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We present a novel approach to deciding the validity of formulas in first-order fixpoint logic with background

theories and arbitrarily nested inductive and co-inductive predicates defining least and greatest fixpoints. Our

approach is constraint-based, and reduces the validity checking problem of the given first-order-fixpoint logic

formula (formally, an instance in a language called 𝜇CLP) to a constraint satisfaction problem for a recently

introduced predicate constraint language.

Coupled with an existing sound-and-relatively-complete solver for the constraint language, this novel

reduction alone already gives a sound and relatively complete method for deciding 𝜇CLP validity, but we

further improve it to a novel modular primal-dual method. The key observations are (1) 𝜇CLP is closed under

complement such that each (co-)inductive predicate in the original primal instance has a corresponding

(co-)inductive predicate representing its complement in the dual instance obtained by taking the standard De

Morgan’s dual of the primal instance, and (2) partial solutions for (co-)inductive predicates synthesized during

the constraint solving process of the primal side can be used as sound upper-bounds of the corresponding

(co-)inductive predicates in the dual side, and vice versa. By solving the primal and dual problems in parallel

and exchanging each others’ partial solutions as sound bounds, the two processes mutually reduce each

others’ solution spaces, thus enabling rapid convergence. The approach is also modular in that the bounds are

synthesized and exchanged at granularity of individual (co-)inductive predicates.

We demonstrate the utility of our novel fixpoint logic solving by encoding a wide variety of temporal

verification problems in 𝜇CLP, including termination/non-termination, LTL, CTL, and even the full modal

𝜇-calculus model checking of infinite state programs. The encodings exploit the modularity in both the program

and the property by expressing each loops and (recursive) functions in the program and sub-formulas of the

property as individual (possibly nested) (co-)inductive predicates. Together with our novel modular primal-dual

𝜇CLP solving, we obtain a novel approach to efficiently solving a wide range of temporal verification problems.
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1 INTRODUCTION
One approach to temporal property verification of programs is to reduce the problem to that of

deciding the validity of a formula in a fixpoint logic [Delzanno and Podelski 2001; Fioravanti et al.

2013; Fribourg 1999; Jaffar and Maher 1994; Kobayashi et al. 2019, 2018; Nanjo et al. 2018; Nilsson

and Lübcke 2000]. In such an approach, both the program and the property to be verified are

encoded together as a fixpoint logic formula so that the logic serves as a common intermediate

language for uniformly expressing various verification problems, separating the concern of reducing

verification problems to logical validity problems from that of solving the validity problems. The

verification community has historically embraced such a separation of concerns. For instance,

constrained Horn clauses (CHCs) [Bjørner et al. 2015] is a popular formal system for expressing

various verification problems, and it facilitated the rapid development of methods for problem

reduction and those for solving the reduced problems [Champion et al. 2018; Gurfinkel et al. 2015;

Hojjat and Rümmer 2018; Kahsai et al. 2016; Komuravelli et al. 2014; Unno and Kobayashi 2009].

In comparison to predicate constraint systems such as CHCs, an advantage of a fixpoint logic is

that it lends itself naturally to modular encoding of verification problems by representing both

finite (i.e., terminating) and infinite (i.e., diverging) behavior of program components as least and

greatest fixpoints [Kobayashi et al. 2019; Nanjo et al. 2018; Unno et al. 2017a].

In this paper, we present a novel approach to solving the validity checking problem for a first-

order fixpoint logic with background theories and arbitrarily nested inductive and co-inductive

predicates defining least and greatest fixpoints (formalized as a language called 𝜇CLP). Our approach

is constraint-based, and reduces the validity checking problem of the given 𝜇CLP instance to a

constraint satisfaction problem for a predicate constraint language called pfwCSP, a generalization

of CHCs that was introduced in the work of Unno et al. [2021]. Coupled with an existing sound-

and-relatively-complete solver for pfwCSP from the same work, our novel reduction alone already

gives a sound and relatively complete method for deciding 𝜇CLP validity, but we further improve

the method by extending it to a novel modular primal-dual method
1
. The key observations are

(1) 𝜇CLP is closed under complement where each inductive (resp. co-inductive) predicate in the

original primal instance has a corresponding co-inductive (resp. inductive) predicate representing

its complement in the dual instance obtained by taking the De Morgan’s dual of the primal, and

(2) partial solutions (described below) for inductive (resp. co-inductive) predicates synthesized

during the constraint solving process of the primal side can be used as sound upper-bounds of the

corresponding co-inductive (resp. inductive) predicates in the dual side, and vice versa.

Based on the observations, our modular primal-dual approach translates both the primal 𝜇CLP

instance and its dual to their corresponding pfwCSP constraint sets, and solves both sets of con-

straints in parallel. Partial solutions are assignments to predicate variables that satisfy some but

not necessarily all clauses of the given constraint set
2
. They are obtained as by-products of the

constraint solving process, and while generally insufficient for solving the given set of constraints,

they are guaranteed to be lower-bounds of the fixpoints corresponding to the (co-)inductive predi-

cate defined by the clauses that they satisfy. Thus, they can be used as sound upper-bounds of the

corresponding fixpoints in the dual instance.

For example, in termination verification, an inductive predicate 𝑋 (𝑥) in the primal problem

may represent the set of states from which some loop in the program always terminates, and

the corresponding co-inductive predicate in the dual problem represents the set of states from

1
Here, the terminology relative completeness is in the sense of Jhala and McMillan [2006]; Terauchi and Unno [2015]. That

is, the solver is guaranteed to terminate relative to the assumption that there is a solution syntactically expressible as

predicates of the background theory.

2
Technically, we also allow partial solutions to only satisfy sound under-approximations of the clauses (cf. Section 5.2 for

details).
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which the same loop may diverge. Then, a partial solution to the co-inductive predicate in the

dual problem, say 𝜑 , represents a lower-bound on the set of states from which the loop may

diverge. Therefore, its complement, ¬𝜑 , is an upper-bound on the set of states from which the loop

always terminates and can be used as a sound upper-bound of the inductive predicate in the primal

problem. The bound is sound in the sense that asserting it does not rule out any actual solutions.

We assert the bound by adding the clause 𝑋 (𝑥) ⇒ ¬𝜑 to the primal’s constraint set where 𝑋 is the

predicate variable corresponding to 𝑋 (cf. Section 5.1 for details). By solving the primal and dual

problems in parallel and exchanging each others’ partial solutions as sound bounds in this way,

the two processes mutually reduce each others’ solution spaces, thus enabling rapid convergence.

An analogy can be made to how clause-learning DPLL SAT solvers reduce the solution space by

asserting learned clauses. The approach is also modular in that the bounds are synthesized and

exchanged at granularity of individual (co-)inductive predicates. The approach synergizes well with

the aforementioned modularity present in fixpoint logic encodings of verification problems as it

lends itself to bounds synthesized and exchanged at granularity of individual program components,

as seen in the example above, as well as at the granularity of sub-properties of the properties to be

verified (e.g., sub-formulas of a temporal logic formula expressing the property to be verified).

We have implemented the approach in a tool called MuVal and applied it to a diverse collection

of temporal verification problems including termination/non-termination, LTL, CTL, and even

the full modal 𝜇-calculus model checking of infinite-state programs. For encoding the problems,

we adopt the approaches of Kobayashi et al. [2019]; Nanjo et al. [2018]; Unno et al. [2017a] to

exploit the modularity present in both the program and the property by expressing individual loops

and (recursive) functions in the program and sub-formulas of the property as individual (possibly

nested) (co-)inductive predicates. Thanks to our novel modular primal-dual solving method,MuVal

is able to go beyond the capabilities of existing related tools. Namely, MuVal beats AProVE [Giesl

et al. 2017], the winner of 2021 Termination Competition, on termination benchmarks in number

of solved instances. Additionally, MuVal was able to solve 4 challenging benchmarks from Dietsch

et al. [2015] that cannot be solved by their UltimateLTLAutomizer, a state-of-the-art tool for LTL

model checking of infinite state programs
3
. We summarize the paper’s contributions below.

• The novel modular primal-dual approach to deciding the validity of a first-order fixpoint

logic with background theories by a reduction to parallel pfwCSP constraint solving.

• The implementation of the approach in the tool MuVal and experimental validation on a

diverse collection of temporal verification problems.

The rest of the paper is organized as follows. Section 2 gives a brief overview with a running

example. Section 3 defines 𝜇CLP, a first-order fixpoint logic with background theories. Section 4

reviews pfwCSP and its solver PCSat. Section 5 formalizes the reduction of 𝜇CLP to pfwCSP

and the novel modular primal-dual solving method. Section 6 reports on the implementation and

experimental evaluation of our method. We discuss related work in Section 7 and conclude the

paper in Section 8. We note that pfwCSP and its solver PCSat reviewed in Section 4 are from Unno

et al. [2021] and are not new contributions of this paper. They are described there for the purpose of

making the paper self-contained (and also with the intent to later refer to the description of PCSat

to explain the modifications needed for our work in Section 5). As also remarked above, the main

novel contributions of this paper are the primal-dual solving method described in detail in Section 5

and its implementation presented in Section 6. This includes the reduction from 𝜇CLP validity to

pfwCSP satisfiability described in detail in Section 5.1 which has only appeared previously in an

unrefereed arXiv paper [Unno et al. 2020].

3
Our experiments with MuVal even discovered that the benchmark files contained incorrect classifications, claiming “safe”

when they actually are not.
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2 OVERVIEW
This section highlights the contributions of our work using a running example.

2.1 Modeling Verification Problems in First-Order Fixpoint Logic
Let us consider the termination verification problem of the following program taken from the

benchmark set of the FuncTion tool [Urban 2013; Urban and Miné 2014] slightly modified to

illuminate the salient aspects of our approach:

assume (x2 <= 3);

while (x1 >= 0 && x2 >= 0) {

if (nondet()) { while (x2 != 3 && nondet()) { x2 = x2 + 1; }

x1 = x1 - 1; } x2 = x2 - 1; }

Here, nondet() returns a non-deterministic Boolean value. This program is always terminating for

any external integer inputs x1,x2 and any internal Boolean non-deterministic choices. Note that

the termination is witnessed by, for example, the lexicographic order of x1,x2.

As we shall show formally in Section 3.2, we systematically encode the termination verification

problem to a validity checking problem for a first-order fixpoint logic (formally, as a 𝜇CLP). Our

encoding adopts the approaches given in Kobayashi et al. [2019]; Nanjo et al. [2018]; Unno et al.

[2017a] tomodularly encode the verification problem using both least and greatest fixpoints. Roughly,

the idea is to use least (resp. greatest) fixpoints to describe the terminating (resp. non-terminating)

behavior of program components. For the running example, we obtain the following 𝜇CLP Pterm:
∀𝑥1, 𝑥2 : int. 𝑥2 > 3 ∨ 𝐼 (𝑥1, 𝑥2) where

I (𝑥1, 𝑥2) =𝜇 ¬(𝑥1 ≥ 0 ∧ 𝑥2 ≥ 0) ∨
(
I (𝑥1, 𝑥2 − 1) ∧ J (𝑥2) ∧
∀𝑥 ′

2
: int. NP (𝑥2, 𝑥 ′2) ∨ I (𝑥1 − 1, 𝑥 ′2 − 1)

)
J (𝑥2) =𝜇 ¬(𝑥2 ≠ 3) ∨ J (𝑥2 + 1)

NP (𝑥2, 𝑥 ′2) =𝜈 ¬
(
𝑥 ′
2
= 𝑥2 ∨ 𝑥2 ≠ 3 ∧ ¬NP (𝑥2 + 1, 𝑥 ′2)

)
Here, J is an inductive predicate defined as the least fixpoint (indicated by =𝜇 ) of the function

F (J) (𝑥2) ≜ ¬(𝑥2 ≠ 3) ∨ J (𝑥2 + 1) over predicates. I is also an inductive predicate and is defined as

a least fixpoint. By contrast, NP is a co-inductive predicate defined as the greatest fixpoint (indicated

by =𝜈 ) of the function G(NP) (𝑥2, 𝑥 ′2) ≜ ¬(𝑥 ′2 = 𝑥2 ∨ 𝑥2 ≠ 3 ∧ ¬NP (𝑥2 + 1, 𝑥 ′2)). Roughly, I (𝑥1, 𝑥2)
and J (𝑥2) characterize the weakest pre-conditions for the termination of the outer and the inner

loops, respectively. Note that the inner loop terminates for all non-deterministic choices if and

only if ¬(𝑥2 ≠ 3) eventually holds after a finite number of iterations of incrementing 𝑥2, which

is here enforced by the least-fixpoint definition of J . NP (𝑥2, 𝑥 ′2) denotes the complement of the

following inductive predicate P (𝑥2, 𝑥 ′2) which characterizes the transition relation of the inner loop:

P (𝑥2, 𝑥 ′2) =𝜇 𝑥
′
2
= 𝑥2 ∨ 𝑥2 ≠ 3 ∧ P (𝑥2 + 1, 𝑥 ′2). In the definition of I , NP (𝑥2, 𝑥 ′2) is used to bind 𝑥 ′

2
to

a possible value of the program variable x2 upon the termination of the inner loop, encapsulating

the internal behavior of the inner loop. Thus, the query formula is valid if and only if the program

terminates for all initial integer valuations of x1 and x2 and for all internal non-deterministic

choices. Though we could encode the termination verification problem using only least fixpoints by

regarding the given program as a single monolithic transition system, this example demonstrates

an important property of first-order fixpoint logics such as 𝜇CLP: the verification problem can be

encoded modularly so that each program component (e.g., the inner and outer loop in the running

example) can be represented by separate (co-)inductive predicates.

The other important property of 𝜇CLP that we shall exploit in our approach is that it is closed

under complement. Namely, taking the De Morgan dual of a 𝜇CLP instance yields a complement

𝜇CLP instance that contains inductive (resp. co-inductive) predicate representing the dual of the
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each co-inductive (resp. inductive) predicate in the primal instance. As the dual of the running

example Pterm, we obtain the 𝜇CLP Pnterm shown below:

∃𝑥1, 𝑥2 : int. 𝑥2 ≤ 3 ∧ NI (𝑥1, 𝑥2) where

NI (𝑥1, 𝑥2) =𝜈 𝑥1 ≥ 0 ∧ 𝑥2 ≥ 0 ∧
(
NI (𝑥1, 𝑥2 − 1) ∨ NJ (𝑥2) ∨
∃𝑥 ′

2
: int. P (𝑥2, 𝑥 ′2) ∧ NI (𝑥1 − 1, 𝑥 ′2 − 1)

)
NJ (𝑥2) =𝜈 𝑥2 ≠ 3 ∧ NJ (𝑥2 + 1)

P (𝑥2, 𝑥 ′2) =𝜇 𝑥 ′
2
= 𝑥2 ∨ 𝑥2 ≠ 3 ∧ P (𝑥2 + 1, 𝑥 ′2)

Intuitively, NI (𝑥1, 𝑥2) and NJ (𝑥2) respectively characterize the weakest pre-conditions for the

non-termination of the outer and the inner loops, generalizing the notion of recurrent sets [Gupta

et al. 2008] formodular verification: the non-emptiness of NI (𝑥1, 𝑥2) and NJ (𝑥2) respectively implies

the non-termination of the inner and outer loops. Recall that P (𝑥2, 𝑥 ′2) characterizes the strongest
post-condition of the inner loop. Note that each inductive predicate in the primal instance Pterm
(i.e., I and J) has a corresponding co-inductive predicate in the dual Pnterm (i.e., NI and NJ), and the

co-inductive predicate in the primal (i.e., NP) has a corresponding inductive predicate in the dual

(i.e., P). Note that the encoding is modular in the sense that the terminating and non-terminating

behavior of each program components are encoded as separate (co-)inductive predicates, namely

by I and NI for the inner loop and by J and NJ for the outer loop. As we shall see next,MuVal tries

to prove the validity of the primal Pterm and the dual Pnterm simultaneously in parallel by sharing

learned information about each other’s (co-)inductive predicates.

