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Abstract
We propose a novel type inference algorithm for a dependently-
typed functional language. The novel features of our algorithm
are: (i) it can iteratively refine dependent types with interpolants
until the type inference succeeds or the program is found to be ill-
typed, and (ii) in the latter case, it can generate a kind of counter-
example as an explanation of why the program is ill-typed. We have
implemented a prototype type inference system and tested it for
several programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Reliability, Verification

Keywords Dependent Types, Type Inference

1. Introduction
Dependently-typed functional languages such as Cayenne [2], De-
pendent ML (DML) [29], and Epigram [1] can express and check
detailed program specifications statically, including absence of ar-
ray bounds and pattern match errors. Compared to other program
verification techniques such as model checking [3, 10, 17, 23] and
abstract interpretation [11], the dependently-typed languages have
an advantage that they can deal with advanced programming fea-
tures such as higher-order functions, polymorphic functions, and
recursively defined data structures. Explicit type annotations are,
however, usually required. Although there are a few recent pro-
posals for automated type inference, there are still a number of
limitations in applying them to practice; for example, for Liquid
Types [25], the predicates used in dependent types must be sup-
plied as hints for type inference, and even a typable program is
rejected if the given predicates are insufficient.

In this paper, we present a novel technique of automated type
inference for a dependently-typed functional language, which is
essentially an “implicitly-typed” version of DML [29]. The lan-
guage supports ML features such as higher-order functions, poly-
morphic functions, and recursively defined data structures. Note
that as in DML, dependent types in our language are used in a more
restricted manner than in other dependently-typed languages like
Cayenne [2], Epigram [1], Coq [4], etc.: The most important re-
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striction is that types can depend on base values but not on function
values. Our type inference algorithm can iteratively refine depen-
dent types by automatically discovering necessary predicates for
verification with an interpolating prover [5, 16, 22] until the type in-
ference succeeds or the program is found to be ill-typed; and in the
latter case, it can generate a kind of counter-example as a witness
of the ill-typedness of the program, which helps users to locate and
fix bugs. Intuitively, a counter-example of a program is a sufficient
condition for the program to be ill-typed. For example, for the pro-
gram if x > 0 then fail else 1, x > 0 is a counter-example.
For a subset of our language for which the type system is complete,
the counter-example can also be understood as a sufficient condi-
tion for the program to fail at run-time.

In our dependent type system, the typability of a program can be
reduced to the satisfiability of a constraint on predicate variables.1

For example, let us consider the program:

let inc x = x + 1
let _ = assert (inc y >= y)

Here, the assertion assert (inc y >= y) checks whether the
argument holds, and gets stuck if the check fails. We can prepare
the type template:

inc : (ν1 : int→ {ν2 : int | P (ν1, ν2)})
It means that the function takes an integer ν1 as an argument,
and returns an integer ν2 that satisfies the output specification
P (ν1, ν2). (We omitted the input specification for simplicity.)
Then, the type inference is reduced to the problem of finding P
that satisfies the following constraint:

∀ν1, ν2.(ν2 = ν1 + 1⇒ P (ν1, ν2)),

∀ν1, ν2.(P (ν1, ν2)⇒ (ν1 = y ⇒ ν2 ≥ y)).
The novelty of our work lies in a use of interpolants [16, 22]

for solving constraints like the one above (see Section 4.1 and
Appendix A for formal definitions). Here, an interpolant of two
formulas φ1 and φ2 is another formula φ such that φ1 implies φ, φ
implies φ2, and the free variables of φ must occur in both φ1 and
φ2 In the constraint on P above, P (ν1, ν2) is in fact an interpolant.
Thus, we can obtain, for example, P (ν1, ν2) ≡ ν2 ≥ ν1 as a
solution, by using an interpolating prover.2 Craig’s interpolation
lemma [12] states that such an interpolant always exists in the first-
order predicate logic.

An advantage of the use of interpolants is that we can nat-
urally combine information obtained from both function defini-
tions and functions’ call sites to infer general specifications. In the
constraint above, ν2 = ν1 + 1 comes from the definition, while
ν1 = y ⇒ ν2 ≥ y comes from the call site. Since the output spec-

1 Here, the satisfiability means the existence of substitutions of predicates
for the predicate variables such that the substituted constraint is valid.
2 In general, there may be more than one interpolant of given two formulas.
In the example, ν2 = ν1 + 1 is also an interpolant.



ification P of inc is an interpolant of them, P is determined by
taking both sources of information into account. An interpolating
prover returns a general solution such as P (ν1, ν2) ≡ ν2 ≥ ν1
in a sense that it does not contain the variable y, which is spe-
cific to the particular call site. The advantage of interpolants dis-
cussed above helps us to obtain invariants of recursive functions,
which are essential for the success of type inference. In contrast,
in size inference [8, 19], a function’s output specification is usually
determined by taking only information from the definition, and in
the on-demand dependent type refinement [26], a function’s out-
put specification is determined by taking only a part of information
from the call sites.

The overall structure of our dependent type inference algorithm
is shown in Figure 1. Given a source program, we generate a con-
straint on predicate variables that is satisfiable if and only if the
program is well-typed (see Section 3). The constraint solving al-
gorithm first expands the possibly recursive original constraint to
obtain a non-recursive one whose satisfiability is a necessary con-
dition for that of the original (see Section 4.1). Then, the algorithm
uses an interpolating prover to find a solution of the expanded con-
straint, namely substitutions for the predicate variables in the ex-
panded constraint (see Section 4.2). If no solution is found, we
conclude that the original constraint is not satisfiable either, and
report a counter-example. Otherwise, the algorithm obtains candi-
date solutions for the original constraint from the solution for the
expanded constraint, and checks whether they are genuine (see Sec-
tion 4.3). If the candidate solutions are judged to be not genuine, the
algorithm expands the original constraint further and continues the
constraint solving.

In the rest of this paper, before formalizing the type inference
procedure sketched above, we overview the procedure in Section 2.
We then sketch how the constraints are generated from source pro-
grams in Section 3. We discuss the phase for solving constraints
on predicate variables using interpolants in detail in Section 4. Sec-
tion 5 reports on a prototype implementation of our algorithm and
experiments. Related work is presented in Section 6. We conclude
the paper with some remarks about future work in Section 7.

2. Overview
We overview our algorithm with the following program:

let rec sum x = if x <= 0 then 0 else x + sum (x - 1)
let _ = assert (sum y >= y)

Here, the assertion assert checks whether the argument holds, and
gets stuck if the check fails. Note that the assertion checking always
succeeds for any run-time environment that assigns an integer value
to the free variable y.

Constraint Generation We prepare the type template:

sum : (ν1 : int→ {ν2 : int | P (ν1, ν2)})
Here, P (ν1, ν2) represents the output specification of sum. (We
omitted the input specification for simplicity.) We then generate the
following constraint on P , by using an algorithm similar to the one
proposed in [21]:

C1 := ∀ν1, ν2, ν′1, ν′2.(φ1 ∨ (P (ν′1, ν
′
2) ∧ φ2)⇒ P (ν1, ν2)),

C2 := ∀ν1, ν2, y.(P (ν1, ν2)⇒ φ3).

Here, φ1, φ2, and φ3 are given by:

φ1 := ν1 ≤ 0 ∧ ν2 = 0,

φ2 := ν1 > 0 ∧ ν′1 = ν1 − 1 ∧ ν2 = ν1 + ν′2,
φ3 := y = ν1 ⇒ ν2 ≥ y.

The constraint C1 is generated from the definition of sum, and C2

from the assertion, the call-site of sum. The sub-formulas φ1 and

P (ν′1, ν
′
2)∧φ2 inC1 represent the output specifications of the then-

and else- branches respectively. Note that unlike in the case of the
non-recursive function inc in Section 1, P is no longer a mere
interpolant between two formulas.

Terminology and Notation Throughout the paper, we use the term
“constraint” to mean a first-order logical formula containing predi-
cate variables. A substitution θ of predicates for the predicate vari-
ables is a solution of C if θC is a tautology. A constraint C is
satisfiable if it has a solution. We often omit universal quantifiers
on first-order variables; for example, we write just P (ν1, ν2)⇒ φ3

for the constraint C2 above.
We reduce the problem of solving the above constraint on P to

that of computing an interpolant as follows.

