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |=
\ (𝜌 (Φ` )) (𝜛)

– |= \ (𝑣) = 0 ∧ ∀𝜋.(\ (𝑒1) ⇑ ⊥ & 𝜋) ⇒|= \ (𝜌 (Φa )) (𝜋)
– |= \ (𝑣) ≠ 0∧∀𝑤,𝜛.(\ (𝑒2) ⇓ 𝑤 &𝜛) ⇒ 𝑤 ∈ J\ (𝜌 (𝜏))K∧ |=
\ (𝜌 (Φ` )) (𝜛)

– |= \ (𝑣) ≠ 0 ∧ ∀𝜋.(\ (𝑒2) ⇑ ⊥ & 𝜋) ⇒|= \ (𝜌 (Φa )) (𝜋)
RT-IfTrue and RT-IfFalse are the only rules for

Terminating Run that apply to \ (ifz 𝑣 then 𝑒1 else 𝑒2) =
ifz \ (𝑣) then \ (𝑒1) else \ (𝑒2).
– Case RT-IfTrue: By |= \ (𝑣) = 0,

we get ∀𝑤,𝜛.(ifz \ (𝑣) then \ (𝑒1) else \ (𝑒2) ⇓ 𝑤 &𝜛) ⇒
𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= \ (𝜌 (Φ` ) (𝜛)).

– Case RT-IfFalse: By |= \ (𝑣) ≠ 0,

we obtain∀𝑤,𝜛.(ifz\ (𝑣)then\ (𝑒1)else\ (𝑒2) ⇓ 𝑤&𝜛) ⇒
𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= \ (𝜌 (Φ` ) (𝜛)).

We then get ∀𝑤,𝜛.(\ (ifz 𝑣 then 𝑒1 else 𝑒2) ⇓ 𝑤 & 𝜛) ⇒
𝑤 ∈ J\ (𝜌 (𝜏))K∧ |= \ (𝜌 (Φ` ) (𝜛)). Also, RN-IfTrue and

RN-IfFalse are the only rules for NonTerminating Run

that apply to ifz \ (𝑣) then \ (𝑒1) else \ (𝑒2).
– Case RT-IfTrue: By |= \ (𝑣) = 0,

we obtain∀𝜋.(ifz\ (𝑣)then\ (𝑒1)else\ (𝑒2) ⇑ ⊥&𝜋) ⇒|=
\ (𝜌 (Φa )) (𝜋).

– Case RT-IfFalse: By |= \ (𝑣) ≠ 0,

we have ∀𝜋.(ifz\ (𝑣) then\ (𝑒1) else\ (𝑒2) ⇑ ⊥ &𝜋) ⇒|=
\ (𝜌 (Φa )) (𝜋).

We then get ∀𝜋.(ifz \ (𝑣) then \ (𝑒1) else \ (𝑒2) ⇑ ⊥ &

𝜋) ⇒|= \ (𝜌 (Φa )) (𝜋). We then get \ (ifz𝑣 then𝑒1 else𝑒2) ∈
J\ (𝜌 (𝜏 & Φ))K.We obtain ifz𝑣then𝑒1else𝑒2 ∈ J𝜌 (Γ) ⊢ 𝜌 (𝜏 & Φ)K.

• Case T-Event:We have

– 𝑒 = ev[a]

– 𝜎 = ({𝑥 | 𝑥 = 0} & (_𝑥 ∈ Σ∗ .𝑥 ∈ a, _𝑥 ∈ Σ𝜔 .⊥))
Because there is not rule for Non Terminating Run that

applies to \ (ev[a]), there is no 𝜋 such that ev[a] ⇑ ⊥ &

𝜋 . We obtain ∀𝜋.(\ (ev[a]) ⇑ ⊥ & 𝜋) ⇒|= \ (𝜌 (Φa
val (𝜋))).

