
Inductive Approach to Spacer

TAKESHI TSUKADA, Chiba University, Japan

HIROSHI UNNO, Tohoku University, Japan

The constrained Horn clause satis�ability problem is at the core of many automated veri�cation methods, and

Spacer is one of the most e�cient solvers of this problem. The standard description of Spacer is based on an

abstract transition system, dividing the whole procedure into small rules. This division makes individual rules

easier to understand but, conversely, makes it di�cult to discuss the procedure as a whole. As evidence of

the di�culty in understanding the whole procedure, we point out that the claimed refutational completeness

actually fails for several reasons, some of which were not present in the original version and subsequently

added. It is also di�cult to grasp the di�erences between Spacer and another procedure, such as GPDR.

This paper aims to provide a better understanding of Spacer by developing a Spacer-like procedure de�ned

by structural induction. We �rst formulate the problem to be solved inductively, then give its naïve solver

and transform it to obtain a Spacer-like procedure. Interestingly, our inductive approach almost uni�es

Spacer and GPDR, which di�er in only one respect in our understanding. To demonstrate the usefulness of

our inductive approach in understanding Spacer, we examine Spacer variants in the literature in terms of

inductive procedures and discuss why they are not refutationally complete and how to �x them. We also

implemented the proposed procedure and evaluated it experimentally.

CCS Concepts: • Theory of computation→ Logic and veri�cation; Program veri�cation; Invariants.

Additional Key Words and Phrases: constrained Horn clause, model-based projection, tree interpolation,

refutational completeness

ACM Reference Format:

Takeshi Tsukada and Hiroshi Unno. 2024. Inductive Approach to Spacer. Proc. ACM Program. Lang. 8, PLDI,

Article 227 (June 2024), 24 pages. https://doi.org/10.1145/3656457

1 INTRODUCTION

The satis�ability problem for constrained Horn clauses (or CHCs) is the problem of asking whether
a given �nite set of logical formulas with predicate variables has a solution, i.e. an assignment
to predicate variables that makes all formulas in the given set valid. Many veri�cation problems
are reducible to this problem. The most important problem is the safety veri�cation of a while
language and a language with �rst-order functions, which is actually equivalent to the satis�ability
problem for CHCs. Other more complicated problems may not be completely reducible to the
CHC satis�ability problem, but many sound though incomplete translations have been proposed
and implemented: Examples include re�nement type inference [Rondon et al. 2008; Unno and
Kobayashi 2009] and validity checking of �xpoint logic formulas [Kobayashi et al. 2019].
Because of its practical signi�cance, the study of e�cient solvers is quite vast, particularly if a

software model checker is regarded as a CHC solver through the above-mentioned equivalence.
As for the subclass known as linear CHC, an approach called property-directed reachability [Bradley

2011; Een et al. 2011] (or PDR) has been recognized as a quite e�cient procedure. PDR was originally

Authors’ addresses: Takeshi Tsukada, Chiba University, Chiba, Japan, t.tsukada@acm.org; Hiroshi Unno, Tohoku University,

Sendai, Japan, hiroshi.unno@acm.org.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART227

https://doi.org/10.1145/3656457

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0002-2824-8708
HTTPS://ORCID.ORG/0000-0002-4225-8195
https://doi.org/10.1145/3656457
https://orcid.org/0000-0002-2824-8708
https://orcid.org/0000-0002-4225-8195
https://doi.org/10.1145/3656457

227:2 Takeshi Tsukada and Hiroshi Unno

proposed as a solver of �nite model-checking that corresponds to linear CHCs over �nite data
domain, and Hoder and Bjørner [2012] applied the idea to non-linear CHCs over in�nite data
domain. Their procedure is often referred to as GPDR.

Furthering these ideas, Komuravelli et al. [2014, 2016] developed Spacer, which is currently one
of the most e�cient CHC solvers. A motivation for the development is the lack of refutational
completeness of GPDR. Spacer is based on several new ideas, but the key to refutational complete-
ness is a technique called model-based projection. It is used to divide the set of local candidates
of counterexamples into a �nite number of classes, and the �niteness of the classes allows an
exhaustive search for candidates of global counterexamples in a �nite number of steps.
Unfortunately, the behavior of Spacer is quite di�cult to understand properly. This fact is

indicated by the confusion about its refutational completeness. First, Spacer has been proved
to be refutationally complete independent of the choice of the backend model-based projection
procedure in Komuravelli et al. [2016], but Tsukada and Unno [2022] have shown that Spacer
is not refutationally complete for a badly chosen model-based projection procedure.1 Second,
Komuravelli et al. [2015] discussed a variant of Spacer and claimed its refutational completeness
without examining the di�erences, but the procedure of Komuravelli et al. [2015] has other sources
of incompleteness in addition to that of the original spacer [Komuravelli et al. 2014, 2016] as we
shall see later. These problems and related subtleties of Spacer have been overlooked even though
the Spacer papers [Komuravelli et al. 2014, 2016] had many followers.
This paper aims to improve our understanding of Spacer. The ultimate goal is to improve

the performance of Spacer, but this ambitious goal is left for future work. We demonstrate the
usefulness of our approach by making the aforementioned arguments on refutational completeness
understandable to readers who are not necessarily familiar with Spacer.

Our approach. Whereas Spacer is usually described as an abstract transition system, this paper
describes Spacer as an inductive procedure. In the traditional description, Spacer is expressed
as a collection of transition rules, each of which has an intuitive exposition. However, the under-
standability of each rule does not necessarily imply the understandability of the entire system. We
provide an inductive description, from which one can grasp the entire structure.
Our development proceeds as follows. We �rst formulate the problem that our procedures

solve by induction. The CHC solving does not suit induction (as is perhaps well-known; see
Section 4.1), so we introduce an alternative, named the generalized re�nement problem, suitable
for inductive produces. It has a naïve inductive solver (Algorithm 3), and other more e�cient
procedures (Algorithm 5 and Algorithm 6) can be obtained by rewriting the naïve one. In the
rewriting, we replace the quanti�er elimination in the naïve solver with model-based projection and
then make the procedure as lazy as possible (i.e. deferring computations that are not immediately
necessary to later). The deferring process needs much care since we exchange e�ectful instructions.
The resulting procedures (Algorithm 5 and Algorithm 6), in particular Algorithm 5, is close

to Spacer [Komuravelli et al. 2015, 2014, 2016]. The correspondence is discussed in Section 5 at
the intuitive level. A more formal argument may be possible by deriving a transition system for
Algorithm 5, but we omit the details by the space limitation.

Our procedure (Algorithm 5) still di�ers from existing implementations of Spacer in many
respects. First, our procedure only captures the “skeleton” of Spacer and lacks various optimizations
of practical signi�cance. This point will be discussed in Section 5.3. Second, our procedure is

1They only showed that there exists a model-based projection procedure with which Spacer is not refutationally complete.

An implementation of Spacer employs a particular model-based projection procedure, and the current implementation of

Spacermay be refutationally complete due to a still unrevealed property of the model-based projection procedure employed

by the current implementation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

Inductive Approach to Spacer 227:3

refutationally complete, but Spacer is not. The refutational completeness proof of Spacer requires
quite subtle arguments: in our setting, the keys are (1) the loop invariance of the arguments of
the model-based projection and (2) the �niteness of the variety of possible return values.2 We
discuss the refutational (in)completeness of the original Spacer [Komuravelli et al. 2014, 2016] and
a variant [Komuravelli et al. 2015] from our inductive perspective.

Contributions. The contributions of this paper can be summarized as follows.

• This paper provides a novel description of Spacer-like procedures based on structural induc-
tion. A refutationally complete variant of Spacer can be obtained as a modi�cation of a naïve
procedure based on quanti�er elimination. Interestingly, our procedure uni�es Spacer and
GPDR [Hoder et al. 2011] (Remark 16).

• We discuss the completeness of Spacer implementations in the literature from the viewpoint
of our inductive description. Our inductive approach clari�es the subtleties of completeness
of Spacer, which even experts have overlooked for a decade.

• We discuss optimizations to �ll the gaps between our theoretical development and Spacer.
• We give an implementation of proposed procedures and empirically evaluate solvers using
CHC-comp benchmarks. In particular, we discuss the practical signi�cance of tricks to retain
refutational completeness.

2 PRELIMINARIES

This section de�nes the CHC satis�ability problem and introduces the notion of model-based
projection, a key technique for refutationally complete CHC solving.

2.1 Constraint Language and Constrained Horn Clauses

We assume a �rst-order signature f and a structure S of the signature f , �xed in the sequel. Let L
be a fragment of �rst-order logic (over the signature f), called the constraint language. We shall
study logical formulas with predicate variables, but formulas in L are assumed to have no predicate
variables. As usual, we assume L consists of quanti�er-free formulas.

The language L admits quanti�er elimination if for every i (®G, ®~) ∈ L with free variables ®G and
®~, one can e�ectively construct a formulak (®~) ∈ L such that S |= k ⇔ ∃®G .i . We assume that the
constraint language L is closed under boolean operations and admits quanti�er elimination.

For formulas i (®G, ®~) andk (®G, ®I) such that |= i ⇒ k , an interpolation is a formula o (®G) such that
(1) the free variables {®G} of o are free variables of both i and k and (2) |= i ⇒ o and |= o ⇒ k .
We assume a procedure Itp(i,k) that returns an interpolation of i andk .

A constrained Horn clause (or CHC) is a formula of one of the following forms

∀®G . %1 (®C1) ∧ · · · ∧ %= (®C=) ∧ i =⇒ & (®B) ∀®G . %1 (®C1) ∧ · · · ∧ %= (®C=) ∧ i =⇒ ⊥,

where ®G is the sequence of object variables appearing in the formula, ®C1, . . . , ®C= and ®B are sequences
of terms, i is a formula in the constraint language, and %1, . . . , %= and & are predicate variables.
The position of & is called the head position. We often omit the quanti�ers and just write as
%1 (®C1) ∧ · · · ∧ %= (®C=) ∧ i =⇒ & (®B) and %1 (®C1) ∧ · · · ∧ %= (®C=) ∧ i =⇒ ⊥.

A CHC system is a �nite set of CHCs, regarded as their conjunction. A solution of a CHC system
is an interpretation of predicate variables that makes all formulas in the system true. For a solution
b , we write b (%) for the interpretation of % under b . The solutions are naturally ordered: b ≤ Z if
and only if ∀®G .b (%) (®G) =⇒ Z (%) (®G) for every predicate variable % . The problem of deciding if a
given CHC system has a solution is called the CHC satis�ability problem.

2These points have already been presented in the (wrong) proof of the termination of Spacer [Komuravelli et al. 2016]. The

�aw was that an argument of model-based projection was, in fact, not a loop invariant (in terms of our framework).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

227:4 Takeshi Tsukada and Hiroshi Unno

Under a mild condition on L and S, a given CHC system can be e�ectively transformed into
{
] (®G, ®~) =⇒ % (®G), % (®G) ∧ % (®~) ∧ g (®G, ®~, ®I, ®D) =⇒ % (®I), % (®G) ∧ V (®G, ®~) =⇒ ⊥

}
,

where], g, V ∈ L, without changing the satis�ability of CHC systems. We shall often refer], g , V as
the inital states, transition relation and bad states. For the above CHC system, U (®G) := ¬∃®~.V (®G, ®~)
is called the assertion in this paper.

2.2 Model Based Projection

Model-based projection [Komuravelli et al. 2014, 2016] is a way to handle quanti�ed formulas. It is
closely related to quanti�er elimination, which asks to �nd a formulak (®~) equivalent to a given
existentially quanti�ed formula ∃®G .i (®G, ®~) (where i (®G, ®~) ∈ L). Model-based projection is, in a
sense, a partial calculation of quanti�er elimination.