2.2 Reduction to pfwCSP and Modular Primal-Dual Solving
Our main contribution is a novel primal-dual approach to deciding the validity of 𝜇CLP. The

approach works by (1) soundly and completely reducing both primal and dual 𝜇CLP instances

to satisfiability problems of the predicate constraint language pfwCSP, and (2) solving the two

constraint satisfiability problems in parallel while trading learned information. pfwCSP was intro-

duced in recent work by Unno et al. [2021] and generalizes CHCs [Bjørner et al. 2015] to arbitrary

(i.e., possibly non-Horn) clauses, functionality constraints, and well-foundedness constraints over

predicate variables.

We overview the reduction to pfwCSP on the running example. The reduction is inspired by

the deduction technique in Nanjo et al. [2018] that eliminates least and greatest fixpoints by over-

and under-approximations via (co-)inductive invariants and well-founded relations, and eliminates

quantifiers by Skolemization. For the termination verification problem Pterm, our reduction gives

the following pfwCSP Cterm whose term variables are implicitly universally quantified:

(1) 𝑥2 > 3 ∨ I (𝑥1, 𝑥2)
(2) I (𝑥1, 𝑥2) ⇒ ¬(𝑥1 ≥ 0 ∧ 𝑥2 ≥ 0) ∨(

I (𝑥1, 𝑥2 − 1) ∧ I⇓ (𝑥1, 𝑥2, 𝑥1, 𝑥2 − 1) ∧ J (𝑥2) ∧
(NP (𝑥2, 𝑥 ′2) ∨ I (𝑥1 − 1, 𝑥 ′2 − 1) ∧ I⇓ (𝑥1, 𝑥2, 𝑥1 − 1, 𝑥 ′2 − 1))

)
(3) J (𝑥2) ⇒ ¬(𝑥2 ≠ 3) ∨ J (𝑥2 + 1) ∧ J⇓ (𝑥2, 𝑥2 + 1)
(4) NP (𝑥2, 𝑥 ′2) ⇒ ¬

(
𝑥 ′
2
= 𝑥2 ∨ 𝑥2 ≠ 3 ∧ ¬NP (𝑥2 + 1, 𝑥 ′2)

)
I , J , andNP are predicate variables that respectively represent under-approximations of (co-)inductive

predicates I , J , and NP of Pterm. I⇓ and J⇓ are well-founded predicate variables that represent

well-founded relations and used to enforce bounded unfoldings of inductive predicates I and J ,

respectively
4
. Namely, J⇓ (𝑥2, 𝑥2+1) constrains the formal argument 𝑥2 of 𝐽 and the actual argument

4
Here, we use the terminology bounded unfolding in a rather liberal sense. Namely, the unfolding need not be finite as its

bound may be witnessed by a (non-finitary) well-founded relation.
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𝑥2 + 1 of the recursive call to J to be related by a well-founded relation, and I⇓ (𝑥1, 𝑥2, 𝑥1, 𝑥2 − 1) and
I⇓ (𝑥1, 𝑥2, 𝑥1 − 1, 𝑥 ′2 − 1) constrain the formal arguments (𝑥1, 𝑥2) and the actual arguments of the

two recursive calls to be related by a well-founded relation. The transformation is inspired by an

analogous transformation done in binary reachability analysis [Cook et al. 2006; Grebenshchikov

et al. 2012; Kuwahara et al. 2014] that reduces termination verification problems to safety verification

problems.

Coupled with the sound-and-relatively-complete pfwCSP solver PCSat [Unno et al. 2021], our

novel reduction alone already gives a sound and relatively complete method for deciding 𝜇CLP

validity. As remarked before, we make a further innovation by extending the method to a modular

primal-dual method in which the dual 𝜇CLP problem is also reduced to a pfwCSP satisfiability

problem by applying the same reduction process. For the running example, we obtain from the

dual problem Pnterm the following pfwCSP Cnterm:

(5) 𝑆𝜆 (𝑥1) ∧𝑇𝜆 (𝑥2) ⇒ 𝑥2 ≤ 3 ∧ NI (𝑥1, 𝑥2)
(6) NI (𝑥1, 𝑥2) ⇒ 𝑥1 ≥ 0 ∧ 𝑥2 ≥ 0 ∧(

NI (𝑥1, 𝑥2 − 1) ∨ NJ (𝑥2) ∨
𝑈𝜆 (𝑥1, 𝑥2) ⇒

(
𝑃 (𝑥2, 𝑥 ′2) ∧ NI (𝑥1 − 1, 𝑥 ′2 − 1)

) )
(7) NJ (𝑥2) ⇒ 𝑥2 ≠ 3 ∧ NJ (𝑥2 + 1)
(8) 𝑃 (𝑥2, 𝑥 ′2) ⇒ 𝑥 ′

2
= 𝑥2 ∨ 𝑥2 ≠ 3 ∧ 𝑃 (𝑥2 + 1, 𝑥 ′2) ∧ 𝑃⇓ (𝑥2, 𝑥 ′2, 𝑥2 + 1, 𝑥 ′2)

As above, NI , NJ , and 𝑃 represent under-approximations of (co-)inductive predicates NI , NJ , and 𝑃

of Pnterm, and 𝑃⇓ is a well-founded predicate variable used to enforce a bounded unfolding of 𝑃 . 𝑆𝜆 ,

𝑇𝜆 , and𝑈𝜆 are functional predicate variables that characterize total functions to be synthesized and

used to Skolemize the existential quantification of the term variables 𝑥1, 𝑥2 in clause (5) and 𝑥 ′
2
in

clause (6), respectively.

Our modular primal-dual solverMuVal now tries to decide the satisfiability of both Cterm and

Cnterm by running two PCSat processes in parallel while synthesizing and exchanging sound

bounds to reduce each others’ solution spaces. As remarked before, the bounds are synthesized

from partial solutions. For example, 𝜌𝑡 ≜ {J ↦→ 𝜆𝑥2.𝑥2 = 3, J⇓ ↦→ _} is a partial solution for J in

Cterm as it satisfies the clauses that define J (i.e., clause (3)). While the partial solution is not an

actual solution of Cterm, from this information, we know that 𝜌𝑡 (J) is a lower-bound of the inductive
predicate 𝐽 of Pterm and therefore its complement is an upper-bound of the dual co-inductive

predicate 𝑁 𝐽 of Pnterm. We assert the upper-bound in the dual pfwCSP Cnterm by adding the clause

𝑁 𝐽 (𝑥2) ⇒ 𝑥2 ≠ 3. Roughly, the exchange says: the primal proved that the inner loop always

terminates when x2 = 3 and communicated the information to the dual so that it may limit its

search for states from which the inner loop may diverge to only those that satisfy x2 ≠ 3.

The communicated bound is still insufficient for the dual process to prove its satisfiability

(inevitably because the program actually always terminates and therefore Cnterm is unsatisfiable).

But it may lead to a synthesis and exchange of another bound, this time from dual to primal:

J (𝑥2) ⇒ 𝑥2 ≤ 3, an upper-bound on the set of states from which the inner loop always terminate.

With such bounds, MuVal arrives at the following actual solution for Cterm, thus proving the

validity of Pterm (and hence the termination of the program):

I (𝑥1, 𝑥2) ↦→ 3 ≥ 𝑥2,

J (𝑥2) ↦→ 𝑥2 ≥ 0 ∧ 𝑥2 ≤ 3,

NP (𝑥2, 𝑥 ′2) ↦→ 𝑥2 ≥ 0 ∧ 𝑥2 ≤ 3 ∧ 𝑥 ′
2
≥ 4

The assignments to the well-founded predicate variables I⇓ and J⇓ are deferred to the supplementary

material.
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Note that our primal-dual solvingmethod takes advantage of themodularity in the 𝜇CLP encoding

by synthesizing partial solutions and exchanging the bounds derived from them at the granularity

individual (co-)inductive predicates. Namely, in the example above, the information about the set of

states from which the inner loop terminates (i.e., the information about the co-inductive predicate

NJ) was synthesized by the primal side and communicated to the dual side, and the the information

about the set of states from which the inner loop does not terminate (i.e., the information about the

inductive predicate J) was synthesized by the dual side and communicated to the primal side. These

information are then asserted as clauses that upper-bound the possible solutions for the predicate

variables corresponding to the (co-)inductive predicates, thus reducing the solution spaces of the

constraint solver processes.

In the remainder of this section, we informally describe how partial solutions such as the ones in

the running example above are synthesized. We defer the formal details to Sections 4.1 and 5.2.

PCSat adopts the counterexample-guided inductive synthesis (CEGIS) approach to semi-decide

the satisfiability of the given pfwCSP instance. As standard for a CEGIS-based approach, it consists

of two sub-phases, a synthesis phase and a validation phase, and maintains a set of counterexamples.

A counterexample is a ground clause obtained by instantiating the term variables of a clause in the

input pfwCSP instance. In each iteration, the synthesis phase attempts to synthesize a candidate

solution that satisfies the current set of counterexamples, and then the validation phase checks

if the candidate solution is a genuine solution, i.e., one that actually satisfies the input pfwCSP

instance. If the validation phase detects that the candidate solution is not genuine, then it adds

to the set of counterexamples ground clauses that are unsatisfied by the candidate solution
5
. The

semi-algorithm terminates with success when the validation phase detects that the latest candidate

solution is genuine, and terminates with failure when the synthesis phase detects the current set of

counterexamples unsatisfiable (i.e., the input pfwCSP instance is actually unsatisfiable).

As described above, in an ordinary CEGIS-based approach, non-genuine candidate solutions are

only used to obtain additional counterexamples. Our novel modular primal-and-dual approach adds

an additional phase that follows the synthesis phase in which the non-genuine candidate solution

is analyzed to see if it is a partial solution. As discussed in the example above and in Section 1,

roughly, a candidate solution 𝜌 is detected to be a partial solution for an ordinary predicate variable

𝑋 if 𝜌 satisfies the clauses that define 𝑋 , that is, the clauses in which 𝑋 appears negatively and

transitively the clauses that define the ordinary predicate variables appearing positively in such

clauses. For instance, in the example above, only J itself appears as a positively occurring ordinary

predicate variable in the clause defining J (i.e., clause (3)), and so a candidate solution that satisfies

clause (3) (but may fail to satisfy the other clauses) is a partial solution for J .

As we shall describe in more detail in Section 5.2, the formal definition of partial solutions extends

the above by also allowing a partial solution to only satisfy under-approximations of the clauses

obtained by replacing some of the positively-occurring predicate variables by their lower-bounds,

where the lower-bounds are computed from (previously discovered) partial solutions themselves.

As we shall show in Section 5.2, the extension allows discovering more partial solutions, especially

for pfwCSP instances obtained from encoding methods that generates (co-)inductive predicate

definitions that mutually depend on each others.

3 𝜇CLP: A FIRST-ORDER FIXPOINT LOGIC WITH BACKGROUND THEORIES
This section defines 𝜇CLP, a first-order fixpoint logic with background theories. Its name is derived

from constraint logic programming (CLP) [Jaffar and Maher 1994] because it can be seen as an

5
Such ground clauses are obtained as by-products of checking the genuineness of the candidate solution (cf. Section 4.1).
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extension of CLP with arbitrarily-nested inductive and co-inductive predicate definitions and

quantifiers.

Let T be a (possibly many-sorted) first-order theory with the signature Σ. The syntax of T -
formulas 𝜙 and T -terms 𝑡 is:

𝜙 ::= 𝑋 (𝑡1, . . . , 𝑡ar(𝑋 ) ) | 𝑝 (𝑡1, . . . , 𝑡ar(𝑝) ) | ¬𝜙 | 𝜙1 ∨ 𝜙2 | ∀𝑥 : 𝑠 .𝜙
𝑡 ::= 𝑥 | 𝑓 (𝑡1, . . . , 𝑡ar(𝑓 ) )

Here, the meta-variables 𝑋 and 𝑥 respectively range over predicate and term variables. The meta-

variables 𝑝 and 𝑓 respectively denote predicate and function symbols of the signature Σ. We use 𝑠

as a meta-variable ranging over sorts of the signature Σ. We write • for the sort of propositions
and 𝑠1 → 𝑠2 for the sort of functions from 𝑠1 to 𝑠2. The return sort of a predicate variable is •. We

write ar(𝑜) and sort(𝑜) respectively for the arity and the sort of a syntactic element 𝑜 . A function 𝑓

represents a constant if ar(𝑓 ) = 0. We write ftv(𝜙) and fpv(𝜙) respectively for the set of free term

and predicate variables of 𝜙 . We write 𝑥 for a sequence of term variables, |𝑥 | for the length of 𝑥 ,

and 𝜖 for the empty sequence. We assume the usual derived forms 𝜙1 ∧ 𝜙2, 𝜙1 ⇒ 𝜙2, and ∃𝑥 : 𝑠 .𝜙 .
A 𝜇CLP P over the theory T is a sequence of mutually (co-)recursive equations of the form:

(𝑋1 (𝑥1) =𝛼1
𝜙1); . . . ; (𝑋𝑚 (𝑥𝑚) =𝛼𝑚 𝜙𝑚). Here, 𝛼𝑖 ∈ {𝜇, 𝜈} and for any 𝑖, 𝑗 ∈ {1, . . . ,𝑚}, 𝑋𝑖 may

occur only positively in 𝜙 𝑗 . Informally, 𝑋 (𝑥) =𝜇 𝜙 (resp. 𝑋 (𝑥) =𝜈 𝜙) represents the inductive (resp.

co-inductive) predicate 𝜇𝑋 (𝑥). 𝜙 (resp. 𝜈𝑋 (𝑥). 𝜙) defined as the least (resp. greatest) fixpoint of

the function F (𝑋 ) = 𝜆𝑥.𝜙 . Note here that F is monotonic because the bound predicate variable 𝑋

occurs only positively in the body 𝜙 .

