Dependent Type Inference with Interpolants

Hiroshi Unno

Tohoku University
uhiro@kb.ecei.tohoku.ac.jp

Abstract

We propose a novel type inference algorithm for a dependently-
typed functional language. The novel features of our agorithm
are: (i) it can iteratively refine dependent types with interpolants
until the type inference succeeds or the program is found to be ill-
typed, and (ii) in the latter case, it can generate a kind of counter-
example as an explanation of why the programisill-typed. We have
implemented a prototype type inference system and tested it for
several programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1[Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Reliability, Verification
Keywords Dependent Types, Type Inference

1. Introduction

Dependently-typed functional languages such as Cayenne [2], De-
pendent ML (DML) [28], and Epigram [1] can express and check
detailed program specifications statically, including absence of ar-
ray bounds and pattern match errors. Compared to other program
verification techniques such as model checking [3,10, 17, 23] and
abstract interpretation [11], the dependently-typed languages have
an advantage that they can deal with advanced programming fea-
tures such as higher-order functions, polymorphic functions, and
recursively defined data structures. Explicit type annotations are,
however, usualy required. Although there are a few recent pro-
posals for automated type inference, there are till a number of
limitations in applying them to practice; for example, for Liquid
Types [25], the predicates used in dependent types must be sup-
plied as hints for type inference, and even a typable program is
rejected if the given predicates are insufficient.

In this paper, we present a novel technique of automated type
inference for a dependently-typed functional language, which is
essentially an “implicitly-typed” version of DML [28]. The lan-
guage supports ML features such as higher-order functions, poly-
morphic functions, and recursively defined data structures. Note
that asin DML, dependent typesin our language are used in amore
restricted manner than in other dependently-typed languages like
Cayenne [2], Epigram [1], Coq [4], etc.: The most important re-

@© ACM, 2009. This is the author’s version of the work. It is posted here by per-
mission of ACM for your personal use. Not for redistribution. The definitive ver-
sion was published in the Proceedings of the 11th International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming (PPDP 2009),
http://doi.acm.org/10.1145/1599410.1599445

Naoki Kobayashi

Tohoku University
koba@ecei.tohoku.ac.jp

striction is that types can depend on base values but not on function
values. Our type inference algorithm can iteratively refine depen-
dent types by automatically discovering necessary predicates for
verification with an interpolating prover [5, 16, 22] until thetypein-
ference succeeds or the program is found to beill-typed; and in the
latter case, it can generate a kind of counter-example as a witness
of theill-typedness of the program, which helps usersto locate and
fix bugs. Intuitively, a counter-example of a program is a sufficient
condition for the program to be ill-typed. For example, for the pro-
gram if x > 0 then fail else 1, z > 0 is a counter-example.
For a subset of our language for which the type system is complete,
the counter-example can also be understood as a sufficient condi-
tion for the program to fail at run-time.

In our dependent type system, the typability of aprogram can be
reduced to the satisfiability of a constraint on predicate variables.
For example, let us consider the program:

let inc x = x + 1
let _ = assert (inc y >= y)

Here, the assertion assert (inc y >= y) checks whether the
argument holds, and gets stuck if the check fails. We can prepare
the type templ ate:

inc: (11 :int — {vo : int | P(v1,1v2)})

It means that the function takes an integer 11 as an argument,
and returns an integer v, that satisfies the output specification
P(v1,v2). (We omitted the input specification for simplicity.)
Then, the type inference is reduced to the problem of finding P
that satisfies the following constraint:

Vl/17l/2.(1/2 =n+1= P(l/17 1/2)),
Vi, va. (P(v,v2) = (11 =y = 12 2 y)).

The novelty of our work lies in a use of interpolants [16, 22]
for solving constraints like the one above (see Section 4.1 and
Appendix A for formal definitions). Here, an interpolant of two
formulas ¢; and ¢- isanother formula ¢ such that ¢, implies ¢, ¢
implies ¢2, and the free variables of ¢ must occur in both ¢, and
¢2 Inthe constraint on P above, P(v1, v2) isinfact an interpolant.
Thus, we can obtain, for example, P(v1,12) = v2 > 11 asa
solution, by using an interpolating prover.? Craig's interpolation
lemma[12] statesthat such an interpolant always existsin thefirst-
order predicate logic.

An advantage of the use of interpolants is that we can nat-
uraly combine information obtained from both function defini-
tions and functions' call sitesto infer general specifications. In the
constraint above, v = v1 + 1 comes from the definition, while
v =y = 2 > y comesfrom the call site. Since the output spec-

1 Here, the satisfiability means the existence of substitutions of predicates
for the predicate variables such that the substituted constraint is valid.