Constraint Expansion We replace P in the left-hand side of the
constraint C1 with P1, and P in the right-hand side of C1 and P
in the left-hand side of C2 with P0, getting the following “non-
recursive” constraint:

C3 := φ1 ∨ (P1(ν
′
1, ν

′
2) ∧ φ2)⇒ P0(ν1, ν2),

C4 := P0(ν1, ν2)⇒ φ3.

The constraint C3 ∧ C4 intuitively represents that of the program
obtained by expanding the recursive definition of sum in the pro-
gram of sum once (namely, the recursive call of sum is ignored).
Obviously, the satisfiability of C3∧C4 is a necessary condition for
that of C1 ∧ C2.

Solving Expanded Constraint Now, we can obtain a solution of
the constraint C3 ∧ C4 using interpolants. We first obtain P0 as
follows. Because P1 does not occur in the right-hand sides of C3

and C4, we can replace P1(ν
′
1, ν

′
2) in C3 with the inconsistency ⊥

without affecting the satisfiability as follows:

φ1 ∨ (⊥ ∧ φ2)⇒ P0(ν1, ν2).

Thus, P0(ν1, ν2) is obtained as an interpolant of φ1∨ (⊥∧φ2) and
φ3.

Given P0(ν1, ν2) ≡ ψ0, we obtain P1 as follows. We can
replace P0(ν1, ν2) in C3 and C4 with ψ0 without affecting the
satisfiability as follows:

C′
3 := φ1 ∨ (P1(ν

′
1, ν

′
2) ∧ φ2)⇒ ψ0,

C′
4 := ψ0 ⇒ φ3.

The constraint C′
3 ∧ C′

4 can be simplified to:

P1(ν
′
1, ν

′
2)⇒ (φ2 ⇒ ψ0)

by using the fact that ψ0 is an interpolant of φ1 ∨ (⊥∧ φ2)(≡ φ1)
and φ3. Note that P1(ν

′
1, ν

′
2) can then be obtained as an interpolant

of ⊥ and φ2 ⇒ ψ0.

Checking Genuineness of Candidate Solutions Suppose that
P0(ν1, ν2) ≡ ψ0, P1(ν

′
1, ν

′
2) ≡ ψ1 is a solution of C3 ∧ C4,

i.e., the following formulas φA and φB hold:

φA := φ1 ∨ (ψ1 ∧ φ2)⇒ ψ0, φB := ψ0 ⇒ φ3.

If the condition ψ0 ⇒ ψ1 holds, then P (ν1, ν2) ≡ ψ0 is a solution
of the original constraint C1 ∧ C2, and hence the type inference
succeeds: P (ν1, ν2) ≡ ψ0 satisfies C1 because φ1 ∨ (ψ0 ∧ φ2)
implies φ1 ∨ (ψ1 ∧ φ2) and φA holds, and satisfies C2 because
φB holds. Similarly, if another condition � ⇒ ψ0 holds, then
P (ν1, ν2) ≡ � is a solution of the original constraint C1 ∧ C2.
Thus, we call P (ν1, ν2) ≡ ψ0 and P (ν1, ν2) ≡ � candidate
solutions of C1 ∧ C2, and check their genuineness by using the
conditions ψ0 ⇒ ψ1 and � ⇒ ψ0 respectively.
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Figure 1. Overall Structure of Type Inference Algorithm based on Interpolants

Iterative Dependent Type Refinement If neither ψ0 ⇒ ψ1 nor
� ⇒ ψ0 holds, then we further expand the “recursive” constraint
C1 ∧ C2 to obtain the following one:

(φ1 ∨ (P1(ν
′
1, ν

′
2) ∧ φ2)⇒ P0(ν1, ν2)) ∧

(φ1 ∨ (P2(ν
′
1, ν

′
2) ∧ φ2)⇒ P1(ν1, ν2)) ∧

(P0(ν1, ν2)⇒ φ3).

We again (i) solve the expanded constraint, (ii) compute candidate
solutions of the original constraint, by using the solution of the
expanded constraint, and (iii) check whether one of the candidate
solutions is genuine. In this manner, we can iteratively refine types
until the type inference succeeds.

Counter-Example Finding The above procedure is also effective
for judging a program to be ill-typed (or, to contain an error), and
for finding a counter-example. As mentioned above, the typability
is reduced to the existence of an interpolant of certain formulas φ1

and φ2. No interpolant exists (hence the program is untypable) if
φ1 ⇒ φ2 does not hold. In that case, the negation of φ1 ⇒ φ2

gives a condition for the program to fail.
To see how the counter-example finding works, let us replace

the condition x ≤ 0 in sum with x ≤ 1. We get the following
constraint instead of C3:

φ′
1 ∨ (P1(ν

′
1, ν

′
2) ∧ φ′

2)⇒ P (ν1, ν2).

Here, φ′
1 and φ′

2 are given by:

φ′
1 := ν1 ≤ 1 ∧ ν2 = 0,

φ′
2 := ν1 > 1 ∧ ν′1 = ν1 − 1 ∧ ν2 = ν1 + ν′2.

Then, an interpolant of φ′
1∨ (⊥∧φ′

2)(≡ φ′
1) and φ3(≡ y = ν1 ⇒

ν2 ≥ y) does not exist, as φ′
1 ⇒ φ3 is invalid. Thus, the refutation

of φ′
1 ⇒ φ3 yields a counter-example: φ′

1 ⇒ φ3 does not hold, for
example, for y = 1, ν1 = 1, and ν2 = 0. In fact, an evaluation
of the program with the counter-example y = 1 indeed causes a
failure: as sum returns 0, the assertion is violated.

3. Target Language and Constraint Generation
In this section, we first introduce a simple higher-order functional
language with a special primitive fail that expresses a failure of
a program. We then formalize a dependent type system for the lan-
guage, which can ensure that fail is unreachable. Then, we de-
scribe our constraint generation algorithm similar to the one pro-

posed in [21]. The language discussed here is simplified to clarify
the essence of the constraint generation; our prototype inference
system in Section 5 deals with an extended language with data con-
structors, pattern-matches, tuples, and the let-polymorphism. The
constraint generation for the extended language is formalized in
the full version of this paper [27].

3.1 Syntax

The syntax of expressions is defined as follows:

e ::= Expressions:
x variable

| c constant
| λx.e abstraction
| e1 e2 application
| fix x.e fixed-point
| if x then e1 else e2 if-then-else
| fail failure

Here, x and c are meta-variables ranging over variables and con-
stants respectively. We write FV(e) to denote the set of free vari-
ables in e. Constants may include integer arithmetic operations.

The operational semantics of the language is call-by-value. An
evaluation of if x then e1 else e2 proceeds to the then-branch e1
if x has a non-zero value, and to the else-branch e2 otherwise. An
evaluation of fail always gets stuck. We can use fail to model
array accesses and assertions.

The syntax of types is defined as follows:

ψ ::= P (ex) | φ Specifications
T ::= Dependent Types:

{ν : int | ψ} integer refinements
| ν : T1 → T2 dependent function types

Γ ::= ∅ | Γ, x : T | Γ, φ Type Environments

Here, P and φ are meta-variables ranging over predicate variables
and the formulas of some first-order theory respectively. In this
paper, we consider the quantifier-free theory of linear arithmetic
and equalities with uninterpreted function symbols unless other-
wise stated. We also use a meta-variable ν, which ranges over the
variables not appearing in expressions. We write FV(φ) to denote
the set of free variables in φ.

We write T for dependent types. Our type system supports
integer refinement types and dependent function types. We can use
the integer refinement types to express sub-types of the ordinary



integer type int. For example, {ν : int | ν ≥ 0} denotes the
type of non-negative integers. We can use the dependent function
types to make the type of the return value of a function depend on
its arguments. For example, ν1 : int → ν2 : int → {ν3 : int |
ν3 = ν1 + ν2} denotes the type of functions whose return value
(denoted by ν3) is the sum of the two arguments (denoted by ν1 and
ν2). A type environment Γ is a sequence of type bindings x : T ,
which may include guard formulas φ. For checking if-expressions,
we use the guard formulas to express information about the value
of the conditional we know in the then- and else- branches.