The order of the equations is important. They express nestings of quantifiers 𝜇 and 𝜈 in ordinary

fixpoint logics. For example, a 𝜇CLP (𝑋 =𝜈 𝑋 ∧𝑌 ); (𝑌 =𝜇 𝑋 ∨𝑌 ) corresponds to 𝜈𝑋 .𝑋 ∧ (𝜇𝑌 .𝑋 ∨𝑌 )
whereas its order reversed, that is, (𝑌 =𝜇 𝑋 ∨𝑌 ); (𝑋 =𝜈 𝑋 ∧𝑌 ),corresponds to 𝜇𝑌 .(𝜈𝑋 .𝑋 ∧𝑌 ) ∨𝑌 .

We define dom(P) = {𝑋1, . . . , 𝑋𝑚}. We say that P is closed if ftv(𝜙𝑖 ) ⊆ {𝑥𝑖 }, fpv(𝜙𝑖 ) ⊆ dom(P)
for each equation 𝑋𝑖 (𝑥𝑖 ) =𝛼𝑖 𝜙𝑖 of P. A query for a 𝜇CLP P is defined as a T -formula 𝜙 . We say

that the query is closed with respect to P if ftv(𝜙) = ∅ and fpv(𝜙) ⊆ dom(P). For a query 𝜙 and

an interpretation 𝜌 of ftv(𝜙) ∪ fpv(𝜙), we write 𝜌 |= 𝜙 if 𝜙 is true under 𝜌 . For a 𝜇CLP P, the
interpretation [[P]] (∅) maps dom(P) to their fixpoints (cf. Section 3.1 for the formal definition). A

𝜇CLP validity problem instance is pair (𝜙,P) of a closed 𝜇CLP P and a query 𝜙 closed with respect

to P. We say that (𝜙,P) is valid, written |= (𝜙,P), if [[P]] (∅) |= 𝜙 .

We define the De Morgan dual (or simply dual) of a closed 𝜇CLP P = (𝑋𝑖 (𝑥𝑖 ) =𝛼 𝜙𝑖 )𝑚𝑖=1 to be the

𝜇CLP ¬P defined by (𝑋¬𝑖 (𝑥𝑖 ) =¬𝛼 𝜎 (¬𝜙𝑖 ))𝑚𝑖=1 where 𝜎 ≜ {𝑋1 ↦→ ¬𝑋¬1 , . . . 𝑋𝑚 ↦→ ¬𝑋¬𝑚}, ¬𝜇 ≜ 𝜈 ,

and ¬𝜈 ≜ 𝜇. The dual of a 𝜇CLP validity problem instance (𝜙,P) is the 𝜇CLP validity problem

instance (𝜎 (¬𝜙),¬P) where 𝜎 is the substitution used in the definition of ¬P as shown above.

We say that each predicate variable 𝑋𝑖 in the primal 𝜇CLP P corresponds to the predicate variable

𝜎 (𝑋𝑖 ) = 𝑋¬𝑖 in its dual ¬P, and vice versa.

𝜇CLP generalizes CLP and existing first-order fixpoint logics with background theories such as

Mu-Arithmetic [Bradfield 1999; Kobayashi et al. 2019; Lubarsky 1993; Nanjo et al. 2018], and can

naturally encode diverse classes of temporal program verification problems:

• Termination and non-termination verification for imperative programs (Section 3.2).

• Model checking of labeled transition systems (LTSs) and recursive programs where specifica-

tions are given as non-deterministic Büchi word automata, which strictly subsume LTL. The

encodings for LTSs and recursive programs are explained in Section 3.3 and Kobayashi et al.

[2019], respectively.

• Modal-𝜇-calculus model checking of imperative programs. The encoding is given in Kobayashi

et al. [2019].
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• Value-dependent temporal properties verification of higher-order effectful functional pro-

grams. The encoding is given in Nanjo et al. [2018].

As concrete examples of encodings, we present in Section 3.2 a modular encoding of termination

and non-termination verification for imperative programs, and in Section 3.3, a modular encoding

of linear temporal property verification for LTSs. As we shall show, the former is modular in the

program side, that is, the 𝜇CLP encoding for a statement of a program is built from the predicates

defined in the 𝜇CLP encodings for its sub-statements. By contrast, the latter is modular in the

property side, that is, a temporal property is given by a Büchi automaton whereby the encoding

defines inductive and co-inductive predicates for each state of the automaton whose definitions are

built from the (co-)inductive predicates defined for the states one-step reachable from that state.

Section 3.1 presents the formal semantics of 𝜇CLP. Readers acquainted with first-order fixpoint

logics and their semantics may skip the section.

3.1 Semantics
We formalize the semantics of 𝜇CLP. Let A = (D, Σ, 𝐼 ) be the structure of the background first-

order theory T . Here, D is the universe, Σ is the signature, and 𝐼 is the interpretation function for

the predicate and function symbols in Σ. We write D𝑠 for the set of values in D of the sort 𝑠 . In

particular, we define D• ≜ {⊤,⊥} for the sort • of propositions. For a sequence �̃� = 𝑠1, . . . , 𝑠𝑚 of

sorts with𝑚 ≥ 0, we write D�̃� for the sequence D𝑠1 , . . . ,D𝑠𝑚 . We define D(�̃�→𝑠) ≜ D�̃� → D𝑠 . We

assume that 𝐼 (𝑝) ∈ D�̃� → D• if sort(𝑝) = �̃� → •, and 𝐼 (𝑓 ) ∈ D�̃� → D𝑠 if sort(𝑓 ) = �̃� → 𝑠 . We

introduce the partially ordered sets (D(�̃�→•) , ⊑(�̃�→•) ) by defining

⊑• ≜ {(⊤,⊤), (⊥,⊤), (⊥,⊥)}, ⊑(�̃�→•)≜ {(𝑓 , 𝑔) | ∀̃𝑣 ∈ D�̃� .𝑓 (�̃�) ⊑• 𝑔(�̃�)}.

Note that the least upper bound ⊔(�̃�→•) and the greatest lower bound ⊓(�̃�→•) operators with respect

to ⊑(�̃�→•) satisfy

⊤ ⊓• ⊤ = ⊤, ⊤ ⊓• ⊥ = ⊥, ⊥ ⊓• ⊤ = ⊥, ⊥ ⊓• ⊥ = ⊥,
⊤ ⊔• ⊤ = ⊤, ⊤ ⊔• ⊥ = ⊤, ⊥ ⊔• ⊤ = ⊤, ⊥ ⊔• ⊥ = ⊥
𝑓 ⊓(�̃�→•) 𝑔 = 𝜆�̃� ∈ D�̃� . 𝑓 (�̃�) ⊓• 𝑔(�̃�), 𝑓 ⊔(�̃�→•) 𝑔 = 𝜆�̃� ∈ D�̃� . 𝑓 (�̃�) ⊔• 𝑔(�̃�)

Note that (D�̃�→•, ⊑�̃�→•) is a complete lattice. The least (resp. greatest) element of D�̃�→• is 𝜆𝑥. ⊥
(resp. 𝜆𝑥. ⊤). The negation operator ¬(�̃�→•) is defined by

¬•⊤ = ⊥, ¬•⊥ = ⊤, ¬(�̃�→•) 𝑓 = 𝜆�̃� ∈ D�̃� . ¬• 𝑓 (�̃�)

Given a T -formula 𝜙 and an interpretation 𝜌 of free term and predicate variables in 𝜙 , we write

J𝜙K (𝜌) for the truth value of 𝜙 which is defined as follows:

J𝑋 (̃𝑡)K (𝜌) ≜ 𝜌 (𝑋 ) (J̃𝑡K (𝜌)), J𝑝 (̃𝑡)K (𝜌) ≜ 𝐼 (𝑝) (J̃𝑡K (𝜌)),
J𝜙1 ∨ 𝜙2K (𝜌) ≜ J𝜙1K (𝜌) ⊔• J𝜙2K (𝜌), J𝜙1 ∧ 𝜙2K (𝜌) ≜ J𝜙1K (𝜌) ⊓• J𝜙2K (𝜌),
J∃𝑥 : 𝑠 .𝜙K (𝜌) ≜ ⊔

•{ J𝜙K (𝜌 {𝑥 ↦→ 𝑣}) | 𝑣 ∈ D𝑠 }, J¬𝜙K (𝜌) ≜ ¬•J𝜙K (𝜌)
J∀𝑥 : 𝑠 .𝜙K (𝜌) ≜

d
•{ J𝜙K (𝜌 {𝑥 ↦→ 𝑣}) | 𝑣 ∈ D𝑠 },

J𝑥K (𝜌) ≜ 𝜌 (𝑥), J𝑓 (̃𝑡)K (𝜌) ≜ 𝐼 (𝑓 ) (J̃𝑡K (𝜌))

Here, we assume that 𝜌 (𝑥) ∈ Dsort(𝑥) and 𝜌 (𝑋 ) ∈ D�̃� → D• if sort(𝑋 ) = �̃� → •. We write 𝜌 |= 𝜙

if and only if J𝜙K (𝜌 ′) = ⊤ holds for any extension 𝜌 ′ of the interpretation 𝜌 for the term and

predicate variables in (ftv(𝜙) ∪ fpv(𝜙)) \ dom(𝜌), where dom(𝜌) represents the domain of 𝜌 . We

say the given formula 𝜙 is valid and write |= 𝜙 if and only if ∅ |= 𝜙 holds.
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Given a 𝜇CLP P and an interpretation 𝜌 of free term and predicate variables in P, we write
[[P]] (𝜌) for the predicate interpretation for dom(P) induced by P which is defined by

J𝜖K (𝜌) ≜ ∅,
J(𝑋 (𝑥) =𝛼 𝜙); PK (𝜌) ≜ J𝑋 (𝑥) =𝛼 𝜙KP (𝜌) ⊎ [[P]] (𝜌 ⊎ [[𝑋 (𝑥) =𝛼 𝜙]]P (𝜌)),

J𝑋 (𝑥) =𝛼 𝜙KP (𝜌) ≜
{
𝑋 ↦→ FPsort(𝑋 )𝛼

(
𝜆𝑞.𝜆�̃� .J𝜙K

(
𝜌{𝑋 ↦→ 𝑞, 𝑥 ↦→ �̃�} ⊎ JPK (𝜌{𝑋 ↦→ 𝑞})

) )}
where dom(𝜌) ∩ dom(P) = ∅ and the fixpoint operator FP�̃�→•𝛼 (•) is defined by:

FP�̃�→•𝜇 (𝐹 ) ≜
d
(�̃�→•) {𝑞 ∈ D�̃�→• | 𝐹 (𝑞) ⊑(�̃�→•) 𝑞 },

FP�̃�→•𝜈 (𝐹 ) ≜ ⊔
(�̃�→•) {𝑞 ∈ D�̃�→• | 𝑞 ⊑(�̃�→•) 𝐹 (𝑞) }

We note that the domain over which fixpoints are taken is D�̃�→•, with the semantic ordering ⊑�̃�→•.

Example 3.1. Let us consider 𝜇CLP P𝜈𝜇 ≜ (𝑋 =𝜈 𝑋 ∧ 𝑌 ); (𝑌 =𝜇 𝑋 ∨ 𝑌 ) and 𝜇CLP P𝜇𝜈 ≜ (𝑌 =𝜇

𝑋 ∨ 𝑌 ); (𝑋 =𝜈 𝑋 ∧ 𝑌 ). Note that the semantics of P𝜈𝜇 and P𝜇𝜈 are different as shown below,

though the definition of P𝜈𝜇 and P𝜇𝜈 only differ in the order of the equations:

JP𝜈𝜇K (∅) = 𝜌𝜈𝜇 ⊎ J𝑌 =𝜇 𝑋 ∨ 𝑌 K
𝜖
(𝜌𝜈𝜇) = {𝑋 ↦→ ⊤, 𝑌 ↦→ ⊤}

JP𝜇𝜈K (∅) = 𝜌𝜇𝜈 ⊎ J𝑋 =𝜈 𝑋 ∧ 𝑌 K𝜖 (𝜌𝜇𝜈 ) = {𝑋 ↦→ ⊥, 𝑌 ↦→ ⊥}

where

𝜌𝜈𝜇 = J𝑋 =𝜈 𝑋 ∧ 𝑌 K(𝑌=𝜇𝑋∨𝑌 ) (∅) =
{
𝑋 ↦→ FP•𝜈

(
𝜆𝑞.J𝑋 ∧ 𝑌 K ({𝑋 ↦→ 𝑞} ⊎ 𝜌

𝜇
𝑞 )
)}

=
{
𝑋 ↦→ ⊔

•{𝑞 | 𝑞 ⊑• J𝑋 ∧ 𝑌 K ({𝑋 ↦→ 𝑞,𝑌 ↦→ 𝑞}) }
}
= {𝑋 ↦→ ⊤}

𝜌
𝜇
𝑞 = J𝑌 =𝜇 𝑋 ∨ 𝑌 K ({𝑋 ↦→ 𝑞}) =

{
𝑌 ↦→ FP•𝜇

(
𝜆𝑞′.J𝑋 ∨ 𝑌 K ({𝑋 ↦→ 𝑞,𝑌 ↦→ 𝑞′})

)}
= {𝑌 ↦→ 𝑞}

𝜌𝜇𝜈 = J𝑌 =𝜇 𝑋 ∨ 𝑌 K(𝑋=𝜈𝑋∧𝑌 ) (∅) =
{
𝑌 ↦→ FP•𝜇

(
𝜆𝑞.J𝑋 ∨ 𝑌 K ({𝑌 ↦→ 𝑞} ⊎ 𝜌𝜈𝑞 )

)}
=
{
𝑌 ↦→

d
•{𝑞 | J𝑋 ∨ 𝑌 K ({𝑋 ↦→ 𝑞,𝑌 ↦→ 𝑞}) ⊑• 𝑞 }

}
= {𝑌 ↦→ ⊥}

𝜌𝜈𝑞 = J𝑋 =𝜈 𝑋 ∧ 𝑌 K ({𝑌 ↦→ 𝑞}) =
{
𝑋 ↦→ FP•𝜈

(
𝜆𝑞′.J𝑋 ∧ 𝑌 K ({𝑋 ↦→ 𝑞′, 𝑌 ↦→ 𝑞})

)}
= {𝑋 ↦→ 𝑞}

■

Remark 1. Note that quantifiers over recursively enumerable (r.e.) domains (e.g., integers) can be

eliminated in 𝜇CLP; We can encode ∃𝑥 : int.𝜙 and ∀𝑥 : int.𝜙 respectively as 𝐸 (0) and 𝐴(0) using the
following inductive and co-inductive predicates 𝐸 and 𝐴:

𝐸 (𝑥) =𝜇 𝜙 ∨ [−𝑥/𝑥]𝜙 ∨ 𝐸 (𝑥 + 1)
𝐴(𝑥) =𝜈 𝜙 ∧ [−𝑥/𝑥]𝜙 ∧𝐴(𝑥 + 1)

Intuitively, 𝐸 and 𝐴 are required to hold for some and for all integer 𝑥 , respectively. This encoding

strategy, however, cannot apply to non r.e. domains like real numbers and is not useful in practice

even for r.e. domains like rational numbers that have no simple way to enumerate all its elements.