De�nition 1 (Model-based projection [Komuravelli et al. 2014, 2016]). Let i (®G, ®~) be a quanti�er-
free formula with free variables ®G, ®~. A function Mbp(

E

®G .i (®G, ®~),−) from modelsM |= i of i to a
quanti�er-free formula kM (®~) := Mbp(

E

®G .i (®G, ®~),M) over {®~} is a model-based projection (of i

w.r.t. ®G) if it satis�es, for every M |= i ,

|= kM (®~) ⇒ ∃®G .i (®G, ®~) and M |= kM (®~),

and furthermore it satis�es the image �niteness, i.e. {Mbp(

E

®G .i,M) | M |= i} is a �nite set. □

A model-based projection can be performed linear in time and space for certain theories [Komu-
ravelli et al. 2014, 2016] such as linear real arithmetic (LRA) and linear integer arithmetic (LIA).
Hereafter we assume that a model-based projection Mbp(

E

®G .i,−) exists for every i ∈ L and ®G
and that the mapping (i, ®G,M) ↦→ Mbp(

E
®G .i,M) is computable (whereM |= i).

Example 2. Consider the theory of real arithmetic and let i (1, G) := (G2 + 1G + 1 = 0). Then
(∃G .i (1, G)) ⇔ (12 − 4 ≥ 0) ⇔ (1 ≤ −2 ∨ 2 ≤ 1) ⇔ (1 ≤ −2 ∨ (2 ≤ 1 ≤ 7) ∨ 3 ≤ 1). So the map

M ↦→

k ′
1

if M(1) < 0

k ′
2

if 0 ≤ M(1) < 4

k ′
3

if 4 ≤ M(1)

where
k ′
1
(1) := (1 ≤ −2)

k ′
2
(1) := (2 ≤ 1 ≤ 7)

k ′
3
(1) := (3 ≤ 1) .

is a model-based projectionMbp(

E

G .i (1, G),−) for i (note that −2 < M(1) < 2 is impossible since
M |= i). Of course, this is not a unique choice: one can provide a model-based projection based on
(∃G .i (1, G)) ⇔ (1 ≤ −2 ∨ 2 ≤ 1) (yielding 1 ≤ −2 or 2 ≤ 1 depending on the input model) or on
(∃G .i (1, G)) ⇔ (12 − 4 ≥ 0) (yielding 12 − 4 ≥ 0 independent of the input model). □

Example 3. Assume that L admits quanti�er elimination. Then, the following procedure provides
a model-based projection. Given a formula i (®G, ®~) and variables ®G , the procedure �rst performs
quanti�er elimination for ∃®G .i (®G, ®~), yieldingk (®~) =

∨=
8=1k8 (®~). Then, given a model M |= i , the

procedure chooses 8 such that M |= k8 and returnsk8 .
3 However, this procedure is ine�cient, and

the procedures by Komuravelli et al. [2014, 2016] do not invoke quanti�er elimination. □

There are many ways of understanding what a model-based projection does: (a) It computes an
under-approximation of ∃®G .i , guided by a modelM |= i ; (b) It is a lazy quanti�er-elimination; (c) It
compute a generalization of a point M(®~) in the denotation of ∃®G .i . The viewpoints (a) and (b) can
be found in the Spacer paper [Komuravelli et al. 2014, 2016], and (c) will be discussed in Remark 16
comparing Spacer with GPDR [Hoder and Bjørner 2012].

3There is also a simpler model-based projection procedure that returnsk independent of the input model M. However, the

intuition of the model-based projection is closer to choosing a disjunct from the formula obtained by quanti�er elimination.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

Inductive Approach to Spacer 227:5

Algorithm 1 Quanti�er elimination by model-based projection

1: function Qe(i (®G, ®~), {®G})
2: k (®~) := ⊥
3: while ∃M .M |= i (®G, ®~) ∧ ¬k (®~) do
4: o (®~) := Mbp(

E

®G .i,M)
5: k := k ∨ o

6: return k

Here, we explain the perspective (b). This is essentially explained in Example 3: a model-based pro-
jection procedure produces a disjunct of the formula obtained by quanti�er elimination. Conversely,
a model-based projection procedure provides a quanti�er elimination procedure (cf. Algorithm 1).
The formulak (®~) records the current under-approximation of ∃®G .i . Line 3 checks if the current
approximation is exhaustive, and if not, a new under-appoximation o is computed and added
(lines 4 and 5). The procedure terminates because {o | M |= i and o = Mbp(

E

®G .i,M)} is a �nite
set and the same o does not appear twice in the computation.
It is worth noting that the use of model-based projection in Algorithm 1 is far from typical.

Model-based projection Mbp(

E

®G .i (®G, ®~),M) generates a formula o (®~), which is a part of the
formulak obtained by quanti�er elimination, i.e.k (®~) = o (®~) ∨ · · · with an unknown part · · ·. The
unknown part · · · can be obtained by further calling Mbp with di�erent models as in Algorithm 1,
but typically, one suspends the calculation of · · · and infers of consequences of the fact that \ is
an under-approximation of ∃®G .i . The calculation of the · · · part will be resumed if necessary or
discarded (and we would be in trouble if a discarded part was actually necessary).

3 A BASIC STRATEGY AND PROCEDURES FOR CHC SOLVING

This section brie�y reviews a common strategy to solve CHCs based on �nite approximations of
CHCs and tree interpolation. This is a fairly common strategy used in GPDR [Hoder and Bjørner
2012], Spacer [Komuravelli et al. 2015, 2014, 2016] and a procedure proposed by Unno and Kobayashi
[2009] among others. Our procedures also follow this strategy.
For simplicity, let us focus on the following non-linear CHC system

(= {] (G) ⇒ % (G), % (G) ∧ % (~) ∧ g (G,~, I) ⇒ % (I), % (I) ⇒ U (I) } (1)

which has a single predicate variable % and a unique non-linear clause % (G)∧% (~)∧g (G,~, I) ⇒ % (I)
with two occurrences of the predicate variable on the left-hand-side of ⇒.

3.1 Finite Approximation and Tree Interpolation

This subsection presents an approach to CHC solving based on �nite approximations, which is
analogous to bounded model-checking in program veri�cation. Let us �rst explain the idea in terms
of program veri�cation, which we believe is more intuitive.

We consider the safety veri�cation problem for transition systems. Formally, a transition system
is a quadruple X = (-, �, ',�) where - is the set of states, � ⊆ - is the inital states, ' ⊆ - × - is
the transition relation and � ⊆ - is the assertion that we expect to hold for all reachable states. A
state G ∈ - is reachable if there exists a sequence G0, G1, . . . , G: of states G8 ∈ � such that G0 ∈ � ,
G: = G and (G8 , G8+1) ∈ ' for every 8 < : . A state G ∈ - is a bad state if G ∉ �, and the transition
system X is safe if no bad state is reachable. The safety checking is undecidable in general due to
the unboundedness of the lengths of transitions. However, if the length of transitions is bounded,
the problem becomes decidable. That means, for every : ∈ N, whether there exists a bad state
reachable within : steps is decidable (provided that � , ' and � are de�nable in L). A classic idea in

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

227:6 Takeshi Tsukada and Hiroshi Unno

veri�cation [McMillan 2003] is to solve bounded problems by gradually increasing the bound : and
to use the solutions for bounded problems as a hint to solve the unbounded problem.

Example 4. The transition system X = (Z, {G | 2 ≤ G ≤ 8}, {(G, 2G − 3) | G ∈ Z}, {G | G ≥ −5})
is unsafe. This system is safe within : steps for : ≤ 3 and unsafe within : steps for : > 3. The
bounded unsafety of X (for : > 3) shows the (undounded) unsafety of X. □

Example 5. The transition system X′
= (Z, {G | 2 ≤ G ≤ 8}, {(G, 2G) | G ∈ Z}, {G | G ≥ −5}) is

safe (and safe within : steps for every :). The safety of X′ within 5 steps can be witnessed by an
overapproximation of the set of states reachable within 5 steps, such as {G | 2 ≤ G ≤ 256} and
{G | 0 ≤ G}. The latter is closed under the transition, so it shows the unbounded safety of X′. □

The CHC systems corresponding to safety veri�cation of transition systems are of the form

! = {] (G) ⇒ % (G), % (G) ∧ g (G,~) ⇒ % (~), % (G) ⇒ U (G) }. (2)

The satis�ability of ! in Equation (2) is equivalent to the safety of X = (�, �, ',�) where � is the
range of the variables G and ~, � = {3 ∈ � | |=] (3) }, ' = { (3,3 ′) ∈ � × � | |= g (3,3 ′) } and
� = {3 ∈ � | |= U (3) }. The bounded version also has a CHC representation. For example, the
CHC system ! (2) corresponding to the bounded version with : = 2 is given by

%2 (G) ∧ g (G,~) ⇒ %1 (~), %1 (G) ∧ g (G,~) ⇒ %0 (~),

] (G) ⇒ %2 (G),] (G) ⇒ %1 (G),] (G) ⇒ %0 (G), (3)

%2 (G) ⇒ U (G), %1 (G) ⇒ U (G), %0 (G) ⇒ U (G).

The �rst and second lines require that %2 to be an overapproximation of initial states, %1 to be an
overapproximation of states reachable by 0 or 1 step, and %0 to be an overapproximation of states
reachable within 2 steps. The third line requires that %2, %1 and %0 contain no bad state. For general
: ∈ N, the CHC system ! (:) is the set of constraints over predicate variables %: , . . . , %0 given by

! (:)
= { %8+1 (G) ∧ g (G,~) ⇒ %8 (~) | 0 ≤ 8 < : } ∪ {] (G) ⇒ %8 (G), %8 (G) ⇒ U (G) | 0 ≤ 8 ≤ : }.

The CHC system ! (:) , which we call the :-th approximation of !, has some remarkable properties.
The most notable property is the decidability of satis�ability, coming from the acyclicity of the
dependencies between predicate variables. The dependency graph of a CHC system has predicate
variables as nodes, and it has an edge from % to & if the system has a CHC of the form (· · · ∧& ∧

· · ·) ⇒ % . For example, the dependency graphs of ! and of ! (:) are

% ee and %0 → %1 → · · · → %: ,

respectively. Intuitively, the in�nite path in the former graph causes the unboundedness of transi-
tions, and the length of the longest path in the latter is the bound : .4 The acyclicity allows us to
construct a solution by induction, going from leaf to root (see Sections 4.1 and 4.2). A solution Z of
! (:) may provide a solution of !. So, we can apply the same strategy as in veri�cation: it solves ! (:)

with increasing : , expecting that solutions of approximations help to solve the original problem !.