3.2 Type Judgment

x : {ν : int | φ} ∈ Γ

Γ � x : {ν : int | ν = x}
(T-VAR-INT)

x : (y : T → T ′) ∈ Γ

Γ � x : (y : T → T ′)
(T-VAR-FUN)

Γ, x : T � e : T ′

Γ � λx.e : (x : T → T ′)
(T-ABS)

Γ � e1 : (x : T ′ → T )
Γ � e2 : T ′ x �∈ FV(T )

Γ � e1 e2 : T
(T-APP)

Γ � c : T S(c)
(T-CON)

Γ, x : T � e : T x �∈ FV(T )

Γ � fix x.e : T
(T-FIX)

Γ, x �= 0 � e1 : T
Γ, x = 0 � e2 : T

Γ � if x then e1 else e2 : T
(T-IF)

Valid([[Γ]]⇒ ⊥)

Γ � fail : T
(T-FAIL)

Γ � e : T ′ Γ � T ′ <: T

Γ � e : T
(T-SUB)

Figure 2. Typing Rules

A typing judgment is of the form Γ � e : T . It reads that the
expression e has the type T under the type environment Γ. The
typing rules are defined in Figure 2. The function T S(c) returns
the dependent type of c. For example, we have T S(n) = {ν :
int | ν = n} for an integer n, and T S(+) = ν1 : int → ν2 :
int→ {ν3 : int | ν3 = ν1 + ν2}.

The sub-typing relation Γ � T1 <: T2 is defined as follows:

Valid([[Γ]] ∧ φ1 ⇒ φ2)

Γ � {ν : int | φ1} <: {ν : int | φ2}
(S-INT)

Γ � T2 <: T1 Γ, ν : T2 � T ′
1 <: T ′

2

Γ � ν : T1 → T ′
1 <: ν : T2 → T ′

2

(S-FUN)

Here, [[Γ]] is defined by:

[[Γ, x : {ν : int | φ}]] = [[Γ]] ∧ [x/ν]φ

[[Γ, x : (ν : T1 → T2)]] = [[Γ]]

[[Γ, φ]] = [[Γ]] ∧ φ
The predicate Valid(φ) holds if and only if φ is valid.

Example 3.1. Let us consider the judgment Γ � inc 1 : T2, where
Γ = inc : Tinc, Tinc = x : int → {ν : int | ν = x + 1}, and
T2 = {ν : int | ν = 2}. An example derivation of the judgment
is shown in Figure 3, where T1 = {ν : int | ν = 1}.
Remark 1. Unlike in the dependently-typed languages λH [13, 21]
and λL [25], we separate the language for computation (i.e. ex-
pressions) and specification (i.e. formulas), to simplify constraint
solving. Thus, the rules T-APP and T-IF do not substitute expres-
sions for variables in types or type environments to make types

depend on expressions. We only allow types to depend on variables
via T-VAR-INT or T-SUB. By using T-VAR-INT and T-ABS, we
can derive, for example, � λx.x : (x : int → {ν : int | ν =
x}). Since we do not support refinements of function types (e.g.
{f : int → int | ∀x.f x ≥ x}), the type of the return value
of a higher-order function that takes a function argument (say, f )
cannot depend on the value of f in our type system. The same re-
striction is applied in Dependent ML [28], λH , and λL. However,
we believe that we can relax the restriction by extending our system
with bounded polymorphism on predicate variables or intersection
types.

3.3 Constraint Generation Algorithm

The constraint generation algorithm is shown in Figure 4. The
function Gen takes Γ, e, and T as inputs, and returns a constraintC
on predicate variables, such that θ is a solution of ∃ eP .C if and only
if θΓ � e : θT holds, where eP is the set of the predicate variables
occurring inC but not in Γ and T . The function Gen<: takes Γ, T1,
and T2 as inputs, and returns a constraint C on predicate variables,
such that θ is a solution ofC if and only if θΓ � θT1 <: θT2 holds.

In the algorithm, we assume TypeOf(e) returns the simple
type of e, which can be inferred with the Hindley-Milner type
inference algorithm. The following auxiliary function Lift(ex; τ)
lifts a simple type τ to a dependent type by introducing fresh
predicate variables:

Lift(ex; τ1 → τ2) = ν : Lift(ex; τ1)→ Lift(ex, ν; τ2) (ν : fresh)

Lift(ex; int) = {ν : int | P (ex, ν)} (ν, P : fresh)

Example 3.2. Let us consider the program of inc in Section 1.
The program can be encoded as follows in our language:

einc = (λinc.eas) (λx.+ x 1)

Here, eas = (λb.if b then 0 else fail) (≥ (inc y) y). The
Hindley-Milner algorithm infers the type int for einc, and then
the constraint generation for einc proceeds as follows:

Gen (� einc : int) = Gen (� λinc.eas : (inc : T → int)) ∧
Gen (� λx.+ x 1 : T )

Here, T = ν1 : T1 → T2, T1 = {ν : int | P (ν)}, and
T2 = {ν2 : int | Q(ν1, ν2)} for unknown input P (ν) and output
Q(ν1, ν2) specifications of inc. The part Gen (� λx.+ x 1 : T )
is evaluated as follows:

Gen (� λx.+ x 1 : T )

= Gen (x : T1 � + x 1 : [x/ν1]T2)

= Gen

„
x : T1 � + :

{ν : int | R(inc, ν)} →
{ν : int | S(inc, ν)} → [x/ν1]T2

«
∧

Gen (x : T1 � x : {ν : int | R(inc, ν)}) ∧
Gen (x : T1 � 1 : {ν : int | S(inc, ν)})

= (P (x) ∧R(inc, ν1) ∧ S(inc, ν2) ∧
ν3 = ν1 + ν2 ⇒ Q(x, ν3)) ∧
(P (x) ∧ ν = x⇒ R(inc, ν)) ∧
(P (x) ∧ ν = 1⇒ S(inc, ν))

≡ P (x) ∧ ν = x+ 1⇒ Q(x, ν)

Here, R and S are fresh predicate variables, which represent the
specifications of the sub-expressions x and 1 respectively. Simi-
larly, the part Gen (� λinc.eas : (inc : T → int)) is evaluated
to the following constraint:

(ν = y ⇒ P (ν)) ∧ (Q(ν1, ν2)⇒ (ν1 = y ⇒ ν2 ≥ y)).



inc : Tinc ∈ Γ

Γ � inc : Tinc
T-VAR-FUN

Valid([[Γ]] ∧ ν = 1⇒ �)

Γ � T1 <: int
S-INT

Valid([[Γ, x : T1]] ∧ ν = x+ 1⇒ ν = 2)

Γ, x : T1 � {ν : int | ν = x+ 1} <: T2
S-INT

Γ � Tinc <: (x : T1 → T2)

Γ � inc : (x : T1 → T2)
T-SUB

Γ � 1 : T1
T-CON

Γ � inc 1 : T2
T-APP

Figure 3. An Example Derivation of the Typing Judgment in Example 3.1

Gen (Γ � x : T ) =

(
Gen<: (Γ � {ν : int | ν = x} <: T ) (if x : {ν : int | φ} ∈ Γ)

Gen<: (Γ � (y : T1 → T2) <: T ) (if x : (y : T1 → T2) ∈ Γ)

Gen (Γ � c : T ) = Gen<: (Γ � T S(c) <: T )

Gen (Γ � λx.e : (x : T1 → T2)) = Gen (Γ, x : T1 � e : T2)

Gen (Γ � e1 e2 : T ) = let T ′ = Lift(dom(Γ); TypeOf(e2)) in let x be a fresh variable in

Gen
`
Γ � e1 : (x : T ′ → T )

´
∧Gen

`
Γ � e2 : T ′´

Gen (Γ � fix x.e : T ) = Gen (Γ, x : T � e : T )

Gen (Γ � if x then e1 else e2 : T ) = Gen (Γ, x �= 0 � e1 : T ) ∧Gen (Γ, x = 0 � e2 : T )

Gen (Γ � fail : T ) = [[Γ]]⇒ ⊥
Gen<: (Γ � {ν : int | ψ1} <: {ν : int | ψ2}) = [[Γ]] ∧ ψ1 ⇒ ψ2

Gen<:

`
Γ � ν : T1 → T ′

1 <: ν : T2 → T ′
2

´
= Gen<: (Γ � T2 <: T1) ∧Gen<:

`
Γ, ν : T2 � T ′

1 <: T ′
2

´
Figure 4. Constraint Generation Algorithm

4. Constraint Solving
We now describe the key part of our dependent type inference algo-
rithm: an algorithm for solving constraints on predicate variables.
To clarify the essence of the algorithm, we present an algorithm for
solving constraints on one predicate variable in Sections 4.1–4.4.
We discuss how to extend it to deal with constraints on multiple
predicate variables in Appendix A. Appendix B discusses several
optimizations of the algorithm.