This is the reason why our reduction given in Section 5 instead applies Skolemization with functional

predicate variables to handle quantifiers.

3.2 Encoding Termination and Non-Termination Verification for Imperative Programs
We consider a simple imperative language whose syntax of statements is given below.

𝑠 ::= skip | 𝑥 := 𝑒 | 𝑥 := ∗ | 𝑠1; 𝑠2 | if 𝑒 then 𝑠1 else 𝑠2 | while 𝑒 do 𝑠
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encTerm(skip) ≜ (𝑊,𝑇,𝑊 (𝑥) =𝜇 ⊤,𝑇 (𝑥, 𝑥 ′) =𝜇

∧
𝑥 ∈𝑥 𝑥 = 𝑥 ′)

encTerm(𝑥 := 𝑒) ≜ (𝑊,𝑇, (𝑊 (𝑥) =𝜇 ⊤); (𝑇 (𝑥, 𝑥 ′) =𝜇 𝑥
′ = 𝑒 ∧∧𝑦∈𝑥,𝑦≠𝑥 𝑦

′ = 𝑦)})

encTerm(𝑥 := ∗) ≜ (𝑊,𝑇, (𝑊 (𝑥) =𝜇 ⊤); (𝑇 (𝑥, 𝑥 ′) =𝜇

∧
𝑦∈𝑥,𝑦≠𝑥 𝑦

′ = 𝑦))

encTerm(𝑠1) = (𝑊1,𝑇1,P1) encTerm(𝑠2) = (𝑊2,𝑇2,P2) (_,𝑇¬1 ,P¬1 ) = ¬(𝑊1,𝑇1,P1)
encTerm(𝑠1; 𝑠2) ≜ (𝑊,𝑇,𝑊 (𝑥) =𝜇 𝑊1 (𝑥) ∧ ∀𝑥 ′.𝑇¬1 (𝑥, 𝑥 ′) ∨𝑊2 (𝑥 ′);

𝑇 (𝑥, 𝑥 ′) =𝜇 ∃𝑥 ′′.𝑇1 (𝑥, 𝑥 ′′) ∧𝑇2 (𝑥 ′′, 𝑥 ′); P1; P¬1 ; P2)

encTerm(𝑠1) = (𝑊1,𝑇1,P1) encTerm(𝑠2) = (𝑊2,𝑇2,P2)
encTerm(if 𝑏 then 𝑠1 else 𝑠2) ≜ (𝑊,𝑇,𝑊 (𝑥) =𝜇 𝑏 ∧𝑊1 (𝑥) ∨ ¬𝑏 ∧𝑊2 (𝑥);

𝑇 (𝑥, 𝑥 ′) =𝜇 𝑏 ∧𝑇1 (𝑥, 𝑥 ′) ∨ ¬𝑏 ∧𝑇2 (𝑥, 𝑥 ′); P1; P2)

encTerm(𝑠0) = (𝑊0,𝑇0,P0) (_,𝑇¬0 ,P¬0 ) = ¬(𝑊0,𝑇0,P0)
encTerm(while 𝑏 do 𝑠0) ≜ (𝑊,𝑇, (𝑊 (𝑥) =𝜇 ¬𝑏 ∨ 𝑏 ∧ ∀𝑥 ′.𝑇¬0 (𝑥, 𝑥 ′) ∨𝑊 (𝑥 ′);

𝑇 (𝑥, 𝑥 ′) =𝜇 ¬𝑏 ∧
∧

𝑠∈𝑥 𝑥 = 𝑥 ′ ∨ 𝑏 ∧ ∃𝑥 ′′.𝑇0 (𝑥, 𝑥 ′′) ∧𝑇 (𝑥 ′′, 𝑥 ′); P0; P¬0 )

Fig. 1. Modular encoding of termination/non-termination verification problems.

Here 𝑒 and 𝑏 respectively range over integer type expressions and boolean expressions. For (integer-

typed) variables of the language, we purposefully overload the term variables of 𝜇CLP and use

𝑥,𝑦, 𝑧, etc. to range over them. The statement 𝑥 := ∗ denotes an assignment of a non-deterministic

integer value to the variable 𝑥 .

The semantics of the language is standard. A state of the program 𝑠 is a sequence of integers �̃�

such that |�̃� | = |𝑥 | where 𝑥 are the variables that appear in 𝑠 . Roughly, a state represents the values

of the variables. We write ⟨̃𝑣, 𝑠⟩ ⇓ �̃� ′ to mean that there is a terminating execution of 𝑠 from the

initial state �̃� to the final state �̃� ′, and write ⟨̃𝑣, 𝑠⟩ ⇑ to mean that there is a non-terminating execution

of 𝑠 from the initial state �̃� . We say that a program 𝑠 always terminates (or, simply terminates) if not

⟨̃𝑣, 𝑠⟩ ⇑ for any �̃� , and that 𝑠 may non-terminate (or, simply non-terminates) if ⟨̃𝑣, 𝑠⟩ ⇑ for some �̃� .

That is, a program is said to be terminating if every execution of it is terminating, and otherwise

it is said to be non-terminating. The termination verification problem seeks to decide if the given

program is terminating or not. We reduce the problem soundly and completely to a 𝜇CLP validity

problem. Recall that 𝜇CLP is parameterized by a background first-order theory T . For the encoding
described in this section, we assume that the background theory is the theory of integers

6
.

Let 𝑥 be the variables of the given program. We define the encoding procedure encTerm(𝑠) which
returns a triple (𝑊,𝑇,P) where𝑊 and 𝑇 are predicate variables defined in the 𝜇CLP P such that

ar(𝑊 ) = |𝑥 | and ar(𝑇 ) = 2 · |𝑥 |. As we shall show,𝑊 encodes the weakest precondition for the

termination of 𝑠 and 𝑇 encodes the transition relation of 𝑠 . The encoding is defined inductively

on the syntax of 𝑠 as shown in Figure 1. Here, we assume that𝑊 and 𝑇 in the rules are fresh

predicate variables, and we write ¬(𝑊,𝑇,P) for the De Morgan dual of (𝑊,𝑇,P) defined by:

¬(𝑊,𝑇,P) = (𝑊 ¬,𝑇¬,P¬) where P¬ is the De Morgan dual of the 𝜇CLP P, and𝑊 ¬ and 𝑇¬ are
the predicate variables defined in P¬ that correspond to𝑊 and 𝑇 , respectively.

The encoding ensures the following property.

6
More precisely, we assume that the background theory is one that can interpret the integer and boolean expressions of the

programming language.
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Lemma 3.2. Let (𝑊,𝑇,P) = encTerm(𝑠). Then, [[P]] (∅) |=𝑊 (�̃�) iff not ⟨̃𝑣, 𝑠⟩ ⇑, and [[P]] (∅) |=
𝑇 (�̃�, �̃� ′) iff ⟨̃𝑣, 𝑠⟩ ⇓ �̃� ′.

That is, the 𝜇CLP P obtained by the encoding (𝑊,𝑇,P) = encTerm(𝑠) precisely encodes the

weakest precondition for termination of 𝑠 as the inductive predicate𝑊 , and the transition relation

of 𝑠 as the inductive predicate 𝑇 . Therefore, to verify (resp. refute) the termination of 𝑠 , it suffices

to check the validity of the 𝜇CLP validity problem instance (∀𝑥 .𝑊 (𝑥),P) where (𝑊,𝑇,P) =

encTerm(𝑠). More formally, we state the correctness of the encoding in the theorem below.

Theorem 3.3. Let (𝑊,𝑇,P) = encTerm(𝑠). Then, 𝑠 terminates iff |= (∀𝑥 .𝑊 (𝑥),P).

Note that the encoding contains nested (co-)inductive predicates. Namely, while the predicates𝑊

and 𝑇 appearing in the conclusion of each rule is inductive, the complementation done in the rules

for sequences and loops introduce co-inductive predicate definitions. Also, note that the encoding

is modular. That is, the encoding for a statement 𝑠 contains the (co-)inductive predicates defined

in the encodings for the sub-statements of 𝑠 as sub-formulas. Our encoding is inspired by similar

encodings for temporal property verification of functional programs given in Nanjo et al. [2018];

Unno et al. [2017a].

Example 3.4. Recall the program from Section 2.1. Applying encTerm to the inner while loop yields

the triple (J, P,Pin) where Pin consists of the following recursive equations defining the inductive

predicates J and P (after some simplification, and by modeling nondet by a non-deterministic

assignment):

J (𝑥2) =𝜇 ¬(𝑥2 ≠ 3) ∨ J (𝑥2 + 1)
P (𝑥2, 𝑥 ′2) =𝜇 𝑥

′
2
= 𝑥2 ∨ 𝑥2 ≠ 3 ∧ P (𝑥2 + 1, 𝑥 ′2)

Note that the equation defining J is the same as the one in Pterm from Section 2.1, and the other

equation defining P is the same as the one in Pnterm. The order of the equations does not matter in

this case because the equations do not refer to each others’ predicates
7
. It can be readily seen that J

and P respectively express the weakest precondition for the termination and the transition relation

of the inner while loop. Then, using this encoding result for the inner while loop, the encoding

procedure yields for the outer while loop the triple (I ,Q,Pout) where Pout consists of the equations
in Pin and the equations defining I and NP from Pterm and the following equation defining Q:

Q(𝑥1, 𝑥2, 𝑥 ′1, 𝑥 ′2) =𝜇 ¬(𝑥1 ≥ 0 ∧ 𝑥2 ≥ 0) ∧ 𝑥 ′
2
= 𝑥2 ∧ 𝑥 ′1 = 𝑥1 ∨

𝑥1 ≥ 0 ∧ 𝑥2 ≥ 0 ∧
𝑥 ′
2
= 𝑥2 − 1 ∧ (𝑥 ′1 = 𝑥1 ∨ ∃𝑥 ′′2 .P (𝑥2, 𝑥 ′′2 ) ∧ 𝑥 ′2 = 𝑥 ′′

2
− 1 ∧ 𝑥 ′

1
= 𝑥1 − 1)

The equations in Pout are ordered appropriately so that an equation come before those that define

predicate variables occurring in the equation. Note that the equation defining I contains an oc-

currence of the co-inductive predicate NP whose definition is obtained by taking the dual of the

equation defining P . Then, by modeling the assume with a conditional statement, for the whole

program, the encoding procedure returns (K, R,Pprog) where Pprog consists of the equations in
Pout and the following equations (ordered appropriately as remarked above):

K (𝑥1, 𝑥2) =𝜇 ¬(𝑥2 ≤ 3) ∨ I (𝑥1, 𝑥2)
R(𝑥1, 𝑥2, 𝑥 ′1, 𝑥 ′2) =𝜇 ¬(𝑥2 ≤ 3) ∧ 𝑥 ′

1
= 𝑥1 ∧ 𝑥 ′2 = 𝑥2 ∨ 𝑥2 ≤ 3 ∧ Q(𝑥1, 𝑥2, 𝑥 ′1, 𝑥 ′2)

Finally, by simplifying Pprog by removing predicate definitions on which K does not depend (i.e., the

equations defining Q and R) and moving the (non-recursive) equation defining K to the query part,

we obtain the 𝜇CLP validity problem instance (∀𝑥1, 𝑥2 .𝑥2 > 3 ∨ I (𝑥1, 𝑥2),Pterm) from Section 2.1.

7
Also, the order of equations does not matter when the equations are all of the same fixpoint modality (i.e., all 𝜇 or all 𝜈).
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By construction, |= (∀𝑥1, 𝑥2.K (𝑥1, 𝑥2),Pprog) iff |= (∀𝑥1, 𝑥2.𝑥2 > 3 ∨ I (𝑥1, 𝑥2),Pterm), and thus by

Theorem 3.3, we have obtained a sound-and-complete encoding of the termination verification

problem for the program as a 𝜇CLP validity problem. Taking the dual of the problem instance yields

the dual 𝜇CLP validity problem instance (∃𝑥1, 𝑥2.𝑥2 ≤ 3∧NI (𝑥1, 𝑥2)),Pnterm) from Section 2.1 that

soundly-and-completely encodes the non-termination verification problem for the same program.

3.3 Encoding Linear Temporal Verification for Labeled Transition Systems
A labeled transition system (LTS) is a triple (Z𝑛, {𝜓ℓ }ℓ∈𝐿, 𝐿) where Z𝑛 is the the set of states where

each state is a 𝑛-tuple of integers, 𝐿 is the finite set of labels, and {𝜓ℓ }ℓ∈𝐿 is an 𝐿-indexed set of

transition relations where |= 𝜓ℓ (�̃�, �̃� ′) for �̃�, �̃� ′ ∈ Z𝑛 represents that the LTS may transition from the

state �̃� to the state �̃� ′ with the label ℓ . Note that our LTS is an infinite-state system
8
.

We review the notion of a Büchi automaton. A non-deterministic Büchi automaton 𝐴 is a tuple

(𝑄, 𝐿, 𝛿, 𝑞init, 𝐹 ) where𝑄 is the finite set of states (unrelated to the states of the LTS), 𝛿 ⊆ 𝑄 × 𝐿 ×𝑄
is the transition relation, 𝑞init ∈ 𝑄 is the starting state, and 𝐹 ⊆ 𝑄 is the set of final states. For 𝑞 ∈ 𝑄
and ℓ ∈ 𝐿, we write 𝛿 (𝑞, ℓ) for the set {𝑞′ ∈ 𝑄 | (𝑞, ℓ, 𝑞′) ∈ 𝛿}. An infinite word ℓ0ℓ1 · · · ∈ 𝐿𝜔 is

accepted by 𝐴 if and only if there exists an infinite sequence of states 𝑞0, 𝑞1, . . . such that 𝑞0 = 𝑞init ,

𝑞𝑖+1 ∈ 𝛿 (𝑞𝑖 , ℓ) for all 𝑖 ≥ 0, and some state in 𝐹 occurs infinitely often.

We consider the temporal property verification problem in which we are given an LTS 𝑀 =

(Z𝑛, {𝜓ℓ }ℓ∈𝐿, 𝐿), a predicate 𝜙init (𝑥) on states of 𝑀 , and a Büchi automaton 𝐴 such that the label

set of 𝐴 is 𝐿. The goal of the verification is to decide if for any (infinite) execution of 𝑀 from a

state satisfying 𝜙init (𝑥), the infinite sequence of labels of the execution is accepted by 𝐴. That is,

the goal is to verify whether the given LTS satisfies the linear temporal property specified by the

given Büchi automaton. We give an encoding of the verification problem in 𝜇CLP. Our encoding

is inspired by a similar encoding of temporal verification problems for recursive programs given

in [Kobayashi et al. 2019]. Let P𝑀,𝐴 be the 𝜇CLP comprising, for each 𝑞 ∈ 𝑄 and 𝛼 ∈ {𝜇, 𝜈}, the
following equations defining mutually-recursive (co-)inductive predicates LV𝑞,𝛼 (𝑥):

LV𝑞,𝛼 (𝑥) =𝛼
∧

ℓ∈𝐿 ∀𝑦.𝜓ℓ (𝑥,𝑦) ⇒
∨

𝑞′∈𝛿 (𝑞,ℓ) LV𝑞′,𝛼 (𝑞′) (𝑦)
where 𝛼 (𝑞) = 𝜈 if 𝑞 ∈ 𝐹 and 𝛼 (𝑞) = 𝜇 otherwise. The equations are ordered so that the co-inductive

equations come before the inductive equations. The correctness of the encoding is stated below.