Example 6. The CHC system !′ corresponding to X′ in Example 5 consists of 2 ≤ G ≤ 8 ⇒ % (G),

% (G) ⇒ % (2G) and % (G) ⇒ G ≥ −5. Then !′ (5) is

{ %8+1 (G) ⇒ %8 (2G) | 0 ≤ 8 < 5 } ∪ { 2 ≤ G ≤ 8 ⇒ %8 (G), %8 (G) ⇒ G ≥ −5 | 0 ≤ 8 ≤ 5 },

and a solution b is b (%5) (G) = (0 ≤ G ≤ 10), b (%4) (G) = (0 ≤ G ≤ 100), b (%3) (G) = (0 ≤ G ≤ 1000),
b (%2) (G) = (0 ≤ G ≤ 10000) and b (%1) = b (%0) = (0 ≤ G). In this case, i (G) := b (%0) (G) is a
solution of !. □

4However, the direction of the edges is opposite to the direction of the transition.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

Inductive Approach to Spacer 227:7

This strategy is applicable to (in Equation (1) as well. The di�erence from ! in Equation (2)
is that the rule % (G) ∧ % (~) ∧ g (G,~, I) ⇒ % (I) has two occurrences of % in the left-hand side of
⇒. In order to precisely track the occurrences, an approximation of (has predicate variables %F
indexed by wordsF ∈ {!, '}∗ over ! and '. We write n for the empty word and |F | for the length
of the wordF ∈ {!, '}∗. The :-th approximation of (, written ((:) , is a CHC system over predicate
variables {%F | F ∈ {!, '}∗, |F | ≤ :} given by

((:) :=
{ %F! (G) ∧ %F' (~) ∧ g (G,~, I) ⇒ %F (I) | F ∈ {!, '}∗, |F | < :}

∪{] (G) ⇒ %F (G), %F (G) ⇒ U (G) | F ∈ {!, '}∗, |F | ≤ :}.

Similar to the above cases, a solution b of an approximation ((:) can provide a solution of the
original problem (, for example, if b (%n) = b (%!) = b (%').

5 So, our basic strategy is to solve
approximations ((:) with increasing : and then to use solutions of ((:) to construct a solution of (.
The dependency graph of ((:) is a complete binary tree, namely,

%!! · · ·%!
11
--
%!' · · ·%n

44

** %'! · · ·%'
11
--
%'' · · ·

A CHC system is called tree-like by Rümmer et al. [2014] if its dependency graph is a tree,6 and a
solution of a tree-like CHC system coincides with a tree interpolant [Heizmann et al. 2010].7 In this
terminology, our strategy is to solve CHCs by iteratively computing tree interpolations.

3.2 Interpolation-Based CHC Solving

The basic strategy invokes subprocedures solving tree-like CHC systems ((0) , ((1) , These sub-
problems can be solved independently, but a more e�cient approach exploits the similarity between
((:−1) and the subset of ((:) consisting of the constraints for {%!F | F ∈ {!, '}∗, |F | < :}.

Suppose that we have solved ((:−1) , yielding a solution b . Let Z be an assignment to predicate
variables {%F | F ∈ {!, '}∗, |F | ≤ :} for ((:) given by

Z (%n) := ⊤ and Z (%F) := b (%E) ifF = !E orF = 'E .

The assignment Z is almost a solution of ((:) ; the assignment Z satsi�es all constraints in ((:)

except for %n (G) ⇒ U (G). So, we do not need to �nd a solution of ((:) from scratch. It su�ces to
adjust the “almost-solution” Z so that %n (G) ⇒ U (G) is satis�ed.

Such “almost-solutions” are called traces in IC3/PDR [Bradley 2011] and their relatives (e.g. [Hoder
and Bjørner 2012]). Formally, a trace Φ for ((:) is an assignment to {%F | F ∈ {!, '}∗, |F | ≤ :}

satisfying ((:) \ {%n ⇒ U (G)}. The value Φ(%F) for %F shall be written as Φ(F) and iF . The domain

dom(Φ) of the trace Φ of ((:) is {F ∈ {!, '}∗ | |F | ≤ :}. For F ∈ dom(Φ), the subtrace ΦF is a
trace of ((:−|F |) de�ned by ΦF (E) := Φ(FE). The immediate subtraces Φ! and Φ' often appear in
the description of algorithms. For traces Φ and Φ′ of ((:−1) such that in ⇒ U and i ′

n ⇒ U , we write

(⊤,Φ,Φ′) for the trace Ψ of ((:) such that Ψ(n) = ⊤, Ψ! = Φ and Ψ' = Φ
′.

Recall that it su�ces for solving ((:) to adjust a trace Φ so that %n ⇒ U is satis�ed. The main
problem addressed in this paper is a slight generalization, which we call re�nement problem:

Given a trace Φ of ((:) and an assertion ¬V , �nd a trace Φ
′ of ((:) that satis�es

i ′
n (G) ⇒ ¬V (G) and i ′

F (G) ⇒ iF (G) (for everyF ∈ dom(Φ)).

5A weaker condition su�ces. See the next subsection.
6Strictly speaking, the class of tree-like CHCs in this sense is slightly wider than the original (for the simplicity of

presentation). An approximation ((:) is tree-like in the sense of Rümmer et al. [2014] as well.
7Heizmann et al. [2010] called this notion nested interpolant.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

227:8 Takeshi Tsukada and Hiroshi Unno

Algorithm 2 CHC solving by using a re�nement procedure

1: function CHCSolve(], g, U)
2: Φ = (); = := 0

3: while true do

4: Φ := (⊤,Φ,Φ); = := = + 1

5: ' ∈ Refine(Φ, U ;], g)
6: if ' = None then

7: return UNSAT

8: Φ := '

9: for 8 := 0, . . . , = − 1 do

10: if |= ∀G .
∧

9≤8

∧
|F |=9 iF (G) ⇒

∧
|E |=8+1 iE (G) then

11: return
∧

9≤8

∧
|F |=9 iF (G)

A trace that satis�es the above condition is called a re�nement of Φ w.r.t. ¬V (borrowing the
terminology of [McMillan 2006]). Let Refine(Φ,¬V ;], g) (or more simply Refine(Φ,¬V) when] and
g are clear from the context) be the set of re�nements (or symbol None if there is no re�nement):

Refine(Φ,¬V) := {Φ′ | Φ′ is a re�nement of Φ w.r.t. ¬V }

∪ { None | there is no re�nement of Φ w.r.t. ¬V }.

The re�nement problem itself is a tree interpolation problem, so it is computable. The main interest
of this paper is an e�cient re�nement procedure.
Once a re�nement procedure is given, a procedure for the CHC satis�ability can be given by

Algorithm 2. Starting from the trivial trace Φ = (), the procedure iterates the following process.

(1) Line 4 extends the trace by adding a new root ⊤.
(2) Lines 5–7 re�ne the trace Φ with respect to U (i.e. performing the bounded model-checking).

If an error is found (i.e. if ' = None), then the CHC system is unsatis�able.
(3) Line 8 updates the trace Φ.
(4) Lines 9–11 try to extract an invariant from the current trace.

Theorem 7. Algorithm 2 is sound. That is, if it returns UNSAT, then the CHC system (in Equation (1)
is unsatis�able, and if it returns a formula, then it is a solution of the CHC system. It is refutationally

complete if Line 5 always terminates.

Remark 8. Here, we note some di�erences from the standard setting. First, a trace in our setting
has the tree structure (i.e. a branching structure) instead of the linear structure. To get a trace
depending only on the depth, simply take the conjunction of all the nodes at that depth. Second, in
the standard setting, a trace is monotone (i.e. iF! ⇒ iF and iF' ⇒ iF in our notation), whereas
we do not require monotonicity. Third, the root in our setting is the deepest part in the standard
setting. Hence the condition in line 9 (Algorithm 2) is usually written as O=−8 ⇒ O=−8−1 in the
standard setting, where O< is the component of the trace O at depth<. □

3.3 Spacer

Spacer [Komuravelli et al. 2015, 2014, 2016] is a well-known and highly e�cient procedure for CHC
solving. This paper aims to give an inductive description of Spacer to make it easier to reason about
and develop its variant. Here, we brie�y review the procedure using the traditional description
based on abstract transition systems. The details of Spacer vary slightly in the literature, and the
discussion here is based on Komuravelli et al. [2015].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

Inductive Approach to Spacer 227:9

(Candidate) [|= k (I) ⇒ (i0 (I) ∧ ¬U (I))]
Q := Q ∪ {(k, 0)}

(DecideMust)
[
(k,=) ∈ Q

M |= i=+1 (G) ∧ U(~) ∧ g (G,~, I) ∧k (I)

]

let o (G) = Mbp(

E

~I.i=+1 (G) ∧ U(~) ∧ g (G,~, I) ∧k (I), M) in
Q := Q ∪ {(o, = + 1)}

(DecideMay)
[
(k,=) ∈ Q

M |= i=+1 (G) ∧ i=+1 (~) ∧ g (G,~, I) ∧k (I)

]

let o (~) = Mbp(

E

GI.i=+1 (G) ∧ i=+1 (~) ∧ g (G,~, I) ∧k (I), M) in
Q := Q ∪ {(o, = + 1)}

(Con�ict)
[
(k,=) ∈ Q

|= i=+1 (G) ∧ i=+1 (~) ∧ g (G,~, I) ⇒ ¬k (I)

]

let o (I) = Itp(i=+1 (G) ∧ i=+1 (~) ∧ g (G,~, I), ¬k (I)) in
i8 (I) := i8 (I) ∧ o (I) for 8 ≥ =

(Leaf) [(k,=) ∈ Q, |= i=+1 (G) ∧ i=+1 (~) ∧ g (G,~, I) ⇒ ¬k (I)]
Q := Q ∪ {(k,= + 1)}

(Successor)
[
(k,=) ∈ Q

M |= U(G) ∧ U(~) ∧ g (G,~, I) ∧k (I)

]

let W (I) = Mbp(

E

G~.U(G) ∧ U(~) ∧ g (G,~, I) ∧k (I), M) in
U := U ∨ W

(Induction)
[
i= = (· · · ∧ (k ∨k ′) ∧ · · ·)

|= (i= (G) ∧k (G)) ∧ (i= (~) ∧k (G)) ∧ g (G,~, I) ⇒ k (I)

]

i8 := i8 ∧k for 8 = = − 1, =, = + 1, . . . , #

(Unfold) [|= in (I) ⇒ U (I)]
i=+1 := i= for = = #, # − 1, . . . , 0

i0 := ⊤, # := # + 1

Fig. 1. Transtion rules for Spacer [Komuravelli et al. 2015, 2014, 2016]. The rules (Safe) and (Unsafe) in the

original system, which perform output, are not regarded as transition rules in our formalism.

A state is a tuple (#,Φ,Q,U). We explain the meaning of each component.

• # is the depth of the current approximation.
• Φ = (i=)0≤=≤# is a trace with the linear structure. The trace must bemonotone, i.e. i=+1 (I) ⇒
i= (I) for every =.

• Q is a collection of pairs (k, 8) of a formulak and 0 ≤ 8 ≤ # . A pair (k, 8) is called a query
and expresses a request to strengthen i8 so that |= i8 (I) ⇒ ¬k (I).

• U ⊆ S is an under-approximation of the minimum solution of {] (G) =⇒ % (G), % (G) ∧% (~) ∧
g (G,~, I) =⇒ % (I)}. Hence, if W intersects with ¬U , the CHC system is unsatis�able.

What is new about Spacer compared to its predecessors such as [Bradley 2011; Een et al. 2011] and
GPDR [Hoder and Bjørner 2012] is that it also manages under-approximations.
The initial state is (0,Φ0, ∅, ∅) where Φ0 consists only of the root i0 = ⊤. The procedure will

terminate with SAT (resp. UNSAT) when the transition system reaches a state where |= i= (I) ⇒
i=+1 (I) for some = (resp. whereU ∧ ¬U ≠ ∅).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

227:10 Takeshi Tsukada and Hiroshi Unno

The transition rules are shown in �g. 1. Each rule can be invoked only if all conditions in [· · ·]
are satis�ed. The rule (Unfold) corresponds to Line 4 of Algorithm 2 and other rules compute a
re�nement. The rules (Candidate), (DecideMay), (DecideMust) and (Leaf) are for query genera-
tion. (Candidate) requires that ¬i0 (2) for a bad state 2 . (DecideMay) and (DecideMust) generate
a query for level = + 1 from a query for level =: (DecideMay) generates a su�cient condition
and (DecideMust) generates a necessarily condition to resolve the query for level =. Note that
(DecideMust) utilizes the under-approximationU to generate a query that is a necessary condition
for (k,=). The rule (Leaf) propagates a query that has been successfully resolved to the adjacent
level. The rule (Con�ict) resolves a query by strengthening i= . If a query (k,=) is found to be
unresolvable, (Successor) produces an under-approximation, which witnesses that the query is
unresolvable. The rule (Induction) strengthens the trace by conjoining a subformula in the trace.
This rule is heuristics to improve the e�ciency.