Also RT-Event is the only rule for Terminating Run that

applies to \ (ev[a]). Therefore, if \ (ev[a]) ⇓ 𝑤 & 𝜛, 𝑤 =

0 and 𝜛 ∈ a. We obtain ∀𝑤,𝜛.(\ (ev[a]) ⇓ 𝑤 & 𝜛) ⇒|=
\ (𝜌 (𝑤 = 0 ∧ (_𝑥 ∈ Σ∗ .𝑥 ∈ a) (𝜛))). We get \ (ev[a]) ∈
J\ (𝜌 ({𝑥 | 𝑥 = 0} & (_𝑥 ∈ Σ∗ .𝑥 ∈ a, _𝑥 ∈ Σ𝜔 .⊥)))K.
Therefore, we have

ev[a] ∈ J𝜌 (Γ) ⊢ 𝜌 (({𝑥 | 𝑥 = 0} & (_𝑥 ∈ Σ∗ .𝑥 ∈ a & _𝑥 ∈ Σ𝜔 .⊥)))K.
• Case T-Sub:We have

– 𝜎 = 𝜎2
– Γ ⊢ 𝑒 : 𝜎1
– Γ ⊢ 𝜎1 <: 𝜎2
By I.H., we obtain 𝑒 ∈ J𝜌 (Γ) ⊢ 𝜌 (𝜎1)K. By the definition,

we get ∀\ ∈ sty(Γ).(\ |= 𝜌 (Γ)) ⇒ \ (𝑒) ∈ J\ (𝜌 (𝜎1))K. By
LemmaE.2, we have∀\ ∈ sty(Γ).(\ |= 𝜌 (Γ)) ⇒ J\ (𝜌 (𝜎1))K ⊆
J\ (𝜌 (𝜎2))K. Therefore, we get ∀\ ∈ sty(Γ) .(\ |= 𝜌 (Γ)) ⇒
\ (𝑒) ∈ J\ (𝜌 (𝜎2))K. Thus we have 𝑒 ∈ J𝜌 (Γ) ⊢ 𝜌 (𝜎2)K.

□

F Example Typing Derivation
Figure 16 shows an example typing derivation.

G Example Fixpoint Approximation
Figures 17-19 show example under-approximations of least fix-

points. Figures 20-21 show example over-approximations of great-

est fixpoints.

H Semantics of First-Order Fixpoint Logic
Wedefine the predicate sortsT and the partially ordered set (DS, ⊑S
) and (DT , ⊑T ) inductively by:

(predicate sorts) T ::= • | S̃ → •

D• ≜ {⊤,⊥}
DZ ≜ Z
D∗

Σ ≜ Σ∗

D𝜔
Σ ≜ Σ𝜔

⊑• ≜ {(⊤,⊤), (⊥,⊤), (⊥,⊥)}
⊑Z ≜ {(𝑛, 𝑛) | 𝑛 ∈ Z}
⊑∗
Σ ≜ {(𝜛,𝜛) | 𝜛 ∈ Σ∗}

⊑𝜔Σ ≜ {(𝜋, 𝜋) | 𝜋 ∈ Σ𝜔 }

DT̃→• ≜ {𝑓 ∈ DT̃→• | ∀𝑑1, 𝑑2 ∈ DS̃ .𝑑1 ⊑S̃ 𝑑2 ⇒ 𝑓 (𝑑1) ⊑• 𝑓 (𝑑2)}

⊑T̃→• ≜ {(𝑓 , 𝑔) | ∀𝑑 ∈ DS̃ .𝑓 (𝑑) ⊑• 𝑔(𝑑)}

and, we define conjunction and disjunction of 𝑓 , 𝑔 ∈ DT̃→• as
follows:

𝑓 ⊓T̃→• 𝑔 ≜ _𝑑 ∈ DT̃→• .𝑓 (𝑑) ∧ 𝑔(𝑑)

𝑓 ⊔T̃→• 𝑔 ≜ _𝑑 ∈ DT̃→• .𝑓 (𝑑) ∨ 𝑔(𝑑)

Note that (DT̃→•, ⊑T̃→•) forms a complete lattice (See Theo-

rem H.1). The least and greatest elements of DT̃→• are _𝑥.⊥ and

_𝑥.⊤ respectively.

We now define the formal semantics of the first-order fixpoint

logic as Fig 22. sortsof (𝐴) and sortsof (𝑓 ) are the sorts sequence of
arguments of 𝐴 and 𝑓 respectively.