Figure 5 presents the constraint solving algorithm SOLVE.
We explain Expand in Section 4.1 and SolveExpanded in Sec-
tion 4.2. Section 4.3 explains the lines 6–9, where SOLVE checks
the genuineness of candidate solutions of the original constraint.
The correctness and the termination of SOLVE are discussed in
Section 4.4.

4.1 Constraint Expansion

We consider constraints of the following form in Sections 4.1-4.4:

(F (P )⇒ ⊥) ∧ (∀ex.G(P )(ex)⇒ P (ex))
Here, ex is a sequence of variables, and F (P ) and G(P )(ex) are of
the following form:

∃ey.φ0 ∨ (P (fx1) ∧ φ1) ∨ · · · ∨ (P (fxn) ∧ φn)

Here, ∃ey binds all free variables except for ex.

Example 4.1. The following constraint Csum is obtained from the
sample program for sum in Section 2:

Csum := (F (P )⇒ ⊥) ∧
(∀ν1, ν2.G(P )(ν1, ν2)⇒ P (ν1, ν2))

F (P ) := ∃ν1, ν2, y.P (ν1, ν2) ∧ ¬φ3

G(P )(ν1, ν2) := ∃ν′1, ν′2.φ1 ∨ (P (ν′1, ν
′
2) ∧ φ2)

Here, φ1, φ2, and φ3 are defined as follows:

φ1 := ν1 ≤ 0 ∧ ν2 = 0,

φ2 := ν1 > 0 ∧ ν′1 = ν1 − 1 ∧ ν2 = ν1 + ν′2,
φ3 := y = ν1 ⇒ ν2 ≥ y.

We use this constraint as a running example of constraint solving.

We can expand a (possibly recursive) original constraint C
to obtain (non-recursive) expanded constraints that are defined as
follows:

Definition 4.1. Let C be the following constraint:

(F (P )⇒ ⊥) ∧ (∀ex.G(P )(ex)⇒ P (ex))
For each i ≥ 0, we define an expanded constraint Expand(C, i)
with the new predicate variables {P (j) | 0 ≤ j ≤ i} as follows:

Expand(C, i) := (F (P (0))⇒ ⊥) ∧
(∀ex.G(P (1))(ex)⇒ P (0)(ex)) ∧ · · · ∧
(∀ex.G(P (i))(ex)⇒ P (i−1)(ex))

The following lemma follows immediately from the construc-
tion of Expand(C, i) above.

Lemma 4.1. For any constraint C and i ≥ 0, Expand(C, i) has
a solution if C has a solution.

Proof. Let a substitution {P �→ λex.φ} be a solution for C. Then,
for any i ≥ 0, {P (0) �→ λex.φ, . . . , P (i) �→ λex.φ} is a solution for
Expand(C, i).

4.2 Solving Expanded Constraints

The sub-procedure SolveExpanded checks whether an expanded
constraint Expand(C, i) is satisfiable, and returns a solution of
Expand(C, i) if it is the case. The satisfiability of Expand(C, i)



procedure SOLVE(C) :

1 : for each i ≥ 0 :

2 : let C′ = Expand(C, i)

3 : match SolveExpanded(C′) with

4 : Unsatisfiable → abort

5 : | Satisfiable(θ′)→
6 : let {P (j) �→ λex.φj | j ∈ {0, . . . , i}} = θ′

7 : for each k ∈ {0, . . . , i} :

8 : if φ0 ∧ · · · ∧ φk−1 ⇒ φk then

9 : return {P �→ λex.φ0 ∧ · · · ∧ φk−1}

Figure 5. Constraint Solving Algorithm based on Interpolants
(Single Predicate Variable Version)

can be reduced to the validity of the formula F (Gi(λex.⊥)) ⇒ ⊥,
where Gi(p) is defined as follows:

G0(p) = p, Gi(p) = Gi−1(G(p)).

To see why the reduction is correct, suppose that Expand(C, i)
is satisfiable. Namely, we have a substitution θ for the predicate
variables P (0), . . . , P (i) in Expand(C, i) such that F (θP (0)) ⇒
⊥ and G(θP (j))(ex) ⇒ θP (j−1)(ex) hold for all j ∈ {1, . . . , i}.
Then, by the monotonicity of G, we get:

⊥ ⇐ F (θP (0))

⇐ F (G(θP (1)))

. . .

⇐ F (Gi(θP (i)))

⇐ F (Gi(λex.⊥))

Conversely, if F (Gi(λex.⊥)) ⇒ ⊥ holds, then the following sub-
stitution satisfies Expand(C, i):

{P (j) �→ G(i−j)(λex.⊥)}ij=0

The formula F (Gi(λex.⊥)) can be always transformed to a
formula of the form ∃ez.φ (recall the form of F (P ) and G(P )(ex)
discussed in Section 4.1). We can check the validity of (∃ez.φ)⇒ ⊥
by using existing theorem provers including interpolating provers.

We now present an algorithm for finding a solution of a satisfi-
able expanded constraint Expand(C, i). As mentioned earlier, we
reduce the problem of finding a solution of Expand(C, i) to that
of computing interpolants.

Definition 4.2 (interpolants [12]). Given a pair of predicates
(λex.φ1, λex.φ2) such that φ1 implies φ2 and FV(φ1)∩FV(φ2) ⊆
{ex}, we call λex.φ an interpolant of the pair if

• φ1 implies φ,
• φ implies φ2, and
• FV(φ) ⊆ FV(φ1) ∩ FV(φ2).

Here, we say φ1 implies φ2 when ∀ey.φ1 ⇒ φ2, where ey =
FV(φ1) ∪ FV(φ2).

An interpolant of φ1 and φ2 always exists if φ1 implies φ2,
and can be computed by using an interpolating prover in various
first-order theories including the quantifier-free theory of linear
arithmetic and equalities with uninterpreted function symbols [20].
For example, λx.λy.x = y is an interpolant of the pair (λx.λy.x =
z ∧ y = z, λx.λy.x = 0 ⇒ y = 0). In general, there may be

more than one interpolant of given two formulas. In the example,
λx.λy.x ≥ y is also an interpolant.

We obtain a substitution for each predicate variableP (0), . . . , P (i)

in Expand(C, i) in this order as follows. As in the satisfiability re-
duction discussed at the beginning of this section, we can reduce
the satisfiability of Expand(C, i) to that of the following constraint
C0 that contains only the predicate variable P (0):

(∀ex.Gi(λex.⊥)(ex)⇒ P (0)(ex)) ∧ (F (P (0))⇒ ⊥)

We reduce the problem of finding a solution of C0 to that of
computing interpolants.C0 is of the following form (recall the form
of F (P ) and G(P )(ex) discussed in Section 4.1):

(∀ex.(∃ey.φ)⇒ P (ex)) ∧
(∀ex.(∃ez.φ0 ∨ (P (fx1) ∧ φ1) ∨ · · · ∨ (P (fxn) ∧ φn))⇒ φ′)

We can transform the second line to the following one:

(∀ex, ez.φ0 ⇒ φ′) ∧
(∀ex, ez.P (fx1)⇒ (φ1 ⇒ φ′)) ∧ · · · ∧
(∀ex, ez.P (fxn)⇒ (φn ⇒ φ′))

Therefore, we can obtain P (ex) ≡ φ′
1 ∧ · · · ∧ φ′

n by computing
interpolants λex.φ′

k of the pairs (λex.φ, λfxk.φk ⇒ φ′) for all
k ∈ {1, . . . , n} with an interpolating prover.

Similarly, for each j ∈ {1, . . . , i}, given solutions P (0)(ex) ≡
φ(0), . . . , P (j−1)(ex) ≡ φ(j−1) to C0, . . . , Cj−1 respectively, the
satisfiability of Expand(C, i) can be reduced to that of the follow-
ing constraint Cj that contains only the predicate variable P (j):

(∀ex.Gi−j(λex.⊥)(ex)⇒ P (j)(ex)) ∧ (∀ex.G(P (j))(ex)⇒ φ(j−1))

As in the case of C0 above, the problem of finding a solution to
Cj (1 ≤ j ≤ i) can be reduced to the problem of computing
interpolants.