Variation and refutational completeness. The transition system in �g. 1 comes from Komu-
ravelli et al. [2015] and di�ers from the original procedure [Komuravelli et al. 2014, 2016] in some
details.8 Here, we summarize the variants and the status of their refutational completeness.
Spacer is parameterized by two procedures: an interpolating theorem prover and a model-

based projection. Refutational completeness depends on the choices of background theory and
these procedures,9 and Komuravelli et al. [2016] claimed refutational completeness independent
of the choice of these procedures. So, we focus on refutational completeness independent of the
choice of subprocedures. As mentioned in Section 1, Tsukada and Unno [2022, Section 6.6] gave a
counterexample (for details, see Appendix C in the arXiv version [Tsukada and Unno 2021]).

Theorem 9 (Tsukada and Unno [2022]). The procedure described in Komuravelli et al. [2016] diverges

on a CHC system over linear integer arithmetic, for a speci�c choice of an interpolating theorem prover

and a model-based projection. So, the refutational completeness independent of subprocedures fails.

There is a further subtlety. The transition system in �g. 1 coming from Komuravelli et al. [2015]
di�ers from the original procedure [Komuravelli et al. 2014, 2016]: (1) the original procedure
manages the under-approximationU by level, so U = (U8)0≤8≤# ; and (2) the argument formulas
forMbp are di�erent. For example, in (Successor) in the original procedure, the argument formula
isU= (G) ∧ U= (~) ∧ g (G,~, I), which does not involve the queryk . Despite these di�erences, the
counterexample in Theorem 9 also applies to Komuravelli et al. [2015]. Rather, these changes made
by Komuravelli et al. [2015] introduce two additional sources of incompleteness (cf. Section 5).
The implementation of Spacer10 is based on the description in Komuravelli et al. [2015] but

has some di�erences. The biggest di�erence is that the transition system in �g. 1 does not specify
the order of rules to apply, whereas the implementation adopts a speci�c order. The counterex-
ample in Theorem 9 also applies to the implementation since the order of rule applications in the
implementation coincides with that is adopted in Tsukada and Unno [2021, Appendix C].

These incompleteness issues have been overlooked even by experts, and our inductive approach
clari�es this issue so that non-specialists can easily understand it.

4 INDUCTIVE APPROACH TO REFINEMENT

This section develops a re�nement procedure de�ned by induction. The inductive structure that
we exploit is the tree structure of an approximation of the input CHC system.

8We choose Komuravelli et al. [2015] because it seems to serve as a basis for the implementation and subsequent studies

such as Krishnan et al. [2020]. Furthermore, two of the three authors of the original paper [Komuravelli et al. 2014, 2016]

are also authors of Komuravelli et al. [2015]. These facts justify our choice.
9For example, it is refutationally complete if quanti�er elimination is used as model-based projection.
10See https://github.com/Z3Prover/z3. The code related to Spacer is in the directory src/muz/spacer.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

https://github.com/Z3Prover/z3

Inductive Approach to Spacer 227:11

This section starts by clarifying the problem that we should solve by induction. Just as proof
by induction often requires proving a stronger proposition than the one you wish to show, solv-
ing a problem by induction sometimes requires solving a more general problem. We propose a
generalization of the re�nement problem suitable for induction.

The generalized problem has a naïve inductive solver using quanti�er elimination (or equivalently,
manipulation of quanti�ed formulas). We will then modify this solver. The idea is to replace the
quanti�er elimination procedure with Algorithm 1, which iteratively applies the model-based
projection procedure Mbp, and then to make calls to Mbp as lazy as possible, while keeping the
inductive structure of the solver unchanged. The idea of making quanti�er elimination lazy can be
found in the original Spacer paper [Komuravelli et al. 2016], but this section di�ers in that we do
not change the inductive structure nor properties of the procedure.

4.1 Generalizing the Refinement Problem

This subsection explains a di�culty in inductively solving the non-linear CHC re�nement problem
and proposes a generalization appropriate for an inductive solver.
For the subclass of CHC systems known as linear CHC systems, one can easily provide an

inductive re�nement procedure. A CHC %1 (G1) ∧ · · · ∧ %= (G=) ∧ g (®G,~) ⇒ & (~) is linear if = ≤ 1.
For example, consider a linear CHC system

{
] (G) =⇒ % (G), % (G) ∧ g (G,~) =⇒ % (~), % (G) =⇒ U (G)

}

and a traceΦ = (i: , . . . , i1, i0) (soi8+1 (G)∧g (G,~) ⇒ i8 (G) for 0 ≤ 8 < : ,] (G) ⇒ i8 (G) for 0 ≤ 8 ≤
: , andi8 (G) ⇒ U (G) for 0 < 8 ≤ :). The re�nement problem asks to strengthen the trace Φ to satisfy
i0 (G) ⇒ U0 (G) for a given property U0. It is easy to solve the re�nement problem by induction: we
�rst re�ne the subtrace Φ1 = (i: , . . . , i1) against the assertion U1 (G) := ¬(∃~.g (G,~) ∧ ¬U0 (~)),
yielding Φ

′
1
= (i ′

:
, . . . , i ′

1
), and then �nd i ′

0
that satis�es (] (G) ∨ (i ′

1
(G) ∧ g (G,~))) ⇒ i ′

0
(~) and

i ′
0
(G) ⇒ U0 (G) using an interpolating theorem prover. The assertion U1 is canonical in the sense

that the re�nement problem (Φ, U0) has a solution if and only if (Φ1, U1) has a re�nement.
The di�culty of non-linear CHC solving is that there is no canonical choice of the assertion.

Example 10. Consider the CHC system
{
(G = 3) =⇒ % (G), % (G) ∧ % (~) ∧ (I = |G − ~ |) =⇒ % (I), % (I) ⇒ (I ≤ 5)

}

and a trace i! (G) = i' (G) = (G ≤ 5) and in = ⊤ for its approximation of depth 1. An inductive
re�nement procedure IndRefine needs to strengthen i! and/or i' so that

i! (G) ∧ i' (~) ∧ (I = |G − ~ |) =⇒ (I ≤ 5)

by invoking recursive calls IndRefine(i!, U!) and/or IndRefine(i', U') for appropriate U!, U' . So
the procedure should appropriately choose a direction 3 ∈ {!, '} and an assertion U3 , but there is
no canonical choice. A candidate is the pair (!, U!) where

U! := ¬∃~I.i' (~) ∧ (I = |G − ~ |) ∧ (I > 5),

which is su�ciently strong in the sense that if IndRefine(i!, U!) succeeded, we would �nish
the whole re�nement procedure. However U! is too strong so IndRefine(i!, U!) fails. A similar
approach for 3 = ' fails for the same reason. □

The above example shows that a natural choice of an assertion for a recursive call may be
unnecessarily strong. This observation motivates us to generalize the re�nement problem so that
the procedure performs best, even if no solution exists.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

227:12 Takeshi Tsukada and Hiroshi Unno

De�nition 11. Let Φ be a trace and ¬V be an assertion. The counterexample W for the re�nement
problem (Φ,¬V) is de�ned by W := min{W ′ | Refine(Φ, (¬V) ∨ W ′) ≠ None }. The generalized

re�nement problem asks, given a trace Φ and an assertion ¬V , to �nd a pair (Φ′, W) such that W is
the counterexample of (Φ,¬V) and Φ

′ ∈ Refine(Φ,¬V ∨ W). □

For implementational reasons, we often slightly weaken the requirement for W . A predicate W is a
counterexample in the weak sense if (1) Refine(Φ,¬V) ≠ None and W = ⊥ or (2) Refine(Φ,¬V) =
None and W ∧ V is a counterexample in the proper sense.

4.2 Naïve Procedure

Algorithm 3 presents a naïve procedure for the generalized re�nement problem.

• Line 2: The procedure immediately returns without making any change to the input Φ if the
requirement is trivially satis�ed.

• Lines 4–6: If the initial state] (I) intersects with ¬U (I), the requirement is trivially unachiev-
able. The requirement U must be weakened at least to U (I)∨W (I) whereW (I) = (] (I)∧¬U (I)).
The following part checks if U should be further weakened.

• Line 7: The condition checks if one can re�ne the input trace Φ without changing the
subtraces Φ! and Φ' . If it is not the case, i.e. one needs to change at least one of Φ! and Φ' ,
lines 8–15 are executed.

• Lines 8 and 9: We �rst try to re�ne the trace without changing the left subtrace (i.e. changing
only the subtrace Φ'). The condition required for the re�nement subtrace Φ′

' is that i! (G) ∧
i ′
' (~) ∧ g (G,~, I) does not intersects with ¬U (I). Line 8 lets ¬k' be the weakest predicate

that satis�es this requirement. Line 9 checks if Φ' can be re�ned so that i ′
' (~) |= ¬k' (~).

• Lines 10–12: If W' ≠ ⊥, we need to change Φ! . The re�nement procedure for Φ! is similar
to that of Φ' (lines 8 and 9).

• Lines 13–15: If W! ≠ ⊥, there is no re�nement of Φ satisfying U . The counterexample found
at this step comes from W! and W' .

• Lines 16 and 17: Now U is su�ciently weakened and i! and i' are su�ciently strengthened.
We calculate an appropriate in .

Proposition 12. Algorithm 3 always terminates and solves the generalized re�nement problem. □

4.3 Handling�antification by Model-Based Projection

Algorithm 3 is simple but it uses quanti�ed formulas. The quanti�ers can be removed by using
quanti�er elimination, but a quanti�er elimination procedure is computationally expensive.

Algorithm 4 is a re�nement procedure using model-based projection for reasoning about quanti-
�ed formulas. It is basically obtained by replacing the quanti�ed formulas i' , i! and W in lines 8,
11 and 14 in Algorithm 3 with the quanti�er-elimination based on model-based projection (Algo-
rithm 1). Intuitively lines 8–9 (resp. lines 11–12 and lines 14–15) perform quanti�er elimination of
i! (G) ∧ g (G,~, I) ∧ ¬U (I) (resp. W' (~) ∧ g (G,~, I) ∧ ¬U (I) and W! (G) ∧ W' (~) ∧ g (G,~, I)).

It is worth noting an important twist in Algorithm 4 for its termination. Line 7 records the value
of i! at that point, and model-based projection uses the recorded values. This twist makes the
formulas for model-based projection loop invariants, and the loop invariance plays a crucial role in
the termination proof. Note that the image �niteness of model-based projection is applied only to
the case where the argument formula is unchanged.
Algorithm 4 enjoys nice properties that the naïve algorithm (Algorithm 3) has. The proof is

essentially the same as that for Algorithm 3 except for the above-mentioned twist.