Here, the least/greatest fixpoint operatorslfp T̃→•
and gfp T̃→•

are defined by:

lfp T̃→• (𝐹 ) ≜
d

T̃→•{𝑋 ∈ DT̃→• | 𝐹 (𝑋 ) ⊑T̃→• 𝑋 }

gfp T̃→• (𝐹 ) ≜ ⊔
T̃→•{𝑋 ∈ DT̃→• | 𝑋 ⊑T̃→• 𝐹 (𝑋 )}

d
T̃→• and

⊔
T̃→• denote respectively the greatest lower bound

and the least upper bound with respect to ⊑T̃→•.

Theorem H.1. (DT̃→•, ⊑T̃→•) forms a complete lattice.
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.

.

.

Γ= ⊢ 1 : ({𝑥 | 𝑥 = 1} & Φ)

Γ≠ ⊢ ev[a] : ({𝑥 | 𝑥 = 0} & Φ𝑎)

.

.

.

Γ≠ ⊢ 𝑛 − 1 : 𝜎int

.

.

.

Γ≠, 𝑛
′
: int ⊢ 𝑓 𝑛′ : ({𝑥 | 𝑥 = 1} & Φ′) (T-App)

Γ≠ ⊢ let 𝑛′= 𝑛 − 1 in 𝑓 𝑛′ : ({𝑥 | 𝑥 = 1} & [𝑛 − 1/𝑛′]Φ′) (T-Let)

Γ≠ ⊢ ev[a]; let 𝑛′= 𝑛 − 1 in 𝑓 𝑛′ : ({𝑥 | 𝑥 = 1} & Φ𝑎 · [𝑛 − 1/𝑛′]Φ′) (T-Let)

Γ≠ ⊢ ev[a]; let 𝑛′= 𝑛 − 1 in 𝑓 𝑛′ : ({𝑥 | 𝑥 = 1} & Φ) (T-Sub)

𝑓 : 𝜏 ′
𝑓
, 𝑛 : int ⊢ ifz 𝑛 then 1 else (ev[a]; let 𝑛′= 𝑛 − 1 in 𝑓 𝑛′) : ({𝑥 | 𝑥 = 1} & Φ) (T-If)

⊢ rec(𝑓 , 𝑛, ifz 𝑛 then 1 else (ev[a]; let 𝑛′= 𝑛 − 1 in 𝑓 𝑛′)) : (𝜏𝑓 & Φval)
(T-Fun)

Γ= = 𝑓 : 𝜏 ′
𝑓
, 𝑛 : int, 𝑛 = 0 Φ𝑎 = (_𝑥 .𝑥 = a, _𝑥 .⊥)

Γ≠ = 𝑓 : 𝜏 ′
𝑓
, 𝑛 : int, 𝑛 ≠ 0 𝜎int = (int & Φval)

𝜏 ′
𝑓
= (𝑛 : int) → ({𝑥 | 𝑥 = 1} & (_𝑥.𝑋` (𝑛, 𝑥), _𝑥 .𝑋a (𝑛, 𝑥)))

Φ′ = (_𝑥.𝑋` (𝑛′, 𝑥), _𝑥 .𝑋a (𝑛′, 𝑥))

Φ =

(
_𝑥.𝑛 = 0 ∧ 𝑥 = 𝜖 ∨ 𝑛 ≠ 0 ∧ ∃𝑦.𝑥 = a · 𝑦 ∧ 𝑋` (𝑛 − 1, 𝑦)
_𝑥 .𝑛 ≠ 0 ∧ ∃𝑦.𝑥 = a · 𝑦 ∧ 𝑋a (𝑛 − 1, 𝑦)

)
𝑞` = `𝑋` (𝑛, 𝑥) .Φ` (𝑥) 𝑞a = a𝑋a (𝑛, 𝑥) .[𝑞`/𝑋` ]Φa (𝑥)
𝜏𝑓 = (𝑛 : int) → ({𝑥 | 𝑥 = 1} & (_𝑥.𝑞` (𝑛, 𝑥), _𝑥 .𝑞a (𝑛, 𝑥)))