Example 4.2. Let us consider the constraint Csum in Example 4.1.
The expanded constraint Expand(Csum, 1) of Csum on the new
predicate variables P (0) and P (1) is as follows:

Expand(Csum, 1) := (F (P (0))⇒ ⊥) ∧
∀ν1, ν2.(G(P (1))(ν1, ν2)⇒ P (0)(ν1, ν2))

Here, F (P ) andG(P )(ν1, ν2) are defined in Example 4.1. We find
a solution of Expand(Csum, 1) in this example. P (0) is obtained as
a solution of the following constraint:

(∀ν1, ν2.G(λν1, ν2.⊥)(ν1, ν2)⇒ P (0)(ν1, ν2)) ∧ (F (P (0))⇒ ⊥)

This is equivalent to the following constraint:

(∀ν1, ν2.φ1 ⇒ P (0)(ν1, ν2)) ∧ (∀ν1, ν2, y.P (0)(ν1, ν2)⇒ φ3)

In this example, we can obtain P (0)(ν1, ν2) ≡ ν2 ≥ ν1 as an
interpolant of (λν1, ν2.φ1, λν1, ν2.φ3). Then, P (1) is obtained as
a solution of the following constraint:

(∀ν1, ν2.G0(λν1, ν2.⊥)(ν1, ν2)⇒ P (1)(ν1, ν2)) ∧
(∀ν1, ν2.G(P (1))(ν1, ν2)⇒ ν2 ≥ ν1)

This is equivalent to the following constraint:

(∀ν1, ν2.⊥ ⇒ P (1)(ν1, ν2)) ∧
(∀ν1, ν2.φ1 ⇒ ν2 ≥ ν1) ∧
(∀ν1, ν2, ν′1, ν′2.P (1)(ν′1, ν

′
2)⇒ (φ2 ⇒ ν2 ≥ ν1))

Thus, we can obtain P (1)(ν1, ν2) ≡ ⊥ as an interpolant of
(λν1, ν2.⊥, λν1, ν2.φ2 ⇒ ν2 ≥ ν1). As a result, we obtain the



following solution θsum of Expand(Csum, 1):

{P (0) �→ λν1, ν2.ν2 ≥ ν1, P (1) �→ λν1, ν2.⊥}.
If an expanded constraint Expand(C, i) is not satisfiable, C is

not satisfiable either, and we can refute Expand(C, i) to obtain a
counter-example for C, namely, valuations of the variables ez that
satisfy φ, where ∃ez.φ is a formula equivalent to F (Gi(λex.⊥)).

4.3 Checking Genuineness of Candidate Solutions

Given a solution {P (j) �→ λex.φj | j ∈ {0, . . . , i}} of an expanded
constraint Expand(C, i), SOLVE obtains the following candidate
solutions of C:

{{P �→ λex.φ0 ∧ · · · ∧ φk−1} | k ∈ {0, . . . , i}}
For each k ∈ {0, . . . , i}, SOLVE judges whether the candidate
solution {P �→ λex.φ0 ∧ · · · ∧ φk−1} is genuine by checking the
following sufficient condition:

φ0 ∧ · · · ∧ φk−1 ⇒ φk

The correctness of the above condition is established by the follow-
ing lemma.

Lemma 4.2. Suppose that an expanded constraint Expand(C, i)
has a solution {P (j) �→ λex.φj | j ∈ {0, . . . , i}}. If φ0∧· · ·∧φk−1

implies φk for some k ∈ {0, . . . , i}, then θ = {P �→ λex.φ0∧· · ·∧
φk−1} is a solution of C.

Proof. We have F (λex.φ0)⇒ ⊥ andG(λex.φj+1)(ex)⇒ φj for all
j ∈ {0, . . . , i − 1}. Assume that φ0 ∧ · · · ∧ φk−1 implies φk for
some k ∈ {0, . . . , i}.

• If k = 0, we get θP = λex.�, and φ0 ≡ � by the assumption.
Thus, we have F (θP )⇒ ⊥ and G(θP )(ex)⇒ θP (ex).

• Otherwise, we get:

⊥ ⇐ F (λex.φ0)

⇐ F (λex.φ0 ∧ · · · ∧ φk−1) (by monotonicity of F )

= F (θP )

We can also show that:

θP (ex) = φ0 ∧ · · · ∧ φk−1

⇐ G(λex.φ1)(ex) ∧ · · · ∧G(λex.φk)(ex)
⇐ G(λex.φ0 ∧. . .∧ φk)(ex) (by monotonicity of G)

⇐ G(λex.φ0 ∧. . .∧ φk−1)(ex) (by the assumption)

= G(θP )(ex)

Example 4.3. Let us consider Expand(Csum, 1) and its solution
θsum in Example 4.2. We can obtain the following candidate solu-
tions of Csum from θsum:

P (ν1, ν2) ≡ �, P (ν2, ν2) ≡ θsumP (0)(ν1, ν2) ≡ ν2 ≥ ν1
However, the former is not genuine because � does not imply
θsumP

(0)(ν1, ν2) ≡ ν2 ≥ ν1, and the latter is not genuine because
ν2 ≥ ν1 does not imply θsumP (1)(ν1, ν2) ≡ ⊥. Thus, we expand
Csum further to obtain Expand(Csum, 2). Then, we may obtain the
following solution θ′sum of Expand(Csum, 2):

{P (0) �→ λν1, ν2.ν2 ≥ ν1,
P (1) �→ λν1, ν2.ν1 ≥ 0⇒ ν2 ≥ 0,

P (2) �→ λν1, ν2.⊥}.

We now obtain a genuine solution {P �→ θ′sumP
(0)} for Csum be-

cause θ′sumP
(0)(ν1, ν2) implies θ′sumP

(1)(ν1, ν2). Thus, we inferred
the following dependent type of the function sum:

sum : (ν1 : int→ {ν2 : int | ν2 ≥ ν1})

4.4 Properties of Constraint Solving Algorithm

Correctness The following theorem, which follows immediately
from Lemmas 4.1 and 4.2, establishes the correctness of SOLVE:

Theorem 4.3 (Correctness). (a) If SOLVE(C) returns θ, θ is a
solution for C. (b) If SOLVE(C) aborts, C is not satisfiable.

Termination We make the following assumptions on the under-
lying theory of the first-order logic: (i) The validity checking is
decidable; (ii) The interpolation problem is decidable. The exis-
tence of interpolants for various first-order theories is discussed in
[20]. Even though these problems are decidable, the type inference
problem of our dependent type system is undecidable unless we as-
sume the strong condition on the underlying theory stated in The-
orem 4.5. Therefore, our algorithm SOLVE does not terminate in
all cases.

We separate the termination property of SOLVE into two: the
termination for satisfiable constraints, and that for unsatisfiable
constraints. The former usually depends on not only the choice of
the underlying theory but also that of an interpolating prover. In
contrast, the latter only depends on the choice of the underlying
theory. In fact, if the underlying theory satisfies a certain condition
discussed below, we can prove that SOLVE(C) always aborts
in a finite time for any unsatisfiable constraint C. The condition
guarantees that an expanded constraint Expand(C, i) always gets
unsatisfiable for some i ≥ 0. The following theorem formalizes the
condition.

Theorem 4.4. Let C be the following constraint:

(F (P )⇒ ⊥) ∧ (∀ex.G(P )(ex)⇒ P (ex))
Suppose that the underlying theory has the least upper bounds
(with respect to the implication order ⇒) of the following two
infinite sequences:

(1)⊥, G(λex.⊥)(ex), G2(λex.⊥)(ex), . . . , Gi(λex.⊥)(ex), . . .
(2)F (λex.⊥), F (G(λex.⊥)), F (G2(λex.⊥)), . . . , F (Gi(λex.⊥)), . . .

We write
F

i G
i(λex.⊥)(ex) and

F
i F (Gi(λex.⊥)) to denote the

least upper bounds of (1) and (2) respectively. If C is unsatisfiable,
there exists i ≥ 0 such that Expand(C, i) is not satisfiable.

Proof. We prove the theorem by contraposition. We assume that
Expand(C, i) is satisfiable for any i ≥ 0, and show that P (ex) ≡F

i G
i(λex.⊥)(ex) is a solution for C. Recall that F (P ) and

G(P )(ex) are of the following form:

∃ey.φ0 ∨ (P (fx1) ∧ φ1) ∨ · · · ∨ (P (fxn) ∧ φn).