Theorem 3.5. 𝑀 satisfies the temporal property given by 𝜙init and 𝐴 iff the 𝜇CLP validity problem

(∀𝑥 .𝜙init (𝑥) ⇒ LV𝑞init ,𝜈 (𝑥),P𝑀,𝐴) is valid.

The theorem follows from the fact that LV𝑞,_ (𝑥) represents the set of states from which the

labels along the execution of the LTS is accepted by 𝐴 when 𝐴 is run from the state 𝑞. Note that the

occurrence of a predicate in the body of the recursive definition becomes the LV_,𝜇 variant when

no state in 𝐹 is visited in the corresponding execution step. This ensures that there must be a path

in which a state from 𝐹 is visited infinitely often.

4 PFWCSP
We review pfwCSP [Unno et al. 2021] that generalizes constrained Horn clauses (CHCs) and serves

as an intermediary in our modular primal-dual method for automatically deciding 𝜇CLP validity

problems. We use a meta-variable 𝜑 to range over T -formulas without quantifiers and predicate

variables. First, a pCSP [Satake et al. 2020] C is a finite set of clauses of the form 𝜑 ∨∨ℓ
𝑖=1𝑋𝑖 (̃𝑡𝑖 ) ∨∨𝑚

𝑖=ℓ+1 ¬𝑋𝑖 (̃𝑡𝑖 ) where 0 ≤ ℓ ≤ 𝑚. We define ftv(𝑐), ftv(C) and fpv(C) in the obvious manner.

We regard that the variables in ftv(C) are implicitly universally quantified. A pCSP is CHCs if

8
For concreteness we explain the encoding for LTSs over integers. However, our encoding method can be easily extended to

LTSs over any domain in the background theory of 𝜇CLP.
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ℓ ≤ 1 for all clauses, and co-CHCs if𝑚 ≤ ℓ + 1 for all clauses. A predicate substitution 𝜎 is a map

from predicate variables 𝑋 to closed predicates of the form 𝜆𝑥1, . . . , 𝑥ar(𝑋 ) .𝜑 . We write 𝜎 (C) for
the application of 𝜎 to C and dom(𝜎) for the domain of 𝜎 . We call 𝜎 a syntactic solution for C if

fpv(C) ⊆ dom(𝜎) and |= ∧
𝜎 (C). Similarly, we call a predicate interpretation 𝜌 a semantic solution

for C if fpv(C) ⊆ dom(𝜌) and 𝜌 |= ∧C.
We next extend pCSP to pfwCSP by adding functionality and well-foundedness constraints. A

pfwCSP (C,K) consists of
• a finite set C of pCSP clauses, and

• a kinding map K that maps each 𝑋 ∈ fpv(C) to its kind: any one of •, ⇓, or 𝜆 which

respectively represent ordinary, well-founded, and functional predicate variable.

We write 𝜌 |= WF (𝑋 ) if the interpretation 𝜌 (𝑋 ) of the predicate variable 𝑋 is well-founded, that

is, sort(𝑋 ) = (̃𝑠, �̃�) → • for some sequence �̃� of sorts and there is no infinite sequence �̃�1, �̃�2, . . . of

sequences �̃�𝑖 of values of the sorts �̃� such that (�̃�𝑖 , �̃�𝑖+1) ∈ 𝜌 (𝑋 ) for all 𝑖 ≥ 1. We write 𝜌 |= FN (𝑋 )
if sort(𝑋 ) = (̃𝑠, 𝑠) → • and 𝜌 |= ∀𝑥 : �̃� .(∃𝑦 : 𝑠 .𝑋 (𝑥,𝑦)) ∧ ∀𝑦1, 𝑦2 : 𝑠 .(𝑋 (𝑥,𝑦1) ∧ 𝑋 (𝑥,𝑦2) ⇒ 𝑦1 = 𝑦2)
holds. We call a predicate interpretation 𝜌 a semantic solution for (C,K), written 𝜌 |= (C,K), if 𝜌
is a semantic solution of C, 𝜌 |= WF (𝑋 ) for all 𝑋 such that K(𝑋 ) = ⇓, and 𝜌 |= FN (𝑋 ) for all 𝑋
such that K(𝑋 ) = 𝜆. The notion of syntactic solution can be similarly generalized to pfwCSP.

Definition 4.1 (Satisfiability of pfwCSP). The predicate satisfiability problem of a pfwCSP (C,K)
is that of deciding whether it has a semantic solution.

It is known that the satisfiability of CHCs and the validity of CLP are inter-reducible (see e.g.,

Unno et al. [2017b]). Unno et al. [2021] presents a semi-algorithm called PCSat for semi-deciding the

satisfiability of pfwCSP. PCSat implements a counterexample-guide inductive synthesis (CEGIS)

based semi-algorithm that is sound and (relatively) complete that we will review in the next

subsection. In Section 5, we will show a sound and complete reduction from the 𝜇CLP validity

problem to the pfwCSP satisfiability problem.

4.1 CEGIS-Based pfwCSP Solving
We review the CEGIS-based pfwCSP satisfiability checking semi-algorithm PCSat introduced

in Unno et al. [2021]. As informally described in Section 2.2, PCSat consists of two phases, the

synthesis phase and the validation phase, that are iteratively executed until convergence (or up to

some time limit).

Algorithm 1 shows the pseudo-code of PCSat. PCSat takes as input a pfwCSP instance (C,K).
It first initializes the set of counterexamples 𝐸 to be an empty set (line 2)

9
. Then, it iterates the

CEGIS iteration loop (lines 3–17) until convergence (or up to some time limit). In each iteration,

we call the sub-routine SynthesizeCandSol to synthesize a candidate solution that satisfies the

current set of counterexamples (line 4), that is, a substitution 𝜌 such that 𝜌 |= (𝐸,K). If there is
no such a substitution, then SynthesizeCandSol returns UNSAT, indicating that (𝐸,K) is actually
unsatisfiable. Since this implies that the input pfwCSP instance (C,K) is also unsatisfiable, the

CEGIS loop terminates by returning UNSAT (line 6). Otherwise, we obtain the substitution 𝜌 as a

candidate solution to the input pfwCSP instance, and we call the sub-routine ValidateCandSol

to check if the candidate solution also satisfies the input instance (C,K) (line 9). If so, then the

candidate solution is a genuine solution to the input instance and we terminate the CEGIS loop by

returning SAT (line 11). Otherwise, we obtain additional counterexamples 𝐸 ′ that witness the failure
of 𝜌 to be a genuine solution. Formally, 𝐸 ′ is a set of ground clauses obtained by instantiating the

9𝐸 can also be initialize with any set of ground clauses obtained by instantiating the term variables of the input clauses.
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Algorithm 1 PCSat

1: function PCSat((C,K))
2: 𝐸 ← ∅
3: while true do
4: ressyn ← SynthesizeCandSol(𝐸)
5: if ressyn = UNSAT then
6: return UNSAT
7: else
8: let 𝜌 = ressyn in
9: resval ← ValidateCandSol(𝜌, (C,K))
10: if resval = SAT then
11: return SAT
12: else
13: let 𝐸 ′ = resval in
14: 𝐸 ← 𝐸 ∪ 𝐸 ′
15: end if
16: end if
17: end while
18: end function

term variables of the clauses of C such that 𝜌 ̸ |= (𝐸 ′,K). The new counterexamples are added to

the set of counterexamples 𝐸 and we repeat the CEGIS iteration.

We note that the SynthesizeCandSol always terminates, and returns UNSAT only when it finds

the given set of counterexamples semantically unsatisfiable (since a counterexample is a ground

clause, there always exists a candidate solution conforming to a finite and semantically-consistent

set of counterexamples). Also, it only returns candidate solutions that satisfy functionality and

well-foundedness constraints by construction. The termination of ValidateCandSol depends on

the background theory (more precisely, whether the backend SMT solver terminates or not on the

background theory), and we assume that it terminates on theories with decidable satisfiability such

as LIA and NRA. We defer further details of the candidate solution synthesis and candidate solution

validation processes to [Unno et al. 2021]. PCSat is sound and complete, in the following sense.

Theorem 4.2 (Soundness and Completeness of PCSat [Unno et al. 2021]). PCSat((C,K))
returns SAT only if (C,K) is satisfiable, and returns UNSAT only if (C,K) is unsatisfiable.

As remarked before, PCSat is a semi-algorithm and is not guaranteed to always terminate. It

is necessarily so for most background theories including the theory of linear integer arithmetic,

because the satisfiability problem even for CHCs which is a subclass of pfwCSP as remarked before,

is already undecidable for such theories. However, PCSat is relatively complete in the sense that

if a syntactic solution exists and ValidateCandSol terminates on the background theory then it

is guaranteed to eventually converge. We defer the details of relative completeness to Unno et al.

[2021].

5 MODULAR PRIMAL-DUAL SOLVING
We now formally present the main contribution of this paper:MuVal, the novel modular primal-

dual approach to semi-deciding 𝜇CLP validity. Given a 𝜇CLP validity checking problem instance

(𝜙𝑝 ,P𝑝 ), MuVal first constructs its De Morgan dual (𝜙𝑑 ,P𝑑 ) as described in Section 3. Next, both

the primal instance (𝜙𝑝 ,P𝑝 ) and the dual instance (𝜙𝑑 ,P𝑑 ) are each reduced to corresponding
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pfwCSP constraint sets (C𝑝 ,K𝑝 ) and (C𝑑 ,K𝑑 ) by the process described in Section 5.1. Finally,

MuVal solves the two constraint sets in parallel. Each constraint solving process runs the PCSat

constraint solving semi-algorithm of Unno et al. [2021] except that with the modification to infer

partial solutions (cf. Section 5.2) so that whenever a partial solution for some predicate variable

is inferred by one process, a corresponding upper-bound is synthesized and passed to the other

process to reduce their search space. The partial solutions are also used to synthesize lower-bounds

of predicate variables for the process that inferred it. When one of the processes returns satisfiable

(resp. unsatisfiable), we conclude by returning valid (resp. invalid) if it is the primal process that

returned, or invalid (resp. valid) if it is the dual process.

The following subsections describe the details of the sub-processes. Section 5.1 describes the

reduction of 𝜇CLP to pfwCSP and Section 5.2 describes the synthesis and exchange of sound bounds.

Section 5.3 gives a detailed description of the entire MuVal semi-algorithm.

5.1 Reduction of 𝜇CLP to pfwCSP

We now define the reduction of the given 𝜇CLP validity problem (𝜙,P) to a pfwCSP satisfiability

problem (C,K). We assume without loss of generality that predicates 𝑋 ∈ dom(P) occur only
positively in the query 𝜙 : we can always transform the given query into this form by replacing

each negative occurrence of 𝑋 in 𝜙 with ¬𝑋¬ where the predicate 𝑋¬ is defined by the dual ¬P.
Our reduction consists of three steps: The first step, elim∃, Skolemizes positive occurrences

of existential quantifiers and negative occurrences of universal quantifiers by introducing fresh

functional predicate variables. The second step, elim𝜇 , replaces inductive predicates defined by

𝜇-equations with co-inductive predicates defined by 𝜈-equations with guards (i.e., well-foundedness

constraints) for co-recursion added to preserve the semantics. The third step, elim𝜈 , further elimi-

nates co-inductive predicates by replacing them with uninterpreted predicates represented as fresh

predicate variables. The reduction is defined as

red(𝜙,P) ≜ let (𝜙𝜇,P𝜇,K𝜇) = elim∃ (𝜙,P, ∅) in
let (𝜙𝜈 ,P𝜈 ,K𝜈 ) = elim𝜇 (𝜙𝜇,P𝜇,K𝜇) in elim𝜈 (𝜙𝜈 ,P𝜈 ,K𝜈 )

Here, the 𝜇CLP (𝜙𝜇,P𝜇) with free predicate variables K𝜇 is obtained from (𝜙,P) by eliminating

existential quantifiers with fresh functional predicate variables as stated above. The definition of

elim𝜈 (𝜙,P,K) is given as:

elim𝜈 (𝜙, 𝜖,K) ≜ (cnf (𝜙),K)
elim𝜈 (𝜙,P; (𝑋 (𝑥) =𝜈 𝜙

′),K) ≜ (C ∪ cnf (𝑋 (𝑥) ⇒ 𝜙 ′),K ′ ∪
{
𝑋 ↦→ •

}
)

where (C,K ′) = elim𝜈 (𝜙,P,K)

Here, 𝜙 is the formula obtained from 𝜙 by replacing each occurrence of a predicate 𝑋 ∈ dom(P)
with the predicate variable 𝑋 that represents an under-approximation of 𝑋 . cnf (𝜙) converts 𝜙 into

its prenex and conjunctive normal form ∀𝑥 .∧C and returns the set C of clauses. The trickiest part

of the algorithm, namely, elim𝜇 (𝜙,P,K), is defined by:

elim𝜇 (𝜙,P,K) ≜ (𝜙,P,K) where P is =𝜇 free.

elim𝜇 (𝜙,P; (𝑋 (𝑥) =𝜇 𝜙
′); (𝑋𝑖 (𝑥𝑖 ) =𝜈 𝜙𝑖 )𝑚𝑖=1,K) ≜

elim𝜇 (𝜎0 (𝜙), 𝜎0 (P); P ′,K ∪
{
𝑋⇓ ↦→ ⇓

}
) where

P ′ = (𝑋 (𝑥) =𝜈 𝜎𝑋 (𝜙 ′)); (𝑋𝑖 (𝑏𝑖 , 𝑥, 𝑥𝑖 ) =𝜈 𝜎𝑖 (𝜙𝑖 ))𝑚𝑖=1
𝜎0 = {𝑋𝑖 ↦→ 𝜆𝑦.𝑋𝑖 (⊥, �̃�, 𝑦) | 𝑖 = 1, . . . ,𝑚 }
𝜎𝑋 =

{
𝑋 ↦→ 𝜆𝑦.𝑋 (𝑦) ∧ 𝑋⇓ (𝑥,𝑦)

}
∪ {𝑋𝑖 ↦→ 𝜆𝑦.𝑋𝑖 (⊤, 𝑥,𝑦) | 𝑖 = 1, . . . ,𝑚 }

𝜎𝑖 =
{
𝑋 ↦→ 𝜆𝑦.𝑋 (𝑦) ∧ (𝑏𝑖 ⇒ 𝑋⇓ (𝑥,𝑦))