Figure 16. Typing Derivation for rec(𝑓 , 𝑛, ifz 𝑛 then 1 else ev[a]; let 𝑛′= 𝑛 − 1 in 𝑓 𝑛′)

|= (𝑝1 (𝑛) ∧𝜓1) ⇒ 𝑛 = 0

𝑋 (𝑛);𝑝1;𝑝2;𝜓1 ↓ 𝑛 = 0

|= (𝑝1 (𝑛) ∧𝜓2) ⇒ 𝑛 ≠ 0

𝑋 (𝑛);𝑝1;𝑝2;𝜓2 ↓ 𝑛 ≠ 0

|= (𝑝1 (𝑛) ∧𝜓2) ⇒ (𝑝1 (𝑛 − 1) ∧ 𝑝2 (𝑛, 𝑛 − 1))
𝑋 (𝑛);𝑝1;𝑝2;𝜓2 ↓ 𝑋 (𝑛 − 1)

𝑋 (𝑛);𝑝1;𝑝2;𝜓2 ↓ 𝑛 ≠ 0 ∧ 𝑋 (𝑛 − 1) |= 𝑝1 (𝑛) ⇒ (𝜓1 ∨𝜓2)
𝑋 (𝑛);𝑝1;𝑝2;⊤ ↓ (𝑛 = 0) ∨ (𝑛 ≠ 0) ∧ 𝑋 (𝑛 − 1)

Here,𝜓1 ≜ (𝑛 = 0),𝜓2 ≜ (𝑛 ≠ 0), 𝑝1 ≜ _𝑛.𝑛 ≥ 0, 𝑝2 ≜ _𝑛1, 𝑛2 .𝑛1 > 𝑛2 ≥ 0

Figure 17. The least fixpoint `𝑋 (𝑛).(𝑛 = 0) ∨ (𝑛 ≠ 0) ∧ 𝑋 (𝑛 − 1) is under-approximated by _𝑛.𝑛 ≥ 0

|= (𝑝1 (𝑛, 𝑥) ∧ 𝑛 = 0) ⇒ 𝑛 = 0

𝑋 (𝑛, 𝑥);𝑝1;𝑝2;𝑛 = 0 ↓ 𝑛 = 0

|= (𝑝1 (𝑛, 𝑥) ∧ 𝑛 ≠ 0) ⇒ 𝑛 ≠ 0

𝑋 (𝑛, 𝑥);𝑝1;𝑝2;𝑛 ≠ 0 ↓ 𝑛 ≠ 0 A
𝑋 (𝑛, 𝑥);𝑝1;𝑝2;𝑛 ≠ 0 ↓ 𝑛 ≠ 0 ∧ ∃𝑦.𝑥 = a · 𝑦 ∧ 𝑋 (𝑛 − 1, 𝑦) |= 𝑝1 (𝑥) ⇒ (𝑛 = 0 ∨ 𝑛 ≠ 0)

𝑋 (𝑛, 𝑥);𝑝1;𝑝2;⊤ ↓ 𝑛 = 0 ∨ 𝑛 ≠ 0 ∧ ∃𝑦.𝑥 = a · 𝑦 ∧ 𝑋 (𝑛 − 1, 𝑦)

|= (𝑝1 (𝑥) ∧ 𝑛 ≠ 0 ∧𝜓 ) ⇒ 𝑥 = a · 𝑥 ′

𝑋 (𝑛, 𝑥); 𝑝1;𝑝2;𝑛 ≠ 0 ∧𝜓 ↓ 𝑥 = a · 𝑥 ′
|= (𝑝1 (𝑛, 𝑥) ∧ 𝑛 ≠ 0 ∧𝜓 ) ⇒ (𝑝1 (𝑛 − 1, 𝑥 ′) ∧ 𝑝2 (𝑛, 𝑥, 𝑛 − 1, 𝑥 ′))

𝑋 (𝑛, 𝑥); 𝑝1;𝑝2;𝑛 ≠ 0 ∧𝜓 ↓ 𝑋 (𝑛 − 1, 𝑥 ′)
𝑋 (𝑛, 𝑥); 𝑝1;𝑝2;𝑛 ≠ 0 ∧𝜓 ↓ 𝑥 = a · 𝑥 ′ ∧ 𝑋 (𝑛 − 1, 𝑥 ′) |= (𝑝1 (𝑥) ∧ 𝑛 ≠ 0) ⇒ ∃𝑥 ′.𝜓