Thus, we have:

F (λex.G
i

Gi(λex.⊥)(ex)) ≡
G
i

F (Gi(λex.⊥)),

G(λex.G
i

Gi(λex.⊥)(ex)) ≡
G
i

Gi+1(λex.⊥)(ex)
≡

G
i

Gi(λex.⊥)(ex).
Since F (Gi(λex.⊥)) ⇒ ⊥ holds for any i ≥ 0, ⊥ is an upper
bound of the infinite sequence (2). Thus, we get

F
i F (Gi(λex.⊥))⇒

⊥ because
F

i F (Gi(λex.⊥)) is the least upper bound of (2).



let rec bs_aux key vec l u =
if l <= u then
let m = l + (u-l) / 2 in
let x = elem vec m in
if x < key then bs_aux key vec (m+1) u
else if x > key then bs_aux key vec l (m-1)
else Some (m)

else None
let bsearch key vec = bs_aux key vec 0 (size vec - 1)
let _ = bsearch key vec

Figure 6. Part of Verified Array Programs

If the underlying theory satisfies a certain stronger condition, for
any choice of an interpolating prover, we can prove the termination
for both satisfiable and unsatisfiable constraints as follows:

Theorem 4.5. A sequence of formulas φ1, . . . , φn is said to be a
finite descending chain if φi �⇒ φj holds for all 1 ≤ i < j ≤
n. We call a theory is k-bounded if any finite descending chain
has the length at most k. If the underlying theory is k-bounded,
SOLVE(C) always returns a solution or aborts for any constraint
C.

Proof. Suppose that Expand(C, k) has a solution {P (j) �→
λex.φj | j ∈ {0, . . . , k}} for some k ≥ 0 and φ0 ∧ · · · ∧ φj−1

does not imply φj for any j ∈ {0, . . . , k}. Then, we have a finite
descending chain�, φ0, φ0∧φ1, . . . , φ0∧· · ·∧φk with the length
k+2. This is a contradiction. Thus, either Expand(C, k) does not
have a solution for any k or φ0 ∧ · · · ∧ φj−1 implies φj for some
j ∈ {0, . . . , k}. Consequently, SOLVE(C) aborts (in the former
case) or returns a solution (in the latter case).

For example, given a set of n-predicates, let us consider a theory
whose formula is ⊥ or a conjunction of predicates in the set as
in Liquid Types [25]. It is not at all impractical to require that
interpolants always exist. Since the theory is (2n + 1)-bounded,
if we adopt such a theory, we can prove termination of SOLVE as
in Liquid Types.

5. Experiments
We have implemented a prototype type inference system according
to the formalization in the full paper [27]. We tested it for several
programs to show the effectiveness of our approach.

Our type inference system takes a program written in a subset
of OCaml as the input,3 and outputs the inferred dependent types
of the program if the type inference succeeds. If the program is
ill-typed, the system reports a counter-example as an explanation
of why the program is ill-typed. The system may not terminate for
some well-typed program as we have discussed in Section 4.4. For
computing interpolants, we adopted CSIsat interpolating theorem
prover [5], which supports the quantifier-free theory of rational
linear arithmetic and equality with uninterpreted function symbols.

We conducted two kinds of experiments. In the first one, we
have verified that array programs never cause an array bounds
error (see Section 5.1). In the second one, we have verified that
sorting programs indeed return sorted lists. The source programs
used in the experiments except for isort were originally written in

3 Our system supports OCaml features such as data constructors, pattern-
matches, tuples, and the let-polymorphism but does not support objects,
modules, and imperative features such as reference cells and exceptions.
Unlike in OCaml, our system allows users to define a recursively-defined
data structure with detailed specifications by writing dependent types for
the constructors.

Program Lines Time (sec.)
bcopy 15 0.077
dotprod 17 0.056
bsearch 24 0.164
hanoi 90 1.359
queens 92 18.885
bcopy bug 15 0.061
dotprod bug 17 0.041
bsearch bug 24 0.200
hanoi bug 90 0.296
queens bug 92 0.322

Table 1. Experimental Results for Array Programs

DML [28, 29]. We have translated them into OCaml, by removing
dependent type annotations. All the experiments were conducted
on Intel Xeon CPU 5160 3.00GHz with 8GB RAM.

5.1 Verification of Absence of Array Bounds Errors

The source programs include a solver for the towers of Hanoi prob-
lem (hanoi), a solver for the N-Queens problem (queens), the bi-
nary search algorithm (bsearch), vector dot product (dotprod),
and array copy (bcopy).4 The timing results are listed in the upper
part of Table 1. The first column lists the names of the input pro-
grams. The second column shows the numbers of lines of the pro-
grams after desugaring and pretty-printing. The third column show
the time (in seconds) taken by type inference. Our prototype system
is not very time efficient for queens because the current naive im-
plementation causes the size of input formulas to the interpolating
prover to be large.

Let us consider the program bsearch in Figure 6. In the pro-
gram, the functions elem and size are built-in array functions,
where elem vec m returns the m-th element of the array vec, and
size vec returns the size of the array vec. The functions have the
following types:

elem : ∀α.ν1 : α array→
{ν2 : int | 0 ≤ ν2 < size(ν1)} → α

size : ∀α.ν1 : α array→ {ν2 : int | ν2 = size(ν1)}
We assume that size(ν) ≥ 0 holds for any ν. Our system auto-
matically inferred the following types:

bs aux : int→ vec : int array→ {l : int | 0 ≤ l} →
{u : int | u < size(vec)} → int option

bsearch : int→ int array→ int option

The programs bcopy bug–queens bug are buggy versions of
bcopy–queens. We have intentionally inserted the bugs into them.
As shown in the lower part of Table 1, counter-example finding is
reasonably fast. As in this result, for most of ill-typed programs,
we believe that only a small amount of constraint expansion is
necessary for the counter-example finding.

We obtained the buggy program bsearch bug from bsearch
by modifying the recursive call bs_aux key vec (m+1) u in
bs aux to bs_aux key vec (m-1) u intentionally . Our system
automatically found and reported the following counter-example
for bs aux in bsearch bug:

−1 = l ≤ m < 0 ≤ u

4 For the experiment of hanoi, we needed to give one type annotation to our
system as a hint. In DML, eight type annotations are necessary for hanoi.
In the other experiments, our system required no type annotations.



Program Lines Time (sec.)
isort 21 0.242
mergesort 66 10.113

Table 2. Experimental Results for Sorting Programs

The counter-example means that bs aux can be called with, for
example, the arguments l = −1 and u = 1, and then bs aux causes
an array bounds error. In fact, with the arguments, the then-branch
is taken in bs aux since l ≤ u holds, m is bound to −1, and hence
elem vec m fails.

5.2 Verification of Orderedness for Sorting Algorithms

The source programs include the insertion sort algorithm (isort)
in Figure 7 and the merge sort algorithm (mergesort) in Figure 8.
The timing results are listed in Table 2.

For the verification, we first defined a refined recursive data type
olist, which represents increasing lists on integers. We declared
the dependent types of the constructors ONil and OCons for olist
as follows:

ONil : {ν : olist | ν = nil}
OCons : ν1 : {ν : int× olist | ν.2 = nil ∨ ν.1 ≤ hd(ν.2)}

→ {ν2 : olist | ν2 �= nil ∧ hd(ν2) = ν1.1}
Here, nil, hd(ν), ν.1, and ν.2 denote the empty list, the head
of the ordered list ν, the first and second elements of the tuple
ν respectively. The precondition ν.2 = nil ∨ ν.1 ≤ hd(ν.2) of
OCons ensures that the constructed list is increasing. Note that the
definition of olist is required for specifying the property to be
verified in this experiment. Then, our system automatically inferred
the following types for the insertion sort:

insert : (ν1 : int→ ν2 : olist→
{ν3 : olist |

ν2 �= nil ∧ hd(ν2) ≤ hd(ν3) ∨
ν1 ≤ hd(ν3)})

isort : (int list→ olist)

Similarly, our system automatically inferred the following types for
the merge sort:

merge : (ν1 : olist→ ν2 : olist→
{ν3 : olist |

ν1 = ν2 = nil ∨
ν1 = nil ∧ ν2 = ν3 �= nil ∨
ν1 = ν3 �= nil ∧ ν2 = nil ∨
ν1 �= nil ∧ ν2 �= nil ∧ hd(ν1) ≤ hd(ν3) ∨
ν1 �= nil ∧ ν2 �= nil ∧ hd(ν2) ≤ hd(ν3)})

initList : (int list→ olist list)

mergeList : (olist list→ olist list)

mergeAll : (olist list→ olist)

mergesort : (int list→ olist)