}
∪ {𝑋 𝑗 ↦→ 𝜆𝑦.𝑋 𝑗 (𝑏𝑖 , 𝑥,𝑦) | 𝑗 = 1, . . . ,𝑚 }
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As remarked before, elim𝜇 (𝜙,P,K) is inspired by an analogous reduction done in binary reach-

ability analysis [Cook et al. 2006; Grebenshchikov et al. 2012; Kuwahara et al. 2014] for termination

verification. Next, we describe the main ideas of the reduction. The third argument of elim𝜇 ac-

cumulates generated fresh well-founded predicate variables. The base case of elim𝜇 (𝜙,P,K) just
returns the converted 𝜈-only 𝜇CLP (𝜙,P) with free predicate variablesK . In the recursive step, for

the definition 𝑋 (𝑥) =𝜇 𝜙 ′ of the right-most inductive (i.e., 𝜇) predicate 𝑋 in the input 𝜇CLP, we

generate a fresh well-founded predicate variable 𝑋⇓ and use it as the guard for each co-recursion in

the converted co-inductive definition 𝑋 (𝑥) =𝜈 𝜎𝑋 (𝜙 ′): we use the substitution 𝜎𝑋 to replace each

call 𝑋 (̃𝑡) in the body 𝜙 ′ of 𝑋 with 𝑋 (̃𝑡) ∧ 𝑋⇓ (𝑥, �̃�) that checks that the formal arguments 𝑥 of 𝑋

and the actual arguments �̃� of the co-recursion are related by the well-founded relation represented

by 𝑋⇓.
At the same time, we extend the formal arguments of each co-inductive (i.e., 𝜈) predicate𝑋𝑖 in the

right-hand side of the equation for 𝑋 with arguments 𝑥 of the same sort as the formal arguments of

𝑋 and a Boolean argument 𝑏𝑖 , where we assume that the formal arguments 𝑥𝑖 of 𝑋𝑖 are 𝛼-renamed

to avoid a name conflict between 𝑥𝑖 and 𝑥, 𝑏𝑖 . The extended formal arguments 𝑥 of 𝑋𝑖 are used

to receive the actual arguments previously passed to a call to the inductive predicate 𝑋 and are

related by 𝑋⇓, in the converted definition of 𝑋𝑖 , with the actual arguments passed to each indirect

recursive call to 𝑋 in 𝑋𝑖 . Dummy values are passed as 𝑥 when no such previous call to 𝑋 exists

and the extended Boolean formal argument 𝑏𝑖 of 𝑋𝑖 indicates whether there indeed is such a call

to 𝑋 and its actual arguments are passed as 𝑥 to 𝑋𝑖 (𝑏𝑖 = ⊤) or the dummy values are passed as 𝑥

to 𝑋𝑖 (𝑏𝑖 = ⊥). In fact, we use the substitution 𝜎0 to replace each call 𝑋𝑖 (̃𝑡) in the query 𝜙 and the

definition of the predicates P in the left-hand side of the equation for 𝑋 with 𝑋𝑖 (⊥, �̃�, �̃�) for some

sequence �̃� of dummy values of the same sorts as the formal arguments 𝑥 of 𝑋 . For the definition

𝑋 (𝑥) =𝜇 𝜙
′
, we use the substitution 𝜎𝑋 to replace each call 𝑋𝑖 (̃𝑡) in 𝑋 with 𝑋𝑖 (⊤, 𝑥, �̃�).

Finally, for the definition 𝑋 𝑗 (𝑥 𝑗 ) =𝜈 𝜙 𝑗 of each co-inductive predicate 𝑋 𝑗 in the right-hand side

of the equation for 𝑋 , we use 𝜎 𝑗 to replace each call 𝑋𝑖 (̃𝑡) in 𝑋 𝑗 with 𝑋𝑖 (𝑏 𝑗 , 𝑥, �̃�) and each call 𝑋 (̃𝑡)
with 𝑋 (̃𝑡) ∧ (𝑏 𝑗 ⇒ 𝑋⇓ (𝑥, �̃�)) that checks that if 𝑥 are not dummy (i.e., 𝑏 𝑗 = ⊤), the actual arguments

of a previous call to 𝑋 passed around to 𝑋 𝑗 as its extended formal arguments 𝑥 are related by

𝑋⇓ with the actual arguments �̃� of the indirect recursive call to 𝑋 . In the resulting pfwCSP, the

generated well-founded predicate variables occur only positively.

Example 5.1. Let us consider the 𝜇CLP (𝜙,P𝑋 ; P𝑌 ) where 𝜙 ≜ ∀𝑥 .𝑋 (𝑥) ∧𝑌 (𝑥), P𝑋 ≜ (𝑋 (𝑥) =𝜇

𝑌 (𝑥 − 1)), and P𝑌 ≜ (𝑌 (𝑦) =𝜇 𝑦 ≤ 0∨𝑋 (𝑦 − 1)). We obtain elim∃ (𝜙,P𝑋 ; P𝑌 , ∅) = (𝜙,P𝑋 ; P𝑌 , ∅)
and

elim𝜇 (𝜙,P𝑋 ; P𝑌 , ∅) = elim𝜇 (𝜙,P𝑋 ; (𝑌 (𝑦) =𝜈 𝑦 ≤ 0 ∨ 𝑋 (𝑦 − 1)), ∅) =
(∀𝑥 .𝑋 (𝑥) ∧ 𝑌 (⊥, 0, 𝑥),P,

{
𝑋⇓ ↦→ ⇓

}
) where P =

𝑋 (𝑥) =𝜈 𝑌 (⊤, 𝑥, 𝑥 − 1)); 𝑌 (𝑏, 𝑥,𝑦) =𝜈 𝑦 ≤ 0 ∨ 𝑋 (𝑦 − 1) ∧ (𝑏 ⇒ 𝑋⇓ (𝑥,𝑦 − 1))

Here, in the first step of the transformation, the inductive definition of 𝑌 is simply replaced by the

co-inductive definition because the body of 𝑌 has no recursive call to 𝑌 . The indirect recursive call

to 𝑋 in 𝑌 is properly handled in the second step by adding the formal arguments 𝑏 and 𝑥 to 𝑌 . Note

also that in the call 𝑌 (⊥, 0, 𝑥) in the query, 0 is used as a dummy value for the extended formal

argument 𝑥 of 𝑌 . We thus get the pfwCSP red(𝜙,P) = (C,K) where

C ≜
{
𝑋 (𝑥), 𝑌 (⊥, 0, 𝑥),¬𝑋 (𝑥) ∨ 𝑌 (⊤, 𝑥, 𝑥 − 1),¬𝑌 (𝑏, 𝑥,𝑦) ∨ 𝑦 ≤ 0 ∨ 𝑋 (𝑦 − 1),
¬𝑌 (𝑏, 𝑥,𝑦) ∨ 𝑦 ≤ 0 ∨ ¬𝑏 ∨ 𝑋⇓ (𝑥,𝑦 − 1))

}
K ≜

{
𝑋 ↦→ •, 𝑌 ↦→ •, 𝑋⇓ ↦→ ⇓

}
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The reduction presented here can be optimized removing unnecessary arguments (cf. the supple-

mentary material). The soundness and the completeness of the reduction is stated below (cf. the

supplementary material for proof).

Theorem 5.2 (Soundness and Completeness of the Reduction from 𝜇CLP to pfwCSP).

(𝜙,P) is valid if and only if red(𝜙,P) is satisfiable.

Remark 2. Our reduction generates co-CHCs-style clauses that have only one negatively occurring

ordinary predicate variable. We have adopted this style because it the more natural direction from a

fixpoint logic point of view. Note that one can systematically convert back-and-forth from the co-CHCs

style to the CHCs style (i.e., only one positively occurring ordinary predicate variable in each clause)

by replacing each literal of the form 𝑋 (̃𝑡) with ¬𝑋¬ (̃𝑡) and ¬𝑋 (̃𝑡) with 𝑋¬ (̃𝑡) for 𝑋 ∈ fpv(C), where
𝑋¬ is a fresh predicate variable that represents the negation of the ordinary predicate variable 𝑋 .

5.2 Synthesizing Sound Bounds from Partial Solutions
We now describe how the parallel pfwCSP constraint solving processes synthesize sound lower-

and-upper-bounds from partial solutions to reduce each other’s solution spaces. As described in

Sections 2.2 and 4.1, the pfwCSP solver PCSat generates in each of its CEGIS iteration a candidate

solution to the given pfwCSP instance. In an ordinary CEGIS-based approach, such a candidate

solution, when it is found not to be a genuine solution, is only used to obtain additional counterex-

amples and then forgotten. However, in our novel modular primal-dual approach, we also check

whether the (non-genuine) candidate solution is a partial solution that satisfies some subset of the

clauses. As we discussed in Sections 1 and 2.2, and shall describe in more detail next, such partial

solutions can be used to generate sound lower- and upper- bounds to reduce the solution spaces of

the primal and the dual instances.

We next formalize when a candidate solution is a partial solution. For this, we define some

preliminary notions. In what follows, we assume that for any pfwCSP instance (C,K) and an

ordinary predicate variable 𝑋 of (C,K), there is a unique sequence of variables 𝑥 such that any

clause 𝑋 (𝑦) ⇒ 𝜓 ∈ C satisfies 𝑦 = 𝑥 . Note that any pfwCSP instance generated by our reduction

method described in Section 5.1 can be converted to such a form because each clause has at most

one negatively occurring ordinary predicate variable. Also, for an ordinary predicate variable 𝑋 ,

we define the definition of 𝑋 , denoted by DefsC (𝑋 ), to be the set of formulas {𝜓 | 𝑋 (𝑥) ⇒ 𝜓 ∈ C}.
We omit C and simply write Defs (𝑋 ) when it is clear from the context. We say that a substitution

𝜌 is well-kinded for (C,K) if 𝜌 |= WF (𝑋 ) for all 𝑋 such that K(𝑋 ) = ⇓, and 𝜌 |= FN (𝑋 ) for all 𝑋
such that K(𝑋 ) = 𝜆. We write fpvord (𝜙) for the set of free ordinary predicate variables of 𝜙 (we

assume that K is clear from the context). We extend the notation sets of clauses in the obvious

way: fpvord (C) = ⋃
𝜙 ∈C fpvord (𝜙). We are now ready to formally define partial solutions.

Definition 5.3 (Partial Solution). For a candidate solution 𝜌 for a pfwCSP instance (C,K) and an

ordinary predicate variable 𝑋 ∈ fpvord (C), the property that 𝜌 is a partial solution for 𝑋 , written

𝜌 ▷(C,K) 𝑋 , is defined co-inductively as the largest relation satisfying the following condition:

𝜌 ▷(C,K) 𝑋 iff (1) 𝜌 is well-kinded and (2) there exists a set of ordinary predicate variables 𝑆 ⊆
fpvord (𝜑) where 𝜑 =

∧
DefsC (𝑋 ) such that

(2a) |= 𝜌 (𝑋 ) (𝑥) ⇒ 𝜌𝑆 (𝜑) where 𝜌𝑆 = {𝑌 ↦→ LB(𝑌 ) | 𝑌 ∈ 𝑆} ∪ {𝑌 ↦→ 𝜌 (𝑌 ) | 𝑌 ∉ 𝑆}, and
(2b) for each 𝑌 ∈ fpvord (𝜑) \ 𝑆 , 𝜌 ▷(C,K) 𝑌 .

Here, LB(𝑌 ) is a lower-bound of the ordinary predicate variable 𝑌 that is initialized to be ⊥ and

soundly updated during the constraint solving process as we shall describe in Section 5.3. As we shall

show in Example 5.6, roughly, using a non-empty 𝑆 soundly cuts dependencies among predicate
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Algorithm 2 PartialSolCheck

1: function PartialSolCheck((𝜌, (C,K)))
2: for each 𝑋 ∈ fpvord (C) do
3: let 𝜑 =

∧
DefsC (𝑋 ) in

4: SAT2a(𝑋 ) ← {𝑆 | 𝑆 ⊆ fpvord (𝜑) ∧ 𝑆 satisfies condition (2a)}
5: end for
6: NotPsol← ∅
7: repeat
8: 𝑇 ← NotPsol

9: for each 𝑋 ∈ fpvord (C) \ NotPsol do
10: let 𝜑 =

∧
DefsC (𝑋 ) in

11: if ∀𝑆 ∈ SAT2a(𝑋 ).(fpvord (𝜑) \ 𝑆) ∩ NotPsol ≠ ∅ then
12: NotPsol← NotPsol ∪ {𝑋 }
13: end if
14: end for
15: until 𝑇 = NotPsol

16: return fpvord (C) \ NotPsol
17: end function

variable definitions by under-approximating some predicate variables by concrete predicates that

denote their lower-bounds.

A partial solution for a predicate variable is generally not an actual solution of the given pfwCSP

because it needs not to satisfy clauses besides (under-approximations of) the ones that define that

predicate variable. Namely, it need not to satisfy any goal clause which is (typically a unique) clause

with no negative occurrence of ordinary predicate variables (e.g., 𝑥2 > 2 ∨ I (𝑥1, 𝑥2) in Cterm from

Section 2.2). However, a partial solution for a predicate variable is guaranteed to under-approximate

the least (resp. greatest) fixpoint of the corresponding inductive (resp. co-inductive) predicate,

provided that LB also under-approximates the corresponding predicates in the same sense. We

state this property formally as the theorem below, which follows from the proof of Theorem 5.2.

Theorem 5.4. Suppose that (C,K) is reduced from a 𝜇CLP validity problem instance (𝜙,P), for
each𝑌 ∈ fpvord (C), |= LB(𝑌 ) ⇒ [[P]] (∅)(𝑌 ) (𝑥) where𝑌 is the predicate variable inP corresponding

to 𝑌 , and 𝜌 is a partial solution for 𝑋 ∈ fpvord (C). Then, |= 𝜌 (𝑋 ) (𝑥) ⇒ [[P]] (∅)(𝑋 ) (𝑥) where 𝑋 is

the predicate variable in (𝜙,P) corresponding to 𝑋 .

Next, we describe an algorithm, PartialSolCheck, that computes, given a candidate solution 𝜌 ,

the set of ordinary predicate variables for which 𝜌 is a partial solution. We assume that condition (1),

that is, well-kindedness of 𝜌 , is satisfied10. The pseudo-code of the algorithm is given in Algorithm 2.