A · · ·𝑋 (𝑛, 𝑥);𝑝1; 𝑝2;𝑛 ≠ 0 ↓ ∃𝑦.𝑥 = a · 𝑦 ∧ 𝑋 (𝑛 − 1, 𝑦)
Here,𝜓 ≜ hd (𝑥) = a ∧ tl(𝑥) = 𝑥 ′ 𝑝1 ≜ _𝑛, 𝑥 .𝑛 ≥ 0 ∧ 𝑥 ∈ a𝑛 , 𝑝2 ≜ _𝑛1, 𝑥1, 𝑛2, 𝑥2 .𝑛1 > 𝑛2 ≥ 0

Figure 18. The least fixpoint `𝑋 (𝑛, 𝑥) .𝑛 = 0 ∨ 𝑛 ≠ 0 ∧ ∃𝑦.𝑥 = a · 𝑦 ∧ 𝑋 (𝑛 − 1, 𝑦) is under-approximated by _(𝑛, 𝑥) .𝑛 ≥ 0 ∧ 𝑥 ∈ a𝑛

Proof. For any subset of DT̃→•, {𝑝0, 𝑝1, · · · 𝑝𝑖 }, these hold.

(_𝑑 ∈ DT̃→• .
𝑖∧
𝑗=0

𝑝 𝑗 (𝑑)) ⊑T̃→• 𝑝𝑘

𝑝𝑘 ⊑T̃→• (_𝑑 ∈ DT̃→• .
𝑖∨
𝑗=0

𝑝 𝑗 (𝑑))

So, this has the least element _𝑑 ∈ DT̃→• .
𝑛∧

𝑘=0

𝑝𝑘 (𝑑) and the

greatest element _𝑑 ∈ DT̃→• .
𝑛∨

𝑘=0

𝑝𝑘 (𝑑). □
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|= (𝑝1 (𝑛, 𝑥) ∧ 𝑛 = 0 ∧ 𝑥 = 𝜖) ⇒ (𝑛 = 0 ∧ 𝑥 = 𝜖)
𝑋 (𝑛, 𝑥); 𝑝1;𝑝2;𝑛 = 0 ∧ 𝑥 = 𝜖 ↓ 𝑛 = 0 ∧ 𝑥 = 𝜖 A B |= 𝑝1 (𝑛, 𝑥) ⇒ (𝑛 = 0 ∧ 𝑥 = 𝜖 ∨ 𝑛 ≠ 0 ∧ hd (𝑥) = a ∨ hd (𝑥) = b)

𝑋 (𝑛, 𝑥);𝑝1;𝑝2;⊤ ↓ (𝑛 = 0 ∧ 𝑥 = 𝜖) ∨ (𝑛 ≠ 0 ∧ ∃𝑦.𝑥 = a · 𝑦 ∧ 𝑋 (𝑛 − 1, 𝑦)) ∨ (∃𝑦.𝑥 = b · 𝑦 ∧ 𝑋 (𝑛,𝑦))

|= 𝑝1 (𝑛, 𝑥) ∧ 𝑛 ≠ 0 ⇒ 𝑛 ≠ 0

𝑋 (𝑛, 𝑥); 𝑝1;𝑝2;𝑛 ≠ 0 ∧ hd (𝑥) = a ↓ 𝑛 ≠ 0

|= (𝑝1 (𝑛, 𝑥) ∧𝜓1) ⇒ 𝑥 = a · 𝑥 ′
1

𝑋 (𝑛, 𝑥);𝑝1;𝑝2;𝜓1 ↓ 𝑥 = a · 𝑥 ′
1

|= (𝑝1 (𝑛, 𝑥) ∧𝜓1) ⇒ 𝑝1 (𝑛 − 1, 𝑥 ′
1
) ∧ 𝑝2 (𝑛, 𝑥, 𝑛 − 1, 𝑥 ′

1
)

𝑋 (𝑛, 𝑥);𝑝1;𝑝2;𝜓1 ↓ 𝑋 (𝑛 − 1, 𝑥 ′
1
)