2In general, there may be more than one interpolant of given two formulas.
Inthe example, vo = v1 + 1 isalso an interpolant.

ification P of inc is an interpolant of them, P is determined by
taking both sources of information into account. An interpolating
prover returns a general solution such as P(v1,12) = 12 > 11
in a sense that it does not contain the variable y, which is spe-
cific to the particular cal site. The advantage of interpolants dis-
cussed above helps us to obtain invariants of recursive functions,
which are essentia for the success of type inference. In contrast,
in sizeinference [8, 19], afunction’s output specification is usually
determined by taking only information from the definition, and in
the on-demand dependent type refinement [26], a function’s out-
put specification is determined by taking only a part of information
from the call sites.

The overall structure of our dependent type inference algorithm
is shown in Figure 1. Given a source program, we generate a con-
straint on predicate variables that is satisfiable if and only if the
program is well-typed (see Section 3). The constraint solving al-
gorithm first expands the possibly recursive original constraint to
obtain a non-recursive one whose satisfiability is a necessary con-
dition for that of the original (see Section 4.1). Then, the algorithm
uses an interpolating prover to find a solution of the expanded con-
straint, namely substitutions for the predicate variables in the ex-
panded constraint (see Section 4.2). If no solution is found, we
conclude that the origina constraint is not satisfiable either, and
report a counter-example. Otherwise, the agorithm obtains candi-
date solutions for the original constraint from the solution for the
expanded constraint, and checks whether they are genuine (see Sec-
tion 4.3). If the candidate solutions are judged to be not genuine, the
algorithm expands the original constraint further and continues the
constraint solving.

In the rest of this paper, before formalizing the type inference
procedure sketched above, we overview the procedure in Section 2.
We then sketch how the constraints are generated from source pro-
grams in Section 3. We discuss the phase for solving constraints
on predicate variables using interpolantsin detail in Section 4. Sec-
tion 5 reports on a prototype implementation of our algorithm and
experiments. Related work is presented in Section 6. We conclude
the paper with some remarks about future work in Section 7.

2. Overview
We overview our algorithm with the following program:

let rec sum x = if x <= 0 then O else x + sum (x - 1)

let _ = assert (sum y >= y)

Here, the assertion assert checkswhether the argument holds, and
getsstuck if the check fails. Note that the assertion checking always
succeeds for any run-time environment that assigns an integer value
to the free variable y.

Constraint Generation We prepare the type template:
sum : (vq @ int — {vo @ int | P(v1,v2)})

Here, P(v1,v2) represents the output specification of sum. (We
omitted the input specification for simplicity.) We then generate the
following constraint on P, by using an algorithm similar to the one
proposed in [21]:

Ci = Vv, ve, v, va (¢ V (P11, 15) A ¢2) = P(ur, 1)),
Cy = Y, v2,y.(P(vi,12) = ¢3).
Here, ¢1, ¢2, and ¢3 are given by:

¢1 = v <0Awve =0,

b2 = 1 >0AV, =vi —1Avs =v1 + 14,

¢3 = y=vi=>122>Y.

The constraint C is generated from the definition of sum, and C-
from the assertion, the call-site of sum. The sub-formulas ¢; and

P(v1,v5) A2 in Cy represent the output specifications of the then-
and else- branches respectively. Note that unlike in the case of the
non-recursive function inc in Section 1, P is no longer a mere
interpolant between two formulas.

Terminology and Notation Throughout the paper, we use the term
“constraint” to mean afirst-order logical formula containing predi-
cate variables. A substitution 6 of predicates for the predicate vari-
ables is a solution of C' if C' is a tautology. A constraint C' is
satisfiable if it has a solution. We often omit universal quantifiers
on first-order variables; for example, wewritejust P(v1,v2) = ¢3
for the constraint C'; above.

We reduce the problem of solving the above constraint on P to
that of computing an interpolant as follows.

Constraint Expansion We replace P in the left-hand side of the
congtraint Cy with P;, and P in the right-hand side of C; and P
in the left-hand side of C> with P, getting the following “non-
recursive” constraint:

Cs ¢1V (Pr(v1,15) A ¢2) = Po(vi,12),
C4 = P()(Z/1,l/2) = (]33.

The constraint C's A Cy intuitively represents that of the program
obtained by expanding the recursive definition of sum in the pro-
gram of sum once (namely, the recursive call of sum is ignored).
Obviously, the satisfiahility of C3 A Cy isanecessary condition for
that of C; A Cs.

Solving Expanded Constraint Now, we can obtain a solution of
the constraint C's A Cy4 using interpolants. We first obtain P, as
follows. Because P; does not occur in the right-hand sides of C
and C4, we can replace Py (v, v4) in Cs with the inconsistency L
without affecting the satisfiability as follows:

¢1V (l A (252) = PQ(Vl,VQ).

Thus, Py(v1, v2) isobtained asan interpolant of ¢1 V (L A ¢2) and
P3.
Given Py(v1,v2) = 1o, we obtain P, as follows. We can
replace Py(v1,v2) in Cs and Cy with 1)y without affecting the
satisfiability as follows:

Cy = ¢V (Pi(v,va) A ¢2) = Yo,
C!; = ’LZ)() = ¢3.
The constraint C% A C; can be simplified to:
Pi(v1,v5) = (¢2 = vo)

by using the fact that v isan interpolant of ¢1 V (L A ¢2)(= ¢1)
and ¢3. Notethat P; (1, v/4) can then be obtained as an interpolant
of L and (}32 = 1/10.