Roughly, PartialSolCheck works by inductively marking ordinary predicate variables for

which 𝜌 is not a partial solution. More formally, the algorithm takes a partial solution 𝜌 along with

a pfwCSP instance (C,K) as input. It then builds the table SAT2a which stores for each ordinary

predicate variable 𝑋 , the set of sets of ordinary predicate variables that appear in the definition of 𝑋

such that if fpvord (∧DefsC (𝑋 )) \𝑆 contains a predicate variable for which 𝜌 is not a partial solution

for every set of predicate variables 𝑆 in the set, then 𝜌 also cannot be a partial solution for 𝑋 . More

concretely, as shown in line 4, SAT2a(𝑋 ) is created by checking for each set of ordinary predicate

variables 𝑆 ⊆ fpvord (𝜑) whether 𝑆 satisfies condition (2a) mentioned above and letting such 𝑆 be

10
This is ensured by construction for candidate solutions synthesized in PCSat (cf. Unno et al. [2021]).
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a member of SAT2a(𝑋 )11. Next, the algorithm initializes NotPsol to the empty set (line 6). NotPsol

is used to store the set of ordinary predicate variables for which 𝜌 is currently known not to be a

partial solution. Then, the algorithm repeats the loop of lines 7–15 until no new predicate variables

for which 𝜌 is not a partial solution are discovered. Each iteration of the loop checks for each

ordinary predicate variable 𝑋 ∉ NotPsol, whether it should be put into NotPsol based on the table

SAT2a and the current NotPsol. Finally, the algorithm returns the set of ordinary predicate variables

that do not belong to NotPsol (line 16). It is easy to see that the algorithm works as intended, that is,

PartialSolCheck(𝜌, (C,K)) returns the set of predicate variables {𝑋 ∈ fpvord (C) | 𝜌 ▷(C,K) 𝑋 }.
From Theorem 5.4, it follows that if 𝜌 is a partial solution for a predicate variable 𝑋 in the

pfwCSP obtained from the primal (resp. dual) 𝜇CLP and 𝑋 is the (co-)inductive predicate in the

𝜇CLP corresponding to 𝑋 , then the complement of 𝜌 (𝑋 ) is an upper-bound of the (co-)inductive

predicate 𝑋¬ in the dual (resp. primal) 𝜇CLP. Therefore, adding the clause 𝑋¬ (𝑥) ⇒ ¬𝜌 (𝑋 ) (𝑥)
to the pfwCSP reduced from the dual (resp. primal) 𝜇CLP where 𝑋¬ is the predicate variable

corresponding to 𝑋¬ does not rule out any actual solution of the dual (resp. primal) pfwCSP

because 𝑋¬ represents an under-approximation of 𝑋¬. However, the addition of such a clause

can hasten the convergence of the constraint solving process as it (conservatively) reduces the

space of possible solutions. An analogy can be made to how clause-learning DPLL SAT solvers

conservatively reduce the solution space by asserting learned clauses.

Example 5.5. Recall Cterm from Section 2.2. DefsCterm (J) = {¬(𝑥2 ≠ 3) ∨ J (𝑥2 + 1) ∧ J⇓ (𝑥2, 𝑥2 + 1)}.
Then, for 𝑆 = ∅ ⊆ fpvord (∧DefsCterm (J)) = {J}, we have that |= 𝜌 (J) (𝑥2) ⇒ 𝜌𝑆 (¬(𝑥2 ≠ 3) ∨
J (𝑥2 + 1) ∧ J⇓ (𝑥2, 𝑥2 + 1)) for any substitution 𝜌 that satisfies clause (3) (note that 𝜌𝑆 = 𝜌 when

𝑆 = ∅). Therefore, any such substitution that is well-kinded is a partial solution for J . For example,

𝜌𝑡 = {J ↦→ 𝜆𝑥2.𝑥2 = 3, J⇓ ↦→ 𝜆𝑥2, 𝑥
′
2
.𝜑} where 𝜆𝑥2, 𝑥 ′2 .𝜑 describes any well-founded relation over

integers is a partial solution for J . Note that, in this case, it suffices to let 𝑆 = ∅. The next example

shows a case where a non-empty 𝑆 is useful.

Example 5.6. Let C consist of the clauses below over ordinary predicate variables 𝑋1, 𝑋2, 𝑌1, 𝑌2
and a functional predicate variable 𝐹 :

(a) 𝑋1 (𝑥,𝑦) ⇒ 𝑋2 (𝑥,𝑦 + 1) (d) 𝑌1 (𝑥,𝑦) ⇒ 𝑥 > 100 ∨ 𝑌1 (𝑥 + 1, 𝑦)
(b) 𝑋2 (𝑥,𝑦) ⇒ 𝑥 = 0 ∨ 𝑌1 (𝑥,𝑦) (e) 𝑌2 (𝑥,𝑦) ⇒ ¬𝐹 (𝑥,𝑦, 𝑧) ∨ 𝑧 > 0

(c) 𝑋2 (𝑥,𝑦) ⇒ 𝑥 ≠ 0 ∨ 𝑌2 (𝑥,𝑦) (f) 𝑌2 (𝑥,𝑦) ⇒ ¬𝐹 (𝑥,𝑦, 𝑧) ∨ 𝑋1 (𝑥 − 𝑧,𝑦)
Let 𝜌 be a substitution such that 𝜌 (𝑍 ) = 𝜆𝑥 .𝑥 > 0 for each 𝑍 ∈ {𝑋1, 𝑋2, 𝑌1, 𝑌2} . We show that 𝜌 is

a partial solution for 𝑋2 and 𝑌1 with LB(𝑌2) = ⊥ (assuming that 𝜌 (𝐹 ) describes some total function

from pairs of integers to integers). First, 𝜌 is a partial solution for 𝑌1 because it directly satisfies

clause (d) that defines it and only 𝑌1 itself appears in the definition. Secondly, with 𝑆 = {𝑌2} ⊆
{𝑌1, 𝑌2} = fpvord (∧DefsC (𝑋2)), we have that 𝜌𝑆 (

∧
DefsC (𝑋2)) = (𝑥 = 0 ∨ 𝜌 (𝑌1) (𝑥,𝑦)) ∧ (𝑥 ≠

0∨LB(𝑌2) (𝑥,𝑦))) = 𝑥 > 0. Therefore condition (2a) for𝑋2 is satisfied with that 𝑆 . Then, because 𝜌 is

a partial solution for 𝑌1 as described above, condition (2b) is also satisfied with the 𝑆 for 𝑋2. Thus, 𝜌

is also a partial solution for𝑋2. Note that 𝜌 cannot be a partial solution for𝑋2 if 𝑆 in Definition 5.3 is

restricted to be the empty set because 𝜌 does not satisfy clauses (e) and (f) that define 𝑌2 (regardless

of what 𝜌 (𝐹 ) is), which would be needed if 𝑌2 in clause (c) was not under-approximated by its

concrete lower-bound LB(𝑌2) in 𝜌𝑆 (
∧

DefsC (𝑋2)). Here, using the non-empty 𝑆 cut the dependency

on 𝑌2 (and 𝑋1) from the definition of 𝑋2.

Remark 3. To compute the table SAT2a, for each ordinary predicate variable 𝑋 ∈ fpvord (C),
PartialSolCheck checks condition (2a) for each 𝑆 ⊆ fpvord (𝜑) where 𝜑 =

∧
DefsC (𝑋 ). As checking

11
As remarked in Remark 3, SAT2a can be optimized to only include maximal sets of ordinary predicate variables.
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Fig. 2. Overview of MuVal, the modular primal-dual 𝜇CLP validity solver

(2a) incurs a call to an SMT solver to decide |= 𝜌 (𝑋 ) (𝑥) ⇒ 𝜌𝑆 (𝜑), the computation of SAT2a(𝑋 )
makes a number of SMT calls exponential in |fpvord (𝜑) | and can be a performance bottleneck, The

cost can be alleviated by exploiting the observation that SAT2a(𝑋 ) only needs to contain “maximal”

sets of predicate variables. That is, it suffices to restrict SAT2a(𝑋 ) to contain 𝑆 ⊆ fpvord (𝜑) such that

𝑆 satisfies condition (2a) and there is no 𝑆 ⊂ 𝑆 ′ ⊆ fpvord (𝜑) with 𝑆 ′ satisfying condition (2a). Such

maximal sets can be efficiently computed by a greedy algorithm that starts from S = {fpvord (𝜑)},
checks if all sets in S satisfies condition (2a) and if so lets SAT2a(𝑋 ) ← S and otherwise replaces the

sets in S that do not satisfy the condition with sets obtained by removing one predicate variable from

each such set, and repeat the process until we reach S whose elements all satisfy condition (2a).

5.3 A Detailed Description of the Modular Primal-Dual Semi-Algorithm
We now formalizeMuVal, the modular primal-dual semi-algorithm for semi-deciding 𝜇CLP validity.

Figure 2 shows the overview of the semi-algorithm. Given an input 𝜇CLP validity problem instance

(𝜙,P), MuVal makes its dual instance ¬(𝜙,P) (depicted by the box Dualize in Figure 2), and

reduces both the primal (i.e. input) and the dual instances to pfwCSP constraint sets (C𝑝 ,K𝑝 ) and
(C𝑑 ,K𝑑 ) via the method presented in Section 5.1, respectively (depicted by the boxes ToPfwCSP).

Then, the primal and the dual constraint sets are sent to the primal solver and the dual solver,

respectively. The two solvers are symmetric and run in parallel while exchanging sound upper-

bounds synthesized from partial solutions. Each solver uses a modified version of PCSat as a

sub-process, obtained by adding the following lines before line 12 in Algorithm 1:

i : 𝑆 ← PartialSolCheck(𝜌, (C,K))
ii : send ({𝑋¬ (𝑥) ⇒ ¬𝜌 (𝑋 ) (𝑥) | 𝑋 ∈ 𝑆})
iii : for each 𝑋 ∈ 𝑆 do LB(𝑋 ) ← LB(𝑋 ) ∨ 𝜌 (𝑋 ) (𝑥) endfor
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Additionally, the modified PCSat adds the line iv : C ← recv() ∪ C somewhere in the CEGIS

loop (lines 3–17) of Algorithm 1. Here, send (C′) sends the set of clauses C′ to the other solver

process, and recv() returns the set of clauses it received. The communication is non-blocking and

buffered so that recv() returns the union of the sets of clauses that have been received since the last

time it was called. With the modification, PCSat, whenever it finds the given candidate solution

𝜌 to be non-genuine, computes the set of predicate variables 𝑆 for which 𝜌 is a partial solution

by calling the PartialSolCheck sub-routine (line i, and depicted by the arrows labeled C. Sol.

in Figure 2). Then, it communicates the learned information to the other process by sending the

clauses {𝑋¬ (𝑥) ⇒ ¬𝜌 (𝑋 ) (𝑥) | 𝑋 ∈ 𝑆} (line ii, and depicted by the arrows labeledUB). As explained
in Section 5.2, the clauses stipulate sound upper-bounds for the predicate variables of the other

process. Finally, it updates the lower-bound information LB by disjuncting LB(𝑋 ) with 𝜌 (𝑋 ) (𝑥)
for each 𝑋 ∈ 𝑆 (line iii). As explained in Section 5.2, LB is used by PartialSolCheck.

MuVal terminates by returning Valid if either the PCSat sub-process of the primal solver returns

SAT or that of the dual solver returns UNSAT, and terminates by returning Invalid if either the

PCSat sub-process of the primal solver returns UNSAT or that of the dual solver returns SAT.

The soundness and the completeness of MuVal immediately follows from the soundness and

completeness of the reduction from 𝜇CLP validity to pfwCSP satisfiability (Theorem 5.2), the

soundness and completeness of PCSat (Theorem 4.2), and Theorem 5.4.

Theorem 5.7 (Soundness and Completness of MuVal). MuVal returns Valid only if the given

𝜇CLP validity problem instance is valid and returns Invalid only if it is invalid.

Example 5.8. Recall Cterm and its partial solution 𝜌𝑡 from Example 5.5 and Section 2.2. As ex-

plained there, 𝜌𝑡 is a partial solution for J . Additionally, J is the predicate in the input 𝜇CLP Pterm
corresponding to J ,NJ is the dual predicate of J in the dual 𝜇CLPPnterm, andNJ is the predicate vari-
able in the pfwCSP Cnterm reduced from Pnterm corresponding to NJ . Thus, ¬𝜌𝑡 (J) (𝑥2) = ¬(𝑥2 ≠ 3)
is asserted as a sound upper-bound of NJ (𝑥2) by adding the clause 𝑁 𝐽 (𝑥2) ⇒ ¬(𝑥2 = 3) to the

pfwCSP constraint set of the dual process. Likewise, 𝜌𝑡 (J) = 𝑥2 ≠ 3 is a sound lower-bound of J ,

and is used to update LB by LB(J) ← 𝑥2 ≠ 3 ∨ LB(J).
As remarked in Section 2.2, used with a modular encoding of a verification problem, our primal-

dual solving method is able to synthesize information about individual program or specification

sub-component of the given program or specification. Namely, in this example, J and NJ represents

the terminating and non-terminating behavior of the inner loop of the program, respectively.

Correspondingly, the bounds synthesized for them give information about the states from which

the loop diverges and terminates, and therefore can be culled from the solution spaces of the dual

process and the primal process, respectively.

Remark 4. While we use partial solutions synthesized by one side to reduce the solution space

of the other side, one may wonder if they can also be used to reduce the solution space of the same

side. That is, since a partial solution 𝜌 (𝑋 ) represents a lower-bound for the (co-)inductive predicate
𝑋 corresponding to 𝑋 , one may consider restricting the solution space of the same side by asserting

the clause 𝜌 (𝑋 ) (𝑥) ⇒ 𝑋 (𝑥). The clause asserts that any solution for 𝑋 is lower-bounded by 𝜌 (𝑋 ).
While this does not rule out the actual semantic fixpoint of 𝑋 from the solution space, it may rule out

sound syntactic solutions and can adversely affect the performance of the semi-algorithm. Namely, a

solution for 𝑋 need not be the actual fixpoint of 𝑋 but only needs to be its under-approximation that is

sufficient to satisfy the given set of clauses.

Remark 5. As remarked before, PCSat synthesizes a candidate solution by finding a solution

that is consistent with the current set of counterexamples, which are ground clauses obtained by

instantiating the term variables of the clauses in the given pfwCSP. While havingmore counterexamples
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Fig. 3. Comparison with AProVE andMu2CHC on termination/non-termination benchmarks.

make the candidate solution more likely to be an actual solution, it can preclude synthesis of useful

partial solutions, especially in the unsatisfiable side because there is no actual solution there. To

this end, MuVal implements a heuristic where partial solutions consistent with only some subsets of

the counterexamples are synthesized. Specifically, in each iteration, MuVal synthesizes two kinds of

substitutions as candidates for partial solutions: those consistent with (1) all counterexamples, and

(2) for each ordinary predicate variable 𝑋 , only the counterexamples obtained by instantiating the

clauses that (transitively) define 𝑋 and some additional clauses of the form 𝑋 (̃𝑡) where 𝑋 (̃𝑡) appears
positively in a counterexample.

6 IMPLEMENTATION AND EVALUATION
We present the evaluation with MuVal. MuVal is implemented in Multicore OCaml and supports

the combined theory of Booleans, integer and rational arithmetic, and algebraic data types. We

report on two experimental evaluation. The supplementary material contains the benchmark set.