Theorem 13. Algorithm 4 always terminates and solves the generalized re�nement problem.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

Inductive Approach to Spacer 227:13

Algorithm 3 Naïve re�nement procedure

1: function Naïve(Φ, U)
2: if dom(Φ) = ∅ or in (G) |= U (G) then return (Φ,⊥)
3: W := ⊥
4: if |= ∃I.] (I) ∧ ¬U (I) then
5: W (I) :=] (I) ∧ ¬U (I)
6: U (I) := U (I) ∨ W (I)

7: if |= ∃G .∃~.∃I.i! (G) ∧ i' (~) ∧ g (G,~, I) ∧ ¬U (I) then
8: k' (~) := ∃G .∃I.i! (G) ∧ g (G,~, I) ∧ ¬U (I)
9: (Φ', W') := Naïve(Φ',¬k')
10: if W' ≠ ⊥ then

11: k! (G) := ∃~.∃I.W' (~) ∧ g (G,~, I) ∧ ¬U (I)
12: (Φ!, W!) := Naïve(Φ!,¬k!)
13: if W! ≠ ⊥ then

14: W (I) := W (I) ∨
(
∃G .∃~.W! (G) ∧ W' (~) ∧ g (G,~, I) ∧ ¬U (I)

)

15: U (I) := U (I) ∨ W (I)

16: in (I) := Itp
(
] (I) ∨

(
i! (G) ∧ i' (~) ∧ g (G,~, I)

)
, in (I) ∧ U (I))

)

17: return (Φ, W)

Algorithm 4 Naïve procedure with model-based projection

1: function NaïveMbp(Φ, U)
2: if dom(Φ) = ∅ or in (G) |= U (G) then return (Φ,⊥)
3: Γ(I) := ⊥
4: if |= ∃I.] (I) ∧ ¬U (I) then
5: W (I) :=] (I) ∧ ¬U (I)
6: Γ(I) := W (I)

7: const i0,! := i!
8: while ∃M' . M' |= i! (G) ∧ i' (~) ∧ g (G,~, I) ∧ ¬(U (I) ∨ Γ(I)) do
9: k' (~) := Mbp(

E

GI.i0,! (G) ∧ g (G,~, I) ∧ ¬U (I),M')
10: (Φ', W') := NaïveMbp(Φ',¬k')
11: while ∃M! . M! |= i! (G) ∧ W' (~) ∧ g (G,~, I) ∧ ¬(U (I) ∨ Γ(I)) do
12: k! (G) := Mbp(

E

~I.W' (~) ∧ g (G,~, I) ∧ ¬U (I),M!)
13: (Φ!, W!) := NaïveMbp(Φ!,¬k!)
14: while ∃M . M |= W! (G) ∧ W' (~) ∧ g (G,~, I) ∧ ¬(U (I) ∨ Γ(I)) do
15: W (I) := Mbp(

E

G~.W! (G) ∧ W' (~) ∧ g (G,~, I),M)
16: Γ(I) := Γ(I) ∨ W (I)

17: in (I) := Itp
(
] (I) ∨ (i! (G) ∧ i' (~) ∧ g (G,~, I)), in (I) ∧ (U (I) ∨ Γ(I))

)

18: return (Φ, Γ)

Proof sketch. We prove the termination; the soundness is relatively easy to see. The point is
that the arguments forMbp in lines 9, 12, and 15 are invariants of the loops starting from lines 8, 11,
and 14, respectively. Hence,k' ,k! , and W can only take on a �nite variety of values. So, it su�ces
to show that the same value does not occur twice, which follows from the progress property. □

Algorithm 5 is a further lazy version of Algorithm 4. Recall that the counterexample Γ generated
by Algorithm 4 is the disjunction Γ = W1∨· · ·∨W= of formulas given byMbp in line 15 (where = is the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

227:14 Takeshi Tsukada and Hiroshi Unno

Algorithm 5 A Spacer-like re�nement procedure

1: function IndSpacer(Φ, U)
2: if dom(Φ) = ∅ or in (G) |= U (G) then return (Φ,⊥)
3: Γ(I) := ⊥; Γ' (~) := ⊥
4: if |= ∃I.] (I) ∧ ¬U (I) then
5: W (I) :=] (I) ∧ ¬U (I)
6: return (Φ, W)

7: const i!,0 := i!
8: while ∃M' . M' |= i! (G) ∧ i' (~) ∧ g (G,~, I) ∧ ¬(U (I) ∨ Γ(I)) do
9: k' (~) := Mbp(

E

GI.i!,0 (G) ∧ g (G,~, I) ∧ ¬U (I),M')
10: (Φ', W') := IndSpacer(Φ', (¬k') ∨ Γ')
11: Γ' (~) := Γ' (~) ∨ W' (~)
12: while ∃M! . M! |= i! (G) ∧ W' (~) ∧ g (G,~, I) ∧ ¬(U (I) ∨ Γ(I)) do
13: k! (G) := Mbp(

E

~I.W' (~) ∧ g (G,~, I) ∧ ¬U (I),M!)
14: (Φ!, W!) := IndSpacer(Φ!,¬k!)
15: while M |= W! (G) ∧ W' (~) ∧ g (G,~, I) ∧ ¬(U (I) ∨ Γ(I)) do
16: W (I) := Mbp(

E

G~.W! (G) ∧ W' (~) ∧ g (G,~, I),M)
17: return (Φ, W)

18: in (I) := Itp
(
] (I) ∨ (i! (G) ∧ i' (~) ∧ g (G,~, I)), in (I) ∧ (U (I) ∨ Γ(I))

)

19: return (Φ,⊥)

number of executions of Line 15 and W8 is the result of Mbp in the 8-th iteration). Algorithms 4 and 5
behave similarly until the �rst disjunct W1 of the counterexample is found, but then Algorithm 5
returns W1 without calculating the remaining part W2 ∨ · · · ∨W= of the counterexample Γ = W1 ∨W2 ∨
· · · ∨ W= . Basically Algorithm 5 is obtained by replacing Γ(I) := Γ(I) ∨ W (I) with returnW .11

Because of this change, Algorithm 5 is no longer a procedure for the generalized re�nement
problem. It just returns a piece of the counterexample, so one needs to invoke IndSpacer many
times to obtain the whole counterexample as in the following program:

Γ(I) := ⊥
(Φ, W) := IndSpacer(Φ, U)
whileW ≠ ⊥do

Γ(I) := Γ(I) ∨ W (I) (∗)
(Φ, W) := IndSpacer(Φ, U ∨ Γ)

return (Φ, Γ).

The variable Γ' in Algorithm 5 originates from Γ in this program.

Theorem 14. The procedure (∗) using Algorithm 5 always terminates and solves the generalized

re�nement problem.

Proof sketch. We prove the termination; the soundness is relatively easy to show.
The most important property of IndSpacer is that the number of values possibly returned as W

is �nite. This claim can be easily proved by induction. The return value W is generated in line 16,
which invokes Mbp, so the variety of W is �nite for a �xed W! and W' . The induction hypothesis
shows that W! and W' range over a �nite set. Hence, the variety of W is �nite.

In the program (∗), the returned W is accumulated in Γ and IndSpacer(Φ, U ∨ Γ) will never return
W such that W ⇒ Γ. So, the while loop in (∗) terminates, provided that each iteration terminates.

11The variable Γ will never be updated in Algorithm 5 and thus can be removed, but it is left for comparison with Algorithm 4.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

Inductive Approach to Spacer 227:15

The while loops in Algorithm 5 terminate for the same reason as Algorithm 4, namely that the
arguments of Mbp are loop invariants. So, the progress ensures the termination. □

Remark 15. In fact, Algorithms 4 and 5 enjoy termination even without line 7 (and replace i!,0
with i!), but the termination proof is fairly sublte. For example, for the termination of the variants
without line 7, it is necessary to store i! and i' separately, and it is not the case in Spacer

implementations (as the traces are managed by levels). In such cases,i!,0 is essential for termination.
More subtly, i!,0 need not be a constant for the whole procedure. One can freely update i!,0 to

the current value of i! during the execution of the body of the middle loop (Lines 12-16 and 13–17
in Algorithms 4 and 5, respectively) without losing refutational completeness. This claim can be
proved by providing a termination measure reduced by entry into the body of the middle loop. The
construction of a termination measure is, however, crucially relies on details of Algorithms 4 and 5.

5 COMPARING OUR PROCEDURES WITH SPACER

This section compares Algorithm 5 with procedures in Komuravelli et al. [2014, 2016] and Komu-
ravelli et al. [2015], as well as GPDR [Hoder and Bjørner 2012]. Section 5.1 discusses the similarily;
Section 5.2 discusses the dissimilarity mainly focusing on the refutational completeness. Section 5.3
deals with other di�erences and ways to �ll the gap.

5.1 Similarity

The simplest way to formally show the similarity is to provide a transition system corresponding
to Algorithm 5. Algorithm 5 is a �rst-order program and thus executable by a stack machine. The
transition rules for the induced stack machine resemble the rules in �g. 1.
Unfortunately, we cannot discuss this in detail here due to space constraints, so we explain

the correspondence between the rules in �g. 1 and the procedure in Algorithm 5 at an intuitive
level. (DecideMust) is performed in lines 12–14 (recall that W' corresponds toU). (DecideMay)

is performed in lines 8–10. (Con�ict) corresponds to lines 18–19. (Successor) is lines 15–17.
(Candidate) and (Unfold) can be found in the top level function (Algorithm 2). (Candidate) is
the function call IndSpacer(Φ, U) in line 5, and (Unfold) is line 4. (Leaf) and (Induction) have
no corresponding part in Algorithm 5. These rules shall be discussed below.

Remark 16. Algorithm 5 with a special choice of Mbp yields a procedure like GPDR [Hoder and
Bjørner 2012]. The choice is given by

Mbp(

E

®G .o (®G, ®~), M) := (~1 = 21) ∧ · · · ∧ (~= = 2=)

where~1 . . . ~= = ®~ and 28 = M(~8). In other words, this procedure returns the logical representation
of the model M restricted to ®~. This function satis�es most conditions for model-based projection
except for the image �niteness.

The naïve procedure (Algorithm 3) is also obtained by choosingMbp as the quanti�er elimination.
In this sense, Algorithm 5 uni�es Spacer, GPDR, and the naïve algorithm.

5.2 Dissimilarity

There are three major di�erences between Algorithm 5 and Spacer presented in �g. 1. Each of these
di�erences may cause the divergence of the procedure, breaking the refutational completeness.

The �rst di�erence is the arguments of Mbp in lines 9 and 13. The arguments in Algorithm 5 are
loop invariants, and this fact plays a crucial role in the termination proof. In the corresponding
rules (DecideMust), (DecideMay) and (Successor) in �g. 1, the arguments are not “invariants”.
For example, the argument of Mbp in (DecideMust) (corresponding to lines 12–14 in Algorithm 5)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

227:16 Takeshi Tsukada and Hiroshi Unno

is i=+1 (G) ∧ U(~) ∧ g (G,~, I) ∧k (I), which is i! (G) ∧ W' (~) ∧ g (G,~, I) ∧ ¬U (I) written in the
symbols in Algorithm 5. This is not an invariant of the middle loop because of i! (G).

The second di�erence is the argument of Mbp in line 16. This Mbp is called at most once, so the
loop invariance does not matter here. However, the �niteness of possible return values W , which is
the key to the termination proof of Algorithm 5 (Theorem 14), essentially relies on the choice of
the formula in line 16. The corresponding formulaU(G) ∧U(~) ∧ g (G,~, I) ∧k (I) in (Successor)

in �g. 1 contains the query formulak , of which the variety cannot be �nitely bound.
The third di�erence is the management of the counterexamples. Whereas Algorithm 5 deals the

counterexamples W' and W! locally, the transition system in �g. 1 manipulates their cumulative
union U. This change also breaks the �niteness of W possibly returned by the procedure, as we
shall see below.
Interestingly, the second and third points were changes made in Komuravelli et al. [2015]. The

original Spacer [Komuravelli et al. 2014, 2016] is closer to ours, except for the argument of Mbp in
line 9: in the original Spacer, the argument of Mbp in (DecideMay)12 is i=+1 (G) ∧ g (G,~, I) ∧k (I),
which involves a non-invariant i=+1 (corresponding to i! in Algorithm 5). In our understanding,
this di�erence is the unique source of possible divergence in the original Spacer.