In DML, users need to declare these complex specifications man-
ually. Since these specifications are not given explicitly in the
programs, Liquid Types with the simple predicate mining heuris-
tics [25] seem unable to infer these specifications automatically.
Remark 2. The current implementation requires users to use the
different sets {Nil, Cons} and {ONil, OCons} of constructors for
the different refinement types list and olist respectively of the
same data structure. However, even if the same set of constructors

type ’a list =
Nil: ’a list

| Cons: ’a * ’a list -> ’a list
type olist =
ONil: {x:olist | x = nil}

| OCons: (x1:{x:int*olist | snd(x) = nil \/
fst(x) <= hd(snd(x))} ->

{x2:olist | x2 <> nil /\
hd(x2) = fst(x1)})

let rec insert x xs = match xs with
ONil -> OCons(x, ONil)

| OCons(y, ys) ->
if x <= y then OCons(x, OCons(y, ys))
else OCons(y, insert x ys)

let rec isort xs = match xs with
Nil -> ONil

| Cons(x, xs’) -> insert x (isort xs’)
let _ = isort xs

Figure 7. Verified Insertion Sorting Program

is used for list and olist, we believe that we can select an
appropriate refinement type that conforms to the context for each
occurrences of the constructors by using local type inference [18,
24].

6. Related Work
6.1 Dependently Typed Languages

Dependent types have been introduced to programming languages
for verification of detailed specifications of programs [1, 2, 28, 29].
These languages require users to write type annotations for all
functions unlike in our system, and then performs type checking.

Proof assistants support interactive development of dependently
typed programs [4]. The present proof assistants seem, however,
difficult to use for ordinary programmers without a knowledge of
type theory and higher-order logic.

6.2 Dependent Type Inference Algorithms

There are other studies on inferring dependent types. The most
distinguishing feature of our algorithm is the ability to generate
a counter-example when a given program is ill-typed.

Flanagan proposed hybrid type checking, which allows users to
refine data types with arbitrary program terms [13]. Knowles and
Flanagan [21] proposed a constraint generation algorithm similar to
the one discussed in Section 3, but did not give a constraint solving
algorithm.

Rondon et al. proposed a type inference algorithm [25] based on
predicate abstraction [14] for a variant of the Knowles and Flana-
gan’s dependent type system. Compared to their algorithm, our al-
gorithm can automatically discover predicates used in constraint
solving, while their algorithm assumes given predicates for pro-
gram abstraction. Another difference is that our algorithm is based
on the lazy abstraction paradigm [17, 23]: we infer precise depen-
dent types only for program fragments where complex specifica-
tions are required, and just infer simple types for the other frag-
ments. In contrast, Liquid Types [25] do not change the predicates
for abstraction depending on what is required at each program frag-
ment.

Size inference can automatically infer size relations between ar-
guments and return values of functions [8, 19]. Size inference tries
to infer as precise dependent types as possible from functions’ defi-
nitions only. Compared to size inference, an advantage of our algo-
rithm is that it can refine recursive data types with dependent types



type ’a list =
Nil: ’a list

| Cons: ’a * ’a list -> ’a list
type olist =
ONil: {x:olist | x = nil}

| OCons: (x1:{x:int*olist | snd(x) = nil \/
fst(x) <= hd(snd(x))} ->

{x2:olist | x2 <> nil
/\ hd(x2) = fst(x1)})

let rec merge xs ys = match xs with
ONil -> ys

| OCons(x, xs’) ->
(match ys with
ONil -> xs

| OCons(y, ys’) ->
if x <= y then OCons(x, merge xs’ ys)
else OCons(y, merge xs ys’))

let rec initList xs = match xs with
Nil -> Nil

| Cons(x1, xs1) ->
(match xs1 with
Nil -> Cons(OCons(x1, ONil), Nil)

| Cons(x2, xs2) ->
let l =
if x1 <= x2 then
OCons(x1, (OCons(x2, ONil)))

else OCons(x2, (OCons(x1, ONil)))
in Cons(l, initList xs2))

let rec mergeList ls = match ls with
Nil -> Nil

| Cons(l1, ls’) ->
(match ls’ with
Nil -> ls

| Cons(l2, ls’’) ->
Cons(merge l1 l2, mergeList ls’’))

let rec mergeAll ls = match ls with
Nil -> ONil

| Cons(l, ls’) ->
(match ls’ with
Nil -> l

| Cons(_, _) -> mergeAll (mergeList ls))
let mergesort l = mergeAll (initList l)
let _ = mergesort xs

Figure 8. Verified Merge Sorting Program

based on the user’s demand as demonstrated in the verification of
the sorting programs in Section 5.2, which cannot be verified by
size inference. On the other hand, an advantage of size inference is
that it can infer a more precise dependent type of a function than
ours from only the definition of the function.

Our previous work can use both information about functions’
definitions and call-sites for refining the dependent types of the
functions on demand [26]. However, a function’s output specifi-
cation is determined by taking only a part of information from the
call sites. Our algorithm presented in this paper extends the pre-
vious work so that we can determine the output specification by
taking both information from the definition and the call sites.

6.3 Other Work

The Boyer-Moore theorem provers such as ACL2 [6, 7] can auto-
matically prove inductive theorems of Lisp functions. For example,
ACL2 can verify the orderedness of the insertion sort algorithm.
However, it does not directly support partial functions and func-

tions with input specifications unlike in our type inference algo-
rithm.

One of the important components of our algorithm is interpo-
lating provers [5, 16, 22]. They have been applied to discovering
predicates for program abstraction in model checkers [17, 23]. They
iteratively refine a program abstraction with interpolants computed
from a spurious error path so that the refined abstraction can cor-
rectly judge that the path is safe.

Haack and Wells proposed a technique called type error slicing
for computing a slice of an ill-typed program that is sufficient and
necessary for a type error to cause as an explanation of why the
program is ill-typed [15].

Our use of interpolants in dependent type inference has been in-
spired from the use of interpolants in model checkers for imperative
programs. [17, 23] The main advantage of our type-based approach
over them is that we can easily support advanced programming fea-
tures such as higher-order functions, polymorphic functions, and
recursively defined data structures.

7. Conclusion
We proposed a novel type inference algorithm for a dependently-
typed functional language, which is essentially an “implicitly-
typed” version of DML [29]. Our type inference algorithm is novel
because of the use of an interpolating prover. It can iteratively
refine dependent types with interpolants until the type inference
succeeds or the program is found to be ill-typed. In the latter case,
it can generate a kind of counter-example as an explanation of why
the program is ill-typed. To our knowledge, none of the usual type
inference algorithms generate a counter-example. We have imple-
mented a prototype type inference system, which supports OCaml
features such as data constructors, pattern-matches, tuples, and the
let-polymorphism and tested it for array and sorting programs. As
a result, our system has successfully verified them. In particular,
our system has automatically inferred the complex dependent type
for the helper function merge of the merge sort defined in Figure 8,
which is very hard to declare manually by ordinary programmers,
and can not be inferred automatically by existing dependent type
inference algorithms [8, 19, 25]. For the array programs with bugs,
our system has found counter-examples in a reasonably fast time.

In general, type inference algorithms are desired to have the
modularity and scalability. Our algorithm allows modular type in-
ference. For example, when a programmer want to verify his/her
module that uses a list library module, our algorithm does not re-
quire the source code of the list library if the dependent types of
the exported list library functions are provided as the module inter-
face by the library’s designer. If the library source code is available,
our algorithm may perform more precise type inference for the pro-
grammer’s module. To make our system more scalable, we plan to
improve our prototype implementation and the interpolating prover.

As future work, we also plan to support more features of OCaml
such as reference cells and exceptions. To deal with reference cells,
we believe that we only need to give a constraint generation rule for
them. However, for exceptions, it is not clear now whether we need
to extend our constraint solving algorithm to deal with constraints
of the form different from the one discussed in this paper.

Another direction of future work is to extend our type inference
system so that it can verify more detailed properties than those we
have dealt with in this paper. For the purpose, we may extend the
underlying theory in our dependent type system with the theories of
lists, arrays, sets, and multi-sets. For example, if we use the theory
of multi-sets, we may verify that the sorting functions always return
a list whose elements are a permutation of the elements of the
argument as in the collection analysis [9]. To extend our constraint
solving algorithm based on interpolants with those theories, we
need to extend the interpolating prover to support them.
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Appendix

A. Extension to Multiple Predicate Variables
In this section, we extend the constraint solving algorithm pre-
sented in Sections 4.1-4.4 to support multiple predicate variables.