𝑋 (𝑛, 𝑥);𝑝1;𝑝2;𝜓1 ↓ 𝑥 = a · 𝑥 ′
1
∧ 𝑋 (𝑛 − 1, 𝑥 ′

1
) |= (𝑝1 (𝑛, 𝑥) ∧ 𝑛 ≠ 0 ∧ hd (𝑥) = a) ⇒ ∃𝑥 ′

1
.tl(𝑥) = 𝑥 ′

1

𝑋 (𝑛, 𝑥);𝑝1;𝑝2;𝑛 ≠ 0 ∧ hd (𝑥) = a ↓ ∃𝑦.𝑥 = a · 𝑦 ∧ 𝑋 (𝑛 − 1, 𝑦)
A · · ·𝑋 (𝑛, 𝑥);𝑝1; 𝑝2;𝑛 ≠ 0 ∧ hd (𝑥) = a ↓ 𝑛 ≠ 0 ∧ ∃𝑦.𝑥 = a · 𝑦 ∧ 𝑋 (𝑛 − 1, 𝑦)

|= (𝑝1 (𝑛, 𝑥) ∧𝜓2) ⇒ 𝑥 = b · 𝑥 ′
2

𝑋 (𝑛, 𝑥);𝑝1;𝑝2;𝜓2 ↓ 𝑥 = b · 𝑥 ′
2

|= (𝑝1 (𝑛, 𝑥) ∧𝜓2) ⇒ (𝑝1 (𝑛, 𝑥 ′
2
) ∧ 𝑝2 (𝑛, 𝑥, 𝑛, 𝑥 ′

2
))

𝑋 (𝑛, 𝑥);𝑝1;𝑝2;𝜓2 ↓ 𝑋 (𝑛, 𝑥 ′)
𝑋 (𝑛, 𝑥);𝑝1;𝑝2;𝜓2 ↓ 𝑥 = b · 𝑥 ′

2
∧ 𝑋 (𝑛, 𝑥 ′

2
) |= (𝑝1 (𝑛, 𝑥) ∧ hd (𝑥) = b) ⇒ ∃𝑥 ′

2
.tl(𝑥) = 𝑥 ′

2

B · · ·𝑋 (𝑛, 𝑥);𝑝1;𝑝2; hd (𝑥) = b ↓ ∃𝑦.𝑥 = b · 𝑦 ∧ 𝑋 (𝑛,𝑦)
Here,𝜓1 ≜ 𝑛 ≠ 0 ∧ hd (𝑥) = a ∧ tl(𝑥) = 𝑥 ′

1
,𝜓2 ≜ hd (𝑥) = b ∧ tl(𝑥) = 𝑥 ′

2
, 𝑝1 ≜ _𝑛, 𝑥 .𝑥 ∈ {a, b}∗ ∧ #a (𝑥) = 𝑛,

𝑝2 ≜ _𝑛1, 𝑥1, 𝑛2, 𝑥2 .|𝑥1 | > |𝑥2 | ≥ 0

Figure 19. The least fixpoint `𝑋 (𝑛, 𝑥) .(𝑛 = 0∧𝑥 = 𝜖) ∨ (𝑛 ≠ 0∧∃𝑦.𝑥 = a ·𝑦 ∧𝑋 (𝑛 − 1, 𝑦)) ∨ (∃𝑦.𝑥 = b ·𝑦 ∧𝑋 (𝑛,𝑦)) is under-approximated

by _(𝑛, 𝑥) .#a (𝑥) = 𝑛

|= (𝑝1 (𝑛) ∧𝜓1) ⇒ ¬(𝑛 ≠ 0)
𝑋 (𝑛);𝑝1;𝑝2;𝜓1 ↑ 𝑛 ≠ 0

|= (𝑝1 (𝑛) ∧𝜓2) ⇒ 𝑝1 (𝑛 − 1) ∧ 𝑝2 (𝑛, 𝑛 − 1)
𝑋 (𝑛); 𝑝1;𝑝2;𝜓2 ↑𝑋 (𝑛 − 1) |= 𝑝1 (𝑛) ⇒ (𝜓1 ∨𝜓2)