5.3 Optimizations

This subsection discusses how to �ll the gaps between our algorithms and actual implementations
by modifying our algorithms. We refer to the implementational tricks discussed in this section
optimizations in the hope that such tricks will improve performance. Some optimizations are
implemented and empirically evaluated in Section 7.
Let us �rst discuss a criterion for ensuring the termination property for a modi�cation of

Algorithm 5. The points of the termination proof are (1) the arguments of model-based projection
are loop invariants, (2) the same countermodel M does not appear twice in Line 8 (resp. in Line 12,
in Line 15). Point (1) is achieved by saving the necessary values to local variables (as in Line 7), so
any change to Φ does not a�ect this point, but a change to W! and/or W' would need care. Point (2)
is not a�ected if an optimization only strengthens the trace, and optimizations below satisfy this
criterion.

We discuss �ve optimizations. The �rst four do not break the termination, but the last one needs
care since it is about W! and W' .

Predicate Sharing. We use a trace Φwith dom(Φ) = {!, '}≤: , which has a tree structure. Many
existing procedures use a trace (i8)0≤8≤: of the linear structure, that means, from our viewpoint,
they maintain additional constraints {iF = iF′ | F,F ′ ∈ {!, '}≤=, |F | = |F ′ | }.

This di�erence can be bridged by turning traces into trees of references to logical formulas rather
than trees of logical formulas. The tree (ℓF)F∈{!,' }≤: of references to formulas is constructed so
that the nodes ℓF and ℓF′ point to the same reference cell whenever |F | = |F ′ |. Then Line 18 in
Algorithm 5 updates, in e�ect, all the formulas at the same level simultaneously.

Monotone Trace. Another di�erence in the structure of trace ismonotonicity. That means, many
existing solvers maintain i8+1 ⇒ i8 . This gap can be �lled by changing Line 18 in Algorithm 5 to
conjoin the interpolant to every formula iF in the trace Φ.

Induction Rule. Roughly speaking, the induction rule checks whether a propertyk established
at a level (i.e. iF containsk as a subformula) can be promoted to the adjacent level (and promotes
the property if possible). This rule can be used at any time in the de�nition of the transition system,
and it is di�cult to incorporate the behavior of such a �exible rule into Algorithm 5. However,

12The rule is called (�ery) in Komuravelli et al. [2016].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

Inductive Approach to Spacer 227:17

as Hoder and Bjørner [2012] noted in their description of the induction rule, there are typically
two situations where this rule can be used e�ectively, namely, (1) when a re�nement process of a
recursive call �nishes (i.e. at the end of each iteration of the outer and middle loops in Algorithm 5),
and (2) when the trace is expanded at Line 4 in Algorithm 2. It is not di�cult to perform the
induction rule applied only for these moments: Simply analyze i! and/or i' at that moment, and
conjoin to in the properties that also hold at the root n . The analysis of i! and i' may take time, so
our implementation records candidate properties for the induction rule in the re�nement process
and returns the list of candidates in addition to the frame and the counterexample.

Query Reuse. A version of Spacer given in Komuravelli et al. [2015] poses a query that has
been successfully resolved to the adjacent level. This behavior can be simulated by inserting

(Φ, _) := IndSpacer(Φ,k!)

at the end of the middle loop in Algorithm 5 and similar code at the end of the outer loop.

Counterexample Sharing. Algorithm 5 passes only the counterexamples relevant to each
query, but many procedures often remember only the cumulative union of the counterexamples
found. To simulate this behavior, one can use a global variable, which stores the cumulative union
of the counterexamples, and replace W ’s in Algorithm 5 with the dereference of the global variable.

As we mentioned in Section 3.3, the original Spacer [Komuravelli et al. 2014, 2016] managed the
counterexamples by levels, whereas �g. 1 and Komuravelli et al. [2015] uni�es the counterexamples
of all the levels. The former change is harmless, but the latter is not.
To see the point, let us recall the proof of the termination of Algorithm 5 (Theorem 14). The

key is the fact that W returned by Algorithm 5 has only a �nite variety, and this fact is proved by
induction. In the former style of counterexample sharing, the variety of the cumulated valuesU8

is �nite (by induction on # − 8). However, since the cumulated valueU is not indexed by levels,
the inductive argument to prove the �niteness of possible values for U fails. This is the second
additional source of incompleteness introduced by the changes made in [Komuravelli et al. 2015].

6 A TERMINATING PROCEDURE USING COROUTINES

Although Algorithm 5 enjoys the termination property, it essentially relies on the �niteness of the
variety of possible return values W . The �niteness of return values is not a procedure-local property
(i.e. it requires an analysis of scenarios where the procedure is invoked more than once), so it is hard
to maintain. Indeed, we have just seen that the counterexample sharing across levels (as is done in
Komuravelli et al. [2015]) breaks this property and cannot be incorporated into Algorithm 5.
This section presents another approach to termination guarantee. The termination guarantee

of Algorithm 5 is hard because this procedure discards the remaining computation of the coun-
terexample when it generates the �rst piece W of the counterexample. A desirable procedure should
return the control to the caller as soon as a piece W of the counterexample is found but, at the same
time, allow us to resume the continuation if necessary. These apparently incompatible requirements
are achieved using a rich control mechanism known as coroutine.
Algorithm 6 shows the proposed algorithm. The structure is close to Algorithm 5 but it uses

yield instead of return. Similar to return, the yield construct suspends the procedure and returns
the control to the caller. But yield allows the caller to resume the continuation if necessary.
Let us �rst explain the behavior of the procedure. The procedure callMcrCoroutine(Φ, U) is

immediately returned. Its value cor can be used to enumerate counterexamples. To get the next
counterexample, call cor .next(U ′), where U ′ is the latest assertion, which may be weaker than
the original assertion U . This call returns a counterexample for U ′ if it exists. If there is no more
counterexample, this call raises an exception StopIteration(Φ′), where Φ′ is the re�nement.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

227:18 Takeshi Tsukada and Hiroshi Unno

Algorithm 6 A Spacer-like procedure with early return using coroutine

1: functionMcrCoroutine(Φ, U)
2: if dom(Φ) = ∅ or in (G) |= U (G) then return Φ

3: if |= ∃I.] (I) ∧ ¬U (I) then
4: W (I) :=] (I) ∧ ¬U (I)
5: U := yieldW

6: const i0,! := i! ; U0 := U

7: while ∃M' . M' |= i! (G) ∧ i' (~) ∧ g (G,~, I) ∧ ¬U (I) do
8: k' (~) := Mbp(

E

GI.i0,! (G) ∧ g (G,~, I) ∧ ¬U0 (I),M')
9: cor' := McrCoroutine(Φ',¬k')
10: try loop

11: W' := cor' .next(¬k')
12: U1 := U

13: while ∃M! . M! |= i! (G) ∧ W' (~) ∧ g (G,~, I) ∧ ¬U (I) do
14: k! (G) := Mbp(

E

~I.W' (~) ∧ g (G,~, I) ∧ ¬U1 (I),M!)
15: cor! := McrCoroutine(Φ!,¬k!)
16: try loop

17: W! := cor! .next(¬k!)
18: while ∃M . M |= W! (G) ∧ W' (~) ∧ g (G,~, I) ∧ ¬U (I) do
19: W (I) := Mbp(

E

G~.W! (G) ∧ W' (~) ∧ g (G,~, I),M)
20: U := yeildW

21: k! (G) := k! (G) ∧ ¬Itp(W! (G), (W' (~) ∧ g (G,~, I)) ⇒ U (I))
22: with StopIteration(Φ′

!) → Φ! := Φ
′
!

23: k' (~) := k' (~) ∧ ¬Itp(W' (~), (i! (G) ∧ g (G,~, I)) ⇒ U (I))
24: with StopIteration(Φ′

') → Φ' := Φ
′
'

25: in (I) := Itp
(
] (I) ∨ (i! (G) ∧ i' (~) ∧ g (G,~, I)), in (I) ∧ U (I)

)

26: return Φ

We explain the implementation (Algorithm 6). When the re�nement procedure �nds a partial
counterexample (lines 18 and 19), it is passed to the yield construct (line 20). The yield construct
suspends the rest of the computation of the counterexample, and the suspension is reported to the
caller, with the information of the found partial counterexample W (as the return value to the next
call). The suspended procedure will be resumed with the information of a weakened requirement
(passed as the argument to next), when the caller’s calculation of the weakening will be �nished.
This additional information is obtained as the “return value” of yeild, and the procedure updates U
to the weakened one (line 19). This weakening is propagated to the left and right subtraces by the
recalculations (lines 21 and 23). (In line 22, the strengthening of i ′

! is also propagated.) When the
re�nement is completed, the procedure returns the re�nement (line 26). The execution of return
Φ raises the exception StopIteration(Φ), which could be caught by the caller.

Although the control �ow of Algorithm 6 is quite complicated, it is still de�ned by induction on
the structure of the trace. This inductive structure helps us to reason about the algorithm.

Theorem 17. The following procedure (Algorithm 6 with a wrapper) terminates and solves the

generalized re�nement problem.

W := ⊥; cor := McrCoroutine(Φ, U)
try loop

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

Inductive Approach to Spacer 227:19

W := W ∨ cor .next(U ∨ W)
with StopIteration(Φ′)→ return (Φ′, W).

Algorithm 6 can accomodate the cross-level counterexample sharing. Its termination proof only
relies on the loop-invariance of arguments of Mbp, so it su�ces to keep W! and W' invariant of the
loop starting from line 18 by storing these values before the loop as in line 6.

7 IMPLEMENTATION AND EXPERIMENTS

We implemented variants of Spacer as a new tool calledMuCyc13 based on the inductive formal-
ization of the paper and conducted a comparative evaluation on them as well as the state-of-the-art
CHC solvers Spacer, Golem, and Eldarica that earned top scores in CHC-COMP’23.14 We also
evaluate the practical signi�cance of the tricks to retain the refutational completeness (RC) discussed
in the previous sections.

7.1 Implementation

MuCyc is implemented in the functional programming language OCaml 5 and supports, as
background theories, Booleans and linear integer and real arithmetic. We adopted Z3 (version
4.12.6) [de Moura and Bjørner 2008] as the backend SMT solver for satis�ability checking and Craig
interpolation. We implemented and adopted an original MBP procedure in OCaml, despite being
ine�cient, because Z3 does not seem to provide APIs for this feature.

It is worth mentioning that, instead of separately implementing di�erent re�nement strategies,
we used the language feature known as algebraic e�ects and handlers, recently introduced to OCaml
5 [Sivaramakrishnan et al. 2021], so that we can modularly implement re�nement strategies based
on various control structures including return, yield, and more.15 We also tried to keep other
parts of the implementation as pure functional as possible, by avoiding destructive updates and
non-determinism (except for the one exhibited by Z3). We believe that the inductive, modular, and
functional implementation makes it easy to understand, reason about, and extend MuCyc.