Figure 9 presents the constraint solving algorithm MSOLVE
for constraints on multiple predicate variables. In the lines 7–20,
the procedure MSOLVE iteratively obtains a candidate solution
θΠ′ (see the line 11) from the solution θ′ of an expanded constraint
Expand(C,Π), and checks whether it is genuine (see the lines 12–
13). If no candidate solution is genuine, MSOLVE expands the
original constraint further (see the line 17).



Constraint Expansion A constraint C generated from a program
by the constraint generation algorithm described in Section 3 can
always be transformed to the following form:

(F (P1, . . . , Pm)⇒ ⊥) ∧
(∀fx1.G1(P1, . . . , Pm)(fx1)⇒ P1(fx1)) ∧ · · · ∧
(∀fxm.Gm(P1, . . . , Pm)( fxm)⇒ Pm( fxm))

Here, P1, . . . , Pm are predicate variables, and F (P1, . . . , Pm) and
Gi(P1, . . . , Pm)(ex) are of the following form:

∃ey.„ (P(1,1)( gx(1,1)) ∧ · · · ∧ P(1,l1)( gx(1,l1)) ∧ φ1) ∨ · · · ∨
(P(n,1)( gx(n,1)) ∧ · · · ∧ P(n,ln)( gx(n,ln)) ∧ φn)

«
Here, P(j,k) ∈ {P1, . . . , Pm} for all j, k and ∃ey binds all free
variables except for ex.

We can expand the possibly recursive original constraint C
to obtain non-recursive expanded constraints that are defined as
follows:

Definition A.1. Let C be the following constraint:

(F (P1, . . . , Pm)⇒ ⊥) ∧
(∀fx1.G1(P1, . . . , Pm)(fx1)⇒ P1(fx1)) ∧ · · · ∧
(∀fxm.Gm(P1, . . . , Pm)( fxm)⇒ Pm( fxm))

Let X∗ to denote the set of sequences of the elements in X .
We write ε for the empty sequence. For x1, x2 ∈ X∗, we write
x1 � x2 if x1 is a prefix of x2. We say Y ⊆ X∗ is prefix-closed if
for all x1, x2 ∈ X∗ such that x1 � x2, x2 ∈ Y implies x1 ∈ Y .
For each prefix-closed and non-empty subset Π of {1, . . . ,m}∗, we
define an expanded constraint Expand(C,Π) with the predicate
variables {Pπ

1 , . . . , P
π
m | π ∈ Π} as follows:

Expand(C,Π) :=
^

π∈Π

Expand(C, π)

Here, Expand(C, π) is defined as follows:

Expand(C, ε) := F (P ε
1 , . . . , P

ε
m)⇒ ⊥

Expand(C, π · i) := ∀ exi.Gi(P
π·i
1 , . . . , P π·i

m )( exi)⇒ Pπ
i ( exi)

The following lemma follows immediately from the construc-
tion of Expand(C,Π) above.

Lemma A.1. For any constraint C and prefix-closed and non-
empty subset Π of {1, . . . ,m}∗, Expand(C,Π) has a solution if
C has a solution.

Proof. Solutions forP1, . . . , Pm inC are solutions forP (π)
1 , . . . , P

(π)
m

in Expand(C,Π) for all Π.

Solving Expanded Constraints The sub-procedure SolveExpanded
checks the satisfiability and finds a solution of Expand(C,Π) in
a similar manner to the algorithm for Expand(C, i) explained in
Section 4.2. An additional technical requirement lies in solving
constraints of the form:

(∀ ey1,FV(φ1).φ1 ⇒ Q1( ey1)) ∧ · · · ∧
(∀fyn,FV(φn).φn ⇒ Qn(fyn)) ∧
(∀ ey1, . . . ,fyn,FV(φ).Q1( ey1) ∧ · · · ∧Qn(fyn)⇒ φ)

For each i = n, . . . , 2, 1, we can iteratively compute a solution
λeyi.φ

′
i for Qi as an interpolant of (λeyi.φi, λeyi.φ1 ∧ · · · ∧ φi−1 ∧

φ′
i+1 ∧ · · · ∧ φ′

n ⇒ φ).

Checking Genuineness of Candidate Solutions The correctness
of the genuineness checking of candidate solutions (see the lines 7–
20 in Figure 9) is established by the following lemma:

Lemma A.2. We define leaves Leaves(Π, i) of Π by {π ∈ Π |
π · i �� π′ for any π′ ∈ Π}. Suppose that an expanded constraint
Expand(C,Π) has a solution {Pπ

i �→ λ exi.φ
π
i | π ∈ Π, i ∈

{1, . . . ,m}}. Let θΠ′ = {Pi �→ λ exi.
V

π∈Π′\Leaves(Π′,i) φ
π
i | i ∈

{1, . . . ,m}}. If there exists a prefix-closed and non-empty subset
Π′ of Π such that θΠ′Pi( exi) implies φπ

i for all i ∈ {1, . . . ,m} and
π ∈ Leaves(Π′, i), then θΠ′ is a solution of C.

Proof. For all i ∈ {1, . . . ,m} and π ∈ Π, we have:

F (λfx1.φ
ε
1, . . . , λfxm.φ

ε
m) ⇒ ⊥,

Gi(λfx1.φ
π·i
1 , . . . , λfxm.φ

π·i
m )( exi) ⇒ φπ

i ( exi).

Assume that there exists a prefix-closed and non-empty subset Π′

of Π such that θΠ′Pi( exi) implies φπ
i for all i ∈ {1, . . . ,m} and

π ∈ Leaves(Π′, i).

• If Π′ = {ε}, we get θΠ′Pi = λ exi.�, and φε
i ≡ � by the

assumption. Thus, we have F (θΠ′P1, . . . , θΠ′Pm) ⇒ ⊥ and
Gi(θΠ′P1, . . . , θΠ′Pm)( exi)⇒ θΠ′Pi( exi).

• Otherwise, we get:

⊥ ⇐ F (θΠ′P1, . . . , θΠ′Pm) (by monotonicity of F )

We can also show that:

θΠ′Pi( exi) ⇐ Gi(λfx1.
^

π∈Π′
φπ

1 , . . . , λfxm.
^

π∈Π′
φπ

m)

(by monotonicity of G)

⇐ Gi(θΠ′P1, . . . , θΠ′Pm)( exi)

(by the assumption)

Correctness The following theorem, which follows immediately
from Lemmas A.1, A.2, establishes the correctness of MSOLVE:

Theorem A.3 (Correctness). (a) If MSOLVE(C) returns θ, θ is a
solution of C. (b) If MSOLVE(C) aborts, C is not satisfiable.

B. Optimizations
The procedure MSOLVE in Figure 9 can further be optimized.
After Π is updated to Π ∪ {π · i} in the line 17, we recompute
a solution for Expand(C,Π ∪ {π · i}) in the line 4. This can
be optimized by using information about the previous solution
for Expand(C,Π). Then, we reconstruct a subset Π′ of Π ∪
{π · i} in the lines 7–20. This can also be optimized by using
information about the subset Π′ of Π constructed previously. After
Π′ is updated to Π′∪{π·i} in the line 15, we recheck the conditions
on θΠ′∪{π·i} in the lines 12–13. This can be optimized by using
information about the conditions on θΠ′ checked previously.

In Appendix A, we expressed the form of expanded constraints
by using the functions F andGi on predicates, and their arguments
were fixed to P1, . . . , Pm. This may make the constraint solving
inefficient for two reasons: (1) Even though some predicate variable
Pj may not actually occur in the definitions of the functions, the
algorithm may wastefully expands Pj . (2) Different occurrences of
the same predicate variable are not distinguished and expanded in
the same way even though different solutions may be required for
the different occurrences. To remedy the problem, we can express
the form of constraints as follows:

(F (fP0)⇒ ⊥) ∧ (∀fx1.G1(fP1)(fx1)⇒ P1(fx1)) ∧ · · · ∧
(∀fxm.Gm( fPm)( fxm)⇒ Pm( fxm))

Here, ePi denotes a sequence of the set {P1, . . . , Pm}. The ele-
ments of ePi represent the occurrences of the predicate variables
P1, . . . , Pm in Gi (or F if i = 0).