(Non-)Termination Verification. We experimented with MuVal on the 335 (non-)termination

verification problems from Termination Competition 2021 (C Integer track). For these benchmarks,

we encode the problems by first translating the given C program to a labeled transition system

(LTS) in T2 format [Brockschmidt et al. 2016] using Clang and llvm2KITTeL [Falke et al. 2011] and

systematically encoding the termination verification problem for LTSs as 𝜇CLP validity checking

problems following the encoding approach described in Section 3.3 (by restricting the temporal

property to termination/non-termination). We compared MuVal with the state-of-the-art (non-

)termination verification tools AProVE [Giesl et al. 2017], iRankFinder [Ben-Amram and Genaim

2014], UltimateAutomizer [Heizmann et al. 2014], and Mu2CHC [Kobayashi et al. 2019].

Mu2CHC is a tool for semi-deciding the validity problem forMu-Arithmetic, which is an instance

of 𝜇CLP with integer arithmetic as the background theory. Mu2CHC is based on an incomplete

reduction to CHCs and embarrassingly parallel solving of primal and dual problems (cf. Section 7

for more detail). For an ablation study, we ran MuVal with four configurations: primal (resp.
dual) only solves the primal (resp. dual) 𝜇CLP, parallel solves primal and dual problems in

an embarrassingly parallel manner without exchanging sound upper-bounds, and parallel/exc
further enables the exchange of sound upper-bounds. The experiments were conducted on StarExec

(CentOS Linux release 7.7.1908, Intel(R) Xeon(R) CPU E5-2609 @ 2.40GHz with 27 GiB RAM) with

1,200 seconds time limit.
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Fig. 4. Cactus Plot for Termination Ver-

ification.

The cactus plot shown in Figure 4 plots the number of

solved instances (x-axis) against the time taken to solve

the instances (y-axis), non-cumulatively, for the above tools.

MuVal’s parallel/exc solved 210 terminating + 108 non-

terminating instances while parallel solved 211 + 108, pri-
mal solved 211 + 61, and dual solved 8 + 107.AProVE solved

216 terminating + 100 non-terminating instances, iRank-

Finder solved 208 + 93, UltimateAutomizer solved 200 +

99, andMu2CHC solved 145 + 105. One problem instance was

incorrectly reported non-terminating by iRankFinder. Note

that parallel (and parallel/exc) solved a similar number of

instances as AProVE, the winner of the C Integer track of

the competition in 2018, 2020, and 2021. The left-most scatter

plot in Figure 3 compares them in detail. The scatter plot is in

log-scale. Here the color of dots indicates terminating (blue)

and non-terminating (red) instances. We can see an advantage of parallel over AProVE with

respect to the elapsed time.

Note also that parallel significantly outperformsMu2CHC with respect to the number of solved

instances. As for the elapsed time, Mu2CHC often solved easy instances faster than parallel as
shown in the middle plot of Figure 3. This is partly because Mu2CHC uses SPACER [Komuravelli

et al. 2016] as the backend CHCs solver. SPACER, being a highly-tuned mature tool, is often

substantially faster than PCSat thatMuVal uses as the backend pfwCSP solver (on CHCs subset of

pfwCSP). The right-most plot of Figure 3 compares the configurations parallel and parallel/exc.
There, we cannot observe the advantage of parallel/exc over parallel. This is partly because the

encoded 𝜇CLP problems here tend to contain a small number of predicates with low modularity

which suppressed the exchange of learned upper-bounds.

Temporal Verification. We also experimentedwithMuVal on 202 𝜇CLP validity checking problems

that encode a diverse collection of temporal verification problems: (1) 41 LTL verification problems

from Dietsch et al. [2015], (2) 61 small and 56 industrial CTL verification problems from Cook

and Koskinen [2013], (3) 28Mu-Arithmetic problems from Kobayashi et al. [2019] encoding some

properties of integer arithmetic (Problems 1–6), linear-time temporal properties of first-order

functional programs (Problems 7–22), branching-time temporal properties (some only expressible

in CTL* or modal-𝜇) of imperative programs (Problems 23–28), and (4) 16 termination verification

problems of FuncTion [Urban 2013; Urban and Miné 2014]. For (1) and (2), we automatically

generated 𝜇CLP from the target C code using the reduction method in Kobayashi et al. [2019] where

we used LTL3BA [Babiak et al. 2012] to translate the given LTL formula into a Büchi automaton.

For (4), we applied encoding approach described in Section 3.2 (manually, at the time of writing) to

translate the problems to 𝜇CLP validity problems.

On the entire benchmark set (i.e., (1)-(4)), we compared with Mu2CHC which, to our knowledge,

is the only tool besides ourMuVal that can handle all those classes of benchmarks. On the class

(1) of LTL benchmarks, we comparedMuVal with the state-of-the-art LTL verifier UltimateLT-

LAutomizer [Dietsch et al. 2015]. The experiments were conducted on Amazon Linux 2, Intel(R)

Xeon(R) Platinum 8259CL CPU @ 2.50GHz CPU and 32 GiB RAM with 600 seconds time limit.

The cactus plot shown in Figure 5 compares the 4 configurations of MuVal with Mu2CHC.

MuVal’s parallel/exc solved 102 VALID + 92 INVALID instances while parallel solved 98 + 90,

primal solved 99 + 62, dual solved 41 + 86, and Mu2CHC solved 86 + 87. Note that parallel (and
parallel/exc) significantly outperforms Mu2CHC: Mu2CHC failed to solve 23 instances that were
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Fig. 6. Comparison withMu2CHC on temporal verification benchmarks.

solved by MuVal and require synthesis of predicates with a complex shape and large coefficients

(e.g., piecewise-defined and/or lexicographic affine ranking functions). This shows a limitation of
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Fig. 5. Cactus Plot for Temporal Verifi-

cation.

Mu2CHC that relies on an incomplete reduction, separately

synthesizes ranking functions and inductive invariants, and

cannot quickly feedback a failure of invariant synthesis to

ranking function synthesis and vice versa.

Note also that parallel/exc further improves parallel:
parallel/exc solved 4 hard instances that were not solved

with parallel by exchanging sound upper-bounds
12
. The

scatter plots comparing Mu2CHC, parallel and paral-
lel/exc are shown in Figure 6.

Finally, we compare MuVal with UltimateLTLAu-

tomizer on the 41 LTL verification problems.MuVal par-
allel/exc solved 18 VALID + 18 INVALID instances while

MuVal parallel solved 16 + 16, MuVal primal solved 16 +

11,MuVal dual solved 4 + 13, and UltimateLTLAutomizer

solved 20 + 15. MuVal parallel/exc solved 4 instances that

were not solved by UltimateLTLAutomizer. Among the

instances, MuVal even discovered that the LTL benchmark files contained incorrect classifications,

claiming “safe” when they actually are not. On the other hand,MuVal failed to solve 3 instances

that were solved by UltimateLTLAutomizer. A reason is that the instances are relatively large

and the constraint preprocessor in the backend solver PCSat is not efficient to handle them.

7 RELATEDWORK
Our 𝜇CLP is a first-order fixpoint logic with background theories. As remarked before, 𝜇CLP can

be seen as constraint logic programming (CLP) but extended with arbitrarily nested (co-)inductive

predicate definitions and quantifiers. CLP has been extensively studied (see, e.g., Jaffar and Maher

[1994]). It is well known that the validity problem of CLP and the satisfiability problem of CHCs are

inter-reducible. When the background theory is that of integer arithmetic, by the results of Tsukada

12
Valid instances sas2010_mod_3 (the running example program from Section 2) and 05-toylinarith2.c are re-

spectively solved by exchanging 7 ⇌ 16 and 60 ⇌ 68 bounds (primal ⇌ dual). Invalid instances

coolant_basis_4_1_unsafe_sftyliveness and coolant_basis_4_2_unsafe_sftyliveness are solved by 0 ⇌ 12 and

0⇌ 13 bounds.
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[2020], CHCs is Π0

1
-complete (in the analytical hierarchy) but 𝜇CLP ∉ Π0

1
, which imply that 𝜇CLP is

strictly more expressive than CLP or CHCs and so there is no sound and complete reduction from

𝜇CLP to CHCs. Unno et al. [2021] introduced pfwCSP as an extension of CHCs. The sound and

complete reduction from 𝜇CLP to pfwCSP in this paper shows that pfwCSP is at least as expressive

as 𝜇CLP and therefore strictly more expressive than CHCs. In fact, it can be shown that 𝜇CLP is

in Δ1

2
while pfwCSP is Σ1

2
-complete. It is an open problem whether there is a class of predicate

constraint satisfaction problems that is computationally equivalent to 𝜇CLP. 𝜇CLP is also related to

the Horn 𝜇-calculus of Charatonik et al. [1998] which is an extension of ordinary (i.e., not constraint)

logic programming by arbitrarily nested (co-)inductive predicate definitions. That is, 𝜇CLP can be

seen as an extension of the Horn 𝜇-calculus with constraints and quantifiers.

Unno et al. [2021] introduced pfwCSP for the purpose of verifying relational properties of

infinite state programs. They also presented the PCSat semi-algorithm for soundly-and-relatively-

completely solving pfwCSP that we also use within our MuVal (but with modifications for our

novel primal-dual solving method). Their approach directly uses pfwCSP to encode the verification

problems and is different from our approach that uses 𝜇CLP to encode verification problems and

translate them to pfwCSP via our novel reduction. An advantage of our approach is that going

through 𝜇CLP allows modular encoding of verification problems in which program components

are expressed by separate (co-)inductive predicates whose modularity is preserved by our reduction.

Another important advantage of our approach is that, thanks to the fact that a 𝜇CLP instance can be

complemented by the standard De Morgan complement, it enables the novel primal-dual constraint

solving method that solves the pfwCSPs reduced from the given 𝜇CLP and its dual in parallel while

exchanging bounds to reduce each others’ solution spaces. By contrast, the approach of Unno et al.

[2021] is neither modular nor primal-dual. However, by using pfwCSP directly, Unno et al. [2021]

is able to verify difficult relational properties including 𝑘-safety properties requiring semantic

schedulers and hyperliveness properties such as co-termination and generalized non-interference.

We leave for future work to investigate whether the ideas of this paper can be adopted to verification

of such relational properties.

There has been much work on temporal property verification of infinite state programs. These

include approaches for termination [Ben-Amram and Genaim 2014; Cook et al. 2006; Fedyukovich

et al. 2018; Giesl et al. 2017; Heizmann et al. 2014; Kura et al. 2021; Urban 2013; Urban et al. 2016;

Urban and Miné 2014], non-termination [Chen et al. 2014; Cook et al. 2014; Gupta et al. 2008],

LTL [Cook and Koskinen 2011; Dietsch et al. 2015], ∀CTL [Cook et al. 2011], CTL [Beyene et al. 2013;
Cook and Koskinen 2013; Urban et al. 2018], fair CTL [Cook et al. 2015a; Tellez and Brotherston

2020], and CTL
∗
[Cook et al. 2015b, 2017]. However, few support the full class of modal 𝜇 calculus

properties. A notable exception is Kobayashi et al. [2019] that presents a method called Mu2CHC.

Mu2CHC modularly encodes modal 𝜇 model checking of infinite state programs to the problem

of deciding the validity of Mu-Arithmetic [Bradfield 1999; Lubarsky 1993] which is a first-order

fixpoint logic with the integer arithmetic as the background theory. We also use the same encoding

to verify modal 𝜇 calculus properties. However, Mu2CHC works by soundly-but-incompletely

reducing the validity checking problem to (ordinary) CHCs which are then solved by an off-the-

shelf CHCs solver. By contrast, our MuVal soundly and completely reduces the problem to the

extended class of pfwCSP. As a consequence of the incomplete reduction,Mu2CHC cannot conclude

anything when the given set of constraints is found unsatisfiable, whereas our complete reduction

allowsMuVal to conclude invalidity (resp. validity) of the given 𝜇CLP instance when the primal

(resp. dual) pfwCSP is found unsatisfiable. Additionally, while Mu2CHC also solves the primal

and the dual problems in parallel, it simply runs the two processes in an embarrassingly parallel

manner without exchanging information. By contrast, our novel modular primal-dual method
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allows the parallel constraint solving processes to mutually improve each other by synthesizing

and exchanging sound bounds to reduce each others’ solution spaces.

The duality of verification and refutation has been observed and exploited in many prior works.

For example, IC3/PDR [Bradley 2011] is a method for safety property verification in which the

search for an inductive invariant (called frames in that approach) is guided by the search for

states that reach an error state. Recent works further investigate related forms of duality in safety

verification such as that casted as a backtracking interpreter for CLP [McMillan 2014] and that

between state space exploration and bounded-width induction [Padon et al. 2022]. Perhaps more

commonly, the duality is also implicit in the classic CEGAR (counterexample-guided abstraction

refinement) [Ball and Rajamani 2002; Clarke et al. 2000; Henzinger et al. 2004] and CEGIS based

approaches in which the search for a counterexample and that for a proof mutually guide each other.

In that sense, the CEGIS-based solver PCSat [Unno et al. 2021] thatMuVal uses as a sub-process

can also been considered as a primal-dual approach, and therefore,MuVal can be considered to

possess two levels of duality: the inner one inside of PCSat and the outer one in which the two

primal and dual PCSat processes execute in parallel while exchanging learned upper-bounds. A key

difference of our MuVal’s (outer) duality from those in prior approaches is that it is formulated as

the standard De Morgan duality of a first-order fixpoint logic. Thanks to the generality of the logic

and De Morgan duality, our approach extends the benefit of duality to many classes of verification

problems, including those beyond safety.

Another difference from many of the prior primal-dual approaches is that ours can exploit

modularity by modularly encoding verification problems in the first-order fixpoint logic. That is, as

we have shown, the logic allows can encode verification problems in which individual program

and property components are expressed as different (but possibly nested) (co-)inductive predicates,

all of which will be subject to the under- and over-approximation of our primal-dual method. In

this respect, the primal-dual approaches of Godefroid et al. [2010] and Le et al. [2015] are also

modular, however, are specialized to (non-)safety verification and (non-)termination verification,

respectively
13
. By contrast, our MuVal supports a wide range of temporal properties which is due

in no small part to the generality of the first-order fixpoint logic 𝜇CLP that underlies our approach.

8 CONCLUSION
We have presented a novel modular primal-dual approach to automatically checking validity of

a formula in a first-order logic with background theories and arbitrarily nested inductive and

co-inductive predicate definitions. Our approach utilizes a novel reduction to the satisfiability of a

recently proposed class pfwCSP of predicate constraint satisfaction problems, and further extends

the existing constraint solving method by solving both the primal and the dual pfwCSP satisfaction

problems that are obtained from the given and its dual validity problems. Our method solves the two

problems in parallel while exchanging sound bounds synthesized from partial solutions to reduce

each others’ solution spaces. We have implemented the approach in the tool MuVal and obtained

promising experimental results on diverse benchmark sets of temporal verification problems.
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