7.2 Experiments

We now report on the comparative evaluation with various con�gurations of MuCyc and existing
CHC solvers Spacer [Komuravelli et al. 2016], Golem,16 and Eldarica [Hojjat and Rümmer 2018].
In the experiments, we used a version of Spacer that is bundled with Z3 (version 4.12.6)17 and the
con�guration of Golem used in the LIA-nonlin category of CHC-COMP’23 (where a veri�cation
engine that implements a Spacer-like algorithm is adopted) and the con�guration of Eldarica used
in CHC-COMP’22. ForMuCyc, we write Ret(b, cex) and Yld(b, cex) to denote its con�gurations
based on return and yield, respectively. The boolean parameter b of Ret is either T or F and
represents whether the counterexample accumulation (see Line 11 in Algorithm 5) is enabled.
The boolean parameter b of Yld represents whether the query weakening via Craig interpolation
(see Lines 21 and 23 in Algorithm 6) is enabled. The parameter cex represents the counterexample
enumeration method used.MuCyc supportsQE,MBP(n), andModel. The experiment results using
QE are omitted in the paper because it signi�cantly degraded the performance. The parameter

13Available from https://github.com/hiroshi-unno/coar.
14https://chc-comp.github.io/
15Our modular implementation allows us to switch yield and return even during veri�cation depending on, for example,

the level of the current trace and the number of queries occurred so far at the level, though an evaluation of the advanced

capability is left as a future work.
16https://verify.inf.usi.ch/golem
17The version is di�erent from GSpacer [Krishnan et al. 2020] that further extends Spacer with various optimization

techniques. It is an interesting future direction to incorporate them toMuCyc and perform an experimental comparison.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

https://github.com/hiroshi-unno/coar
https://chc-comp.github.io/
https://verify.inf.usi.ch/golem

227:20 Takeshi Tsukada and Hiroshi Unno

Table 1. Experimental Results

con�guration sat unsat con�guration sat unsat con�guration sat unsat

Ret(F, Model) 605 486 Yld(F, Model) 588 479 Ind(Ret(F, MBP(0))) 909 519

Ret(T, Model) 604 484 Yld(T, Model) 599 481 Cex(Ret(F, MBP(0))) 788 524

Ret(F, MBP(0)) 795 521 Yld(F, MBP(0)) 729 521 Que(Ret(F, MBP(0))) 762 506

Ret(T, MBP(0)) 770 525 Yld(T, MBP(0)) 772 525 Mon(Ret(F, MBP(0))) 796 518

Ret(F, MBP(1)) 787 519 Yld(F, MBP(1)) 723 519 Ind(Yld(T, MBP(1))) 915 526

Ret(T, MBP(1)) 770 526 Yld(T, MBP(1)) 786 525 Cex(Yld(T, MBP(1))) 773 529

Ret(F, MBP(2)) 676 495 Yld(F, MBP(2)) 729 520 Que(Yld(T, MBP(1))) 669 280

Ret(T, MBP(2)) 753 525 Yld(T, MBP(2)) 775 526 Mon(Yld(T, MBP(1))) 778 518

= ∈ {0, 1, 2} of MBP(n) represents whether the saved frame and query are used (see Lines 7 and
9 in Algorithm 5 and Lines 6, 8, 12, and 14 in Algorithm 6) for RC (= = 1, 2) or not (= = 0). The
di�erence between = = 1 and = = 2 is that the former uses more recent information while RC holds
by appropriately updating i!,0 (see the second paragraph of Remark 15).
MuCyc also supports optimizations discussed in Section 5.3: induction Ind(con�g), counterex-

ample sharing Cex(con�g), query reuse Que(con�g), and monotone trace Mon(con�g). MuCyc

also implements predicate sharing but does not support disabling it, and hence no corresponding
notation. For example, the con�guration ofMuCyc closest to Spacer is described as Ind(Cex(F,
Que(Mon(Ret(F, MBP(0)))))).18 The con�guration closest to GPDR [Hoder and Bjørner 2012] is
Ind(Cex(F, Mon(Ret(F, Model)))). Besides Yld and Ret, MuCyc supports a Solve con�guration
that employs an existing method for solving non-linear CHCs [Unno and Kobayashi 2009]. This
method aligns with Algorithm 2, but with the Refine step replaced by a recursion-free CHC solver
that disregards the current trace Φ. Speci�cally, Solve iteratively expands the given CHCs, solves
the result by invoking Spacer as a recursion-free CHC solver, and checks whether the solution is
inductive. We use this as a baseline in the experiments.

Table 1 summarizes the number of solved SAT and UNSAT instances. We here used a benchmark
set consisting of 1,972 CHCs satis�ability problem instances obtained from the benchmark sets
of the LIA-lin and LIA-nonlin categories of CHC-COMP from 2018 to 2022: we here implemented
and applied a CHC preprocessor to them a priori and �ltered out easy instances that were solved
by just preprocessing. Our intention here is to weaken the e�ect on the experiment results of
di�erent preprocessors implemented in the existing CHC solvers and focus on the strengths and
weaknesses of their main algorithms. Our preprocessor repeatedly applies the resolution rule to
eliminate redundant predicate variables and apply an existing algorithm for reducing unnecessary
arguments of predicate variables [Leuschel and Sørensen 1997]. All the experiments were conducted
on StarExec (CentOS Linux release 7.7.1908, Intel(R) Xeon(R) CPU E5-2609 @ 2.40GHz with 27 GiB
RAM) with 600 seconds time limit.

7.2.1 Model vs. MBP(0) vs. MBP(1) vs. MBP(2). By comparing Ret(F, MBP(0)) (correspond-
ing to Spacer without optimizations) with Ret(F, Model) (GPDR without optimizations), we can
see that the use of MBP signi�cantly improves the numbers. Recall that the use of the saved query
and frame in the Spacer algorithm (indicated by Ret(F, MBP(2))) loses the progress property (and
causes an in�nite loop without re�nement) and hence substantially reduces the performance. By
contrast, the con�guration Ret(T, MBP(2)) satis�es the progress property again and is even RC.
By comparing Ret(T, MBP(1)) and Ret(T, MBP(2)) that are both RC, we can see that the use of

18Note here that implementation details of the four optimizations inMuCyc can be di�erent from those of Spacer since

they are only exposed as non-deterministically applied rules in the papers of Spacer.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

Inductive Approach to Spacer 227:21

more recent information contributes the performance. By comparing Ret(T, MBP(1)) and Ret(F,

MBP(1)), we can also see that the counterexample accumulation that is necessary for RC a�ects
negatively to the number of solved SAT instances but positively to that of UNSAT. It is worth noting
that the non-RC con�guration Ret(F, MBP(0)) that uses the latest information outperformed the
best RC con�guration Ret(T, MBP(1)) with respect to the number of solved SAT instances.
However, in the setting of the yield-based strategies, the experimental results showed a dif-

ferent trend, with Yld(T, MBP(1)), which utilizes the most recent information while RC holds,
outperforming the other con�gurations.

7.2.2 �ery weakening. By comparing the two variants Yld(T, MBP(n)) and Yld(F, MBP(n)),
which are RC, we can see that enabling query weakening via Craig interpolation improves the
performance of yield-based strategies.

7.2.3 Optimizations. We now discuss the e�ect of the optimizations: induction, counterexample
sharing, query reuse, and monotone trace. Thanks to the modular and functional implementation
of MuCyc, we were able to easily implement the optimizations. However, we found it non-trivial to
obtain performance improvements with them, as discussed below. We compared Ret(F, MBP(0))

and Yld(T, MBP(1)) with their optimized versions. The induction rule largely contributed to the
performance. The sharing of counterexamples also had a positive e�ect on the number of solved
UNSAT instances, though it had a negative e�ect on that of SAT instances. We believe that the
reduction in SAT instances is due to additional overhead, and it seems that reducing this overhead
through tuning could make it a useful optimization.
By contrast, query reuse and monotone trace downgraded the performance. In particular, it is

surprising that monotone trace reduced the performance since many existing PDR-based veri�ers
employ monotone trace. A possible reason why query reuse was not e�ective is that our implemen-
tation that follows the explanation in Section 5.3 is di�erent from that of Spacer [Komuravelli et al.
2015] and could result in too many extra queries, the cost of which is not compensated by the gains.

Fig. 2. MuCyc vs. existing CHC solvers.

0 200 400 600 800 1000 1200 1400 1600

Benchmarks passed (out of 1972)

10−1

100

101

102

T
im

e
in

se
co

n
d
s

(6
0
0

se
co

n
d
s

ti
m

e
li

m
it

)

Spacer

Golem

MuCyc [Ind(Yld(T,MBP(1)))]

MuCyc [Ind(Ret(F,MBP(0)))]

Eldarica

MuCyc [Solve]

7.2.4 MuCyc vs. State-of-The-Art CHC

Solvers. Finally, we compareMuCyc with our
RC con�guration Ind(Yld(T, MBP(1))) with
the state-of-the-art CHC solvers as well as
the con�guration Ind(Ret(F, MBP(0))) that
is close to Spacer and the baseline Solve of
MuCyc. The cactus plot shown in Figure 2 plots
the number of solved instances (x-axis) against
the time taken to solve the instances (y-axis),
non-cumulatively, comparing the solvers. The
baseline con�guration Solve solved 738 SAT
and 504 UNSAT, Eldarica solved 893 SAT and
482 UNSAT, Golem solved 971 SAT and 529
UNSAT, and Spacer solved 987 SAT and 547
UNSAT instances. The results show that the
mature tool Spacer outperforms the others. De-
spite being new and not yet mature,MuCyc is already as competitive as Eldarica and signi�cantly
outperforms the baseline con�guration Solve. Note also that Ind(Yld(T, MBP(1))) slightly outper-
formed Ind(Ret(F, MBP(0))), despite the observed fact that Yld(T, MBP(1)) and Ret(F, MBP(0))

were incomparable in the absence of optimizations. We believe the gap between the performance
ofMuCyc and Golem, which is also based on the Spacer algorithm, could be partly explained as

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

227:22 Takeshi Tsukada and Hiroshi Unno

follows: (1) MuCyc does not fully utilize caching and incremental SMT, instead repeatedly calling
Z3 with similar, related queries; (2) The implementation language of MuCyc employs garbage
collection and is generally not as e�cient as C++ used to implement Golem and Spacer. Note
that the curves of theMuCyc con�gurations are more gradual compared to the others. We thus
believe that by increasing the time limit or addressing the two aforementioned issues to speed up
the process, MuCyc could solve an even greater number of problems.

8 RELATED WORK

PDR has been applied to veri�cation problems that go beyond CHCs such as symbolic model
checking ofMarkov decision processes [Batz et al. 2020], veri�cation of relational properties [Shemer
et al. 2019], and veri�cation of distributed protocols [Goel and Sakallah 2021; Karbyshev et al. 2017].
It would be interesting to extend our inductive approach to their PDR algorithms.

There have been proposed extensions of the class of CHCs: existentially quanti�ed CHCs [Beyene
et al. 2013], universally quanti�ed CHCs [Bjørner et al. 2013], pCSP that extends CHCs with head-
disjunctions [Satake et al. 2020], pfwCSP that extends pCSP with well-foundedness and functional
constraints [Unno et al. 2021], and higher-order CHCs [Burn et al. 2018]. Also, note that the class
of CHCs can be seen as a fragment of �rst-order �xpoint logic without greatest �xpoints. Recently,
several authors have applied �xpoint logics [Kobayashi et al. 2019, 2018; Unno et al. 2023] as a
generalization of the class of CHCs for formal veri�cation. However, to our knowledge, there exists
no PDR algorithm proposed for the extended classes. It is interesting to investigate whether our
inductive approach can be applied to systematically derive PDR algorithms for them.
As for the CHC solving in the standard setting, Krishnan et al. [2020] and Blicha et al. [2022]

proposed ideas to improve the performance of Spacer. A typical challenge with Spacer that these
papers address is that to �nd a counterexample of length =, one has to deal with the =-fold expansion
of the input CHC, which tends to be huge. Krishnan et al. [2020] proposed several heuristics, mainly
a kind of inspection and manipulation of logical formulas. The idea of Blicha et al. [2022] can be
explained in terms of higher-order CHCs [Burn et al. 2018; Kobayashi et al. 2018]. Blicha et al.
[2022] translate an input CHC system in the standard sense, say a �rst-order CHC, into a second-
order CHC. By making good use of the expressive power of second-order CHC, the number of
development steps required to �nd a counterexample is logarithmically shortened.