𝑋 (𝑛); 𝑝1;𝑝2;⊤ ↑ 𝑛 ≠ 0 ∧ 𝑋 (𝑛 − 1)
Here,𝜓1 ≜ (𝑛 = 0),𝜓2 ≜ (𝑛 ≠ 0), 𝑝1 ≜ _𝑛.𝑛 ≥ 0, 𝑝2 ≜ _𝑛1, 𝑛2 .𝑛1 > 𝑛2 ≥ 0

Figure 20. The greatest fixpoint a𝑋 (𝑛).𝑛 ≠ 0 ∧ 𝑋 (𝑛 − 1) is over-approximated by _𝑛.¬(𝑛 ≥ 0) ≡ _𝑛.𝑛 < 0

|= (𝑝1 (𝑥) ∧ 𝑥 ≠ a · 𝑥 ′) ⇒ ¬(𝑥 = a · 𝑥 ′)
𝑋 (𝑥);𝑝1;𝑝2;𝑥 ≠ a · 𝑥 ′ ↑ 𝑥 = a · 𝑥 ′

|= (𝑝1 (𝑥) ∧ 𝑥 = a · 𝑥 ′) ⇒ 𝑝1 (𝑥 ′) ∧ 𝑝2 (𝑥, 𝑥 ′)
𝑋 (𝑥);𝑝1;𝑝2;𝑥 = a · 𝑥 ′ ↑𝑋 (𝑥 ′) |= 𝑝1 (𝑥) ⇒ (𝑥 ≠ a · 𝑥 ′ ∨ 𝑥 = a · 𝑥 ′)

𝑋 (𝑥); 𝑝1;𝑝2;⊤ ↑ 𝑥 = a · 𝑥 ′ ∧ 𝑋 (𝑥 ′)
𝑋 (𝑥);𝑝1;𝑝2;⊤ ↑ ∃𝑦.𝑥 = a · 𝑦 ∧ 𝑋 (𝑦)

Here, 𝑝1 ≜ _𝑥.𝑥 ∉ a𝜔 , 𝑝2 ≜ _𝑥1, 𝑥2 .(first position of non-a in 𝑥1) > (first position of non-a in 𝑥2) ≥ 0

Figure 21. The greatest fixpoint a𝑋 (𝑥).∃𝑦.𝑥 = a · 𝑦 ∧ 𝑋 (𝑦) is over-approximated by _𝑥.¬(𝑥 ∉ a𝜔 ) ≡ _𝑥 .𝑥 ∈ a𝜔
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\ |= ⊤
\ ̸ |= ⊥

\ |= ¬𝜙 iff \ ̸ |= 𝜙

\ |= 𝜙1 ∧ 𝜙2 iff \ |= 𝜙1 and \ |= 𝜙2

\ |= 𝜙1 ∨ 𝜙2 iff \ |= 𝜙1 or \ |= 𝜙2

\ |= ∀𝑥 : S.𝜙 iff for all 𝑑 ∈ DS , [𝑥 ↦→ 𝑑]\ |= 𝜙

\ |= ∃𝑥 : S.𝜙 iff for some 𝑑 ∈ DS , [𝑥 ↦→ 𝑑]\ |= 𝜙

\ |= 𝐴 (̃𝑡) iff J̃𝑡K\ ∈ Dsortsof (𝐴) and |= J𝐴K(J̃𝑡K\ )

\ |= 𝑋 (̃𝑡 : S̃) iff J̃𝑡K\ ∈ DS̃ and for all predicates 𝑝 , |= 𝑝 (̃𝑡)

\ |= (`𝑋 (𝑥 : S̃).𝜙) (̃𝑡) iff \ |= lfp T̃→• (_𝑋 ._𝑥 .𝜙) (̃𝑡)

\ |= (a𝑋 (𝑥 : S̃).𝜙) (̃𝑡) iff \ |= gfp T̃→• (_𝑋 ._𝑥 .𝜙) (̃𝑡)
J𝑥 : SK\ ≜ \ (𝑥) ∈ DS

J𝑓 (̃𝑡)K\ ≜ J𝑓 K(J̃𝑡K\ ) ∈ DS (where �̃� ∈ Dsortsof (𝑓 ) )

Figure 22. Semantics of Fixpoint logic formula
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