The above-mentioned work studied PDR mainly from a practical perspective. Recently, analysis
of PDR from a theoretical perspective was given by Feldman et al. [2019, 2022] and Feldman and
Shoham [2022]. They analyzed PDR using logical and/or computational theoretic ideas.

Model-based projection, which is a key technology for Spacer, is also applied to decide quanti�ed
�rst-order logic formulas by Bjorner and Janota [2015] and Farzan and Kincaid [2016].

9 CONCLUSION

We have developed an inductive description of Spacer and discussed the behavior of Spacer variants
in the literature based on an intuition from our inductive description. We have implemented and
evaluated our procedures. Our experiment has con�rmed that some tricks to retain refutational
completeness have a practical impact.

An interesting direction for future work is to �nd a better naïve algorithm. Our procedures are
derived from the naïve algorithm (Algorithm 3), a procedure with quanti�ed formulas, by removing
the quanti�cations using model-based projection and making the procedure as lazy as possible.
A di�erent choice of the naïve algorithm results in a di�erent procedure. Examples of particular
choices include the iterative deepening version, whereas Algorithm 3 is the depth-�rst version.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

Inductive Approach to Spacer 227:23

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their insightful comments. Additionally, we would
like to express our appreciation to the anonymous reviewers who provided feedback on the earlier
version submitted to POPL. In particular, a technical comment from a POPL reviewer signi�cantly
a�ected the structure of our paper. We thank the StarExec initiative for providing the computational
resources necessary for our experiments in this paper. This work was supported by JSPS KAKENHI
Grant Numbers JP20H05703, JP22H03564, JP20H04162, and JP19H04084.

REFERENCES

Kevin Batz, Sebastian Junges, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Philipp Schröer. 2020.

PrIC3: Property Directed Reachability for MDPs. In Lecture Notes in Computer Science. Springer International Publishing,

512–538. https://doi.org/10.1007/978-3-030-53291-8_27

Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. 2013. Solving Existentially Quanti�ed Horn Clauses. In

CAV ’13 (LNCS), Vol. 8044. Springer, 869–882.

Nikolaj Bjorner and Mikolas Janota. 2015. Playing with Quanti�ed Satisfaction. In LPAR ’15 (EPiC Series in Computing),

Vol. 35. EasyChair, 15–27.

Nikolaj Bjørner, Ken McMillan, and Andrey Rybalchenko. 2013. On Solving Universally Quanti�ed Horn Clauses. In SAS ’13

(LNCS), Vol. 7935. Springer, 105–125.

Martin Blicha, Grigory Fedyukovich, Antti E. J. Hyvärinen, and Natasha Sharygina. 2022. Transition Power Abstractions for

Deep Counterexample Detection. In Tools and Algorithms for the Construction and Analysis of Systems - 28th International

Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,

Munich, Germany, April 2-7, 2022, Proceedings, Part I (Lecture Notes in Computer Science), Dana Fisman and Grigore Rosu

(Eds.), Vol. 13243. Springer, 524–542. https://doi.org/10.1007/978-3-030-99524-9_29

Aaron R. Bradley. 2011. SAT-Based Model Checking without Unrolling. In Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 70–87. https://doi.org/10.1007/978-3-642-18275-4_7

Toby Cathcart Burn, C.-H. Luke Ong, and Steven J. Ramsay. 2018. Higher-order constrained horn clauses for veri�cation.

Proceedings of the ACM on Programming Languages 2, POPL (2018), 11:1–11:28.

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An E�cient SMT Solver. In TACAS ’08 (Budapest, Hungary, March29 –

April 6) (LNCS), Vol. 4963. Springer, 337–340.

Niklas Een, Alan Mishchenko, and Robert Brayton. 2011. E�cient implementation of property directed reachability. In 2011

Formal Methods in Computer-Aided Design (FMCAD). 125–134.

Azadeh Farzan and Zachary Kincaid. 2016. Linear Arithmetic Satis�ability via Strategy Improvement. In IJCAI ’16. AAAI

Press, 735–743.

Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham. 2019. Complexity and Information in Invariant

Inference. 4, POPL, Article 5 (dec 2019), 29 pages.

Yotam M. Y. Feldman, Mooly Sagiv, Sharon Shoham, and James R. Wilcox. 2022. Property-Directed Reachability as Abstract

Interpretation in the Monotone Theory. 6, POPL, Article 15 (jan 2022), 31 pages.

Yotam M. Y. Feldman and Sharon Shoham. 2022. Invariant Inference with Provable Complexity from the Monotone Theory.

Springer, Cham, 201–226.

Aman Goel and Karem A. Sakallah. 2021. On Symmetry and Quanti�cation: A New Approach to Verify Distributed Protocols.

In NFM ’21. 131–150.

Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. 2010. Nested interpolants. ACM SIGPLAN Notices 45, 1 (jan

2010), 471–482. https://doi.org/10.1145/1707801.1706353

Kryštof Hoder and Nikolaj Bjørner. 2012. Generalized Property Directed Reachability. In Theory and Applications of

Satis�ability Testing – SAT 2012. Springer Berlin Heidelberg, 157–171. https://doi.org/10.1007/978-3-642-31612-8_13

Kryštof Hoder, Nikolaj Bjørner, and Leonardo de Moura. 2011. `Z: An E�cient Engine for Fixed Points with Constraints. In

CAV ’11 (Snowbird, UT) (LNCS), Vol. 6806. Springer, 457–462.

Hossein Hojjat and Philipp Rümmer. 2018. The Eldarica Horn Solver. In FMCAD ’18. IEEE, 1–7.

Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky, Noam Rinetzky, and Sharon Shoham. 2017. Property-Directed

Inference of Universal Invariants or Proving Their Absence. J. ACM 64, 1, Article 7 (mar 2017), 33 pages.

Naoki Kobayashi, Takeshi Nishikawa, Atsushi Igarashi, and Hiroshi Unno. 2019. Temporal Veri�cation of Programs via

First-Order Fixpoint Logic. In SAS ’19. Springer, 413–436.

Naoki Kobayashi, Takeshi Tsukada, and KeiichiWatanabe. 2018. Higher-Order Program Veri�cation via HFLModel Checking.

In ESOP ’18. Springer, 711–738.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

https://doi.org/10.1007/978-3-030-53291-8_27
https://doi.org/10.1007/978-3-030-99524-9_29
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1145/1707801.1706353
https://doi.org/10.1007/978-3-642-31612-8_13

227:24 Takeshi Tsukada and Hiroshi Unno

Anvesh Komuravelli, Nikolaj Bjørner, Arie Gur�nkel, and Kenneth L. Mcmillan. 2015. Compositional veri�cation of

procedural programs using horn clauses over integers and arrays. In 2015 Formal Methods in Computer-Aided Design

(FMCAD). IEEE. https://doi.org/10.1109/fmcad.2015.7542257

Anvesh Komuravelli, Arie Gur�nkel, and Sagar Chaki. 2014. SMT-Based Model Checking for Recursive Programs. In

Computer Aided Veri�cation (CAV). Springer International Publishing, 17–34. https://doi.org/10.1007/978-3-319-08867-9_2

Anvesh Komuravelli, Arie Gur�nkel, and Sagar Chaki. 2016. SMT-based model checking for recursive programs. Formal

Methods in System Design 48, 3 (jun 2016), 175–205. https://doi.org/10.1007/s10703-016-0249-4

Hari Govind Vediramana Krishnan, Yuting Chen, Sharon Shoham, and Arie Gur�nkel. 2020. Global Guidance for Local

Generalization in Model Checking. In CAV ’20 (LNCS), Vol. 12225. Springer, 101–125.

Michael Leuschel and Morten Heine Sørensen. 1997. Redundant argument �ltering of logic programs. In LOPSTR ’97.

Springer, 83–103.

K. L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In Computer Aided Veri�cation (CAV 2003) (Lecture

Notes in Computer Science), Vol. 2725. Springer Berlin Heidelberg, 1–13. https://doi.org/10.1007/978-3-540-45069-6_1

Kenneth L. McMillan. 2006. Lazy Abstraction with Interpolants. In Computer Aided Veri�cation. Springer Berlin Heidelberg,

123–136. https://doi.org/10.1007/11817963_14

Patrick Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid Types. In PLDI ’08. ACM, 159–169.

Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. 2014. Classifying and Solving Horn Clauses for Veri�cation. In Veri�ed

Software: Theories, Tools, Experiments. Springer Berlin Heidelberg, 1–21. https://doi.org/10.1007/978-3-642-54108-7_1

Yuki Satake, Hiroshi Unno, and Hinata Yanagi. 2020. Probabilistic Inference for Predicate Constraint Satisfaction. AAAI ’20

34, 02 (Apr. 2020), 1644–1651.

Ron Shemer, Arie Gur�nkel, Sharon Shoham, and Yakir Vizel. 2019. Property Directed Self Composition. In CAV ’19 (LNCS),

Vol. 11561. Springer, 161–179.

KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Ja�er, and Anil Madhavapeddy. 2021. Retro�tting E�ect

Handlers onto OCaml. In PLDI ’21 (Virtual, Canada) (PLDI 2021). ACM, 206–221.

Takeshi Tsukada and Hiroshi Unno. 2021. Software Model-Checking as Cyclic-Proof Search. https://doi.org/10.48550/

ARXIV.2111.05617

Takeshi Tsukada and Hiroshi Unno. 2022. Software model-checking as cyclic-proof search. Proceedings of the ACM on

Programming Languages 6, POPL (jan 2022), 1–29. https://doi.org/10.1145/3498725

Hiroshi Unno and Naoki Kobayashi. 2009. Dependent Type Inference with Interpolants. In PPDP ’09. ACM, 277–288.

Hiroshi Unno, Tachio Terauchi, Yu Gu, and Eric Koskinen. 2023. Modular Primal-Dual Fixpoint Logic Solving for Temporal

Veri�cation. 7, POPL, Article 72 (jan 2023), 30 pages.

Hiroshi Unno, Tachio Terauchi, and Eric Koskinen. 2021. Constraint-Based Relational Veri�cation. In CAV ’21. Springer,

742–766.

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 227. Publication date: June 2024.

https://doi.org/10.1109/fmcad.2015.7542257
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/978-3-642-54108-7_1
https://doi.org/10.48550/ARXIV.2111.05617
https://doi.org/10.48550/ARXIV.2111.05617
https://doi.org/10.1145/3498725

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Constraint Language and Constrained Horn Clauses
	2.2 Model Based Projection

	3 A Basic Strategy and Procedures for CHC Solving
	3.1 Finite Approximation and Tree Interpolation
	3.2 Interpolation-Based CHC Solving
	3.3 Spacer

	4 Inductive Approach to Refinement
	4.1 Generalizing the Refinement Problem
	4.2 Naïve Procedure
	4.3 Handling Quantification by Model-Based Projection

	5 Comparing Our Procedures with Spacer
	5.1 Similarity
	5.2 Dissimilarity
	5.3 Optimizations

	6 A Terminating Procedure Using Coroutines
	7 Implementation and Experiments
	7.1 Implementation
	7.2 Experiments

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