Checking Genuineness of Candidate Solutions Suppose that
Po(l/l,VQ) = ¢0, Pl(lli,ué) = ¢'1 is a solution of C3 A Oy,
i.e,, thefollowing formulas ¢ 4 and ¢z hold:

A= P1V (V1 A p2) = o, oB = Yo = ¢3.

If the condition 1o = v holds, then P(v1,v2) = v isasolution
of the original constraint C; A C2, and hence the type inference
succeeds: P(v1,v2) = 1o satisfies Cy because ¢1 V (1o A ¢2)
implies ¢1 V (1 A ¢2) and ¢4 holds, and satisfies C» because
¢p holds. Similarly, if another condition T = 1 holds, then
P(v1,v2) = T isasolution of the original constraint C1 A Cs.
Thus, we call P(v1,v2) = o and P(v1,v2) = T candidate
solutions of Cy; A Cs, and check their genuineness by using the
conditions 1o = 11 and T = 1)y respectively.

Constraint
source .
brogram Generation

(Section 3)

satisfiable?

counter-example (Section 4.2)

yes

constraint C
on predicate
variables

a candidate
solution for C

Constraint
Expansion
(Section 4.1)

expanded
constraint

no

genuine
solution for C?
Section 4.3

inferred types

Figure 1. Overal Structure of Type Inference Algorithm based on Interpolants

Iterative Dependent Type Refinement If neither o = 11 nor
T = o holds, then we further expand the “recursive’ constraint
C1 A C5 to obtain the following one:

(61 V (Pr(V1,v5) A ¢2) = Po(vi,v2)) A
(¢1 V (Pa(v1,v3) A da) = Pr(vi,12)) A
(Po(v1,v2) = ¢3).

We again (i) solve the expanded constraint, (ii) compute candidate
solutions of the original constraint, by using the solution of the
expanded constraint, and (iii) check whether one of the candidate
solutions is genuine. In this manner, we can iteratively refine types
until the type inference succeeds.

Counter-Example Finding The above procedureis also effective
for judging a program to be ill-typed (or, to contain an error), and
for finding a counter-example. As mentioned above, the typability
is reduced to the existence of an interpolant of certain formulas ¢,
and ¢2. No interpolant exists (hence the program is untypable) if
¢1 = ¢2 does not hold. In that case, the negation of ¢1 = @2
gives a condition for the program to fail.

To see how the counter-example finding works, let us replace
the condition z < 0 in sum with z < 1. We get the following
constraint instead of C's:

&1V (Pi(v,v) A @s) = P(ur,).
Here, ¢} and ¢, are given by:
qb’l = 1 <1Awvy =0,
(;5'2 = 1/1>1/\1/i:V1—1/\V2:1/1+1/é.

Then, aninterpolant of ¢} V (LA @5) (= ¢1) and p3(= y = v1 =
ve > y) doesnot exist, as ¢} = ¢3 isinvalid. Thus, the refutation
of ¢} = ¢3 yields acounter-example: ¢} = ¢3 does not hold, for
example, fory = 1, v; = 1, and v, = 0. In fact, an evaluation
of the program with the counter-example y = 1 indeed causes a
failure: as sum returns 0, the assertion is viol ated.

3. Target Language and Constraint Generation

In this section, we first introduce a simple higher-order functional
language with a special primitive fail that expresses a failure of
aprogram. We then formalize a dependent type system for the lan-
guage, which can ensure that fail is unreachable. Then, we de-
scribe our constraint generation algorithm similar to the one pro-

posed in [21]. The language discussed here is simplified to clarify
the essence of the constraint generation; our prototype inference
system in Section 5 deals with an extended |anguage with data con-
structors, pattern-matches, tuples, and the let-polymorphism. The
constraint generation for the extended language is formalized in
Appendix C.

3.1 Syntax
The syntax of expressionsis defined as follows:
e u= Expressions:
x variable
| ¢ constant
| Az.e abstraction
| e1ex application
| fixz.e fixed-point
| if z thenej elsees if-then-else
| fail failure

Here, = and ¢ are meta-variables ranging over variables and con-
stants respectively. We write F'V (e) to denote the set of free vari-
ablesin e. Constants may include integer arithmetic operations.

The operational semantics of the language is call-by-value. An
evaluation of 1f x then e; else e, proceedsto the then-branch e;
if « has a non-zero value, and to the else-branch e, otherwise. An
evaluation of fail aways gets stuck. We can use fail to model
array accesses and assertions.

The syntax of typesis defined as follows:

v = P@)|¢ Specifications
T == Dependent Types:
{v:int | ¢} integer refinements
| v:T1—1Tb dependent function types
' == Q|T,x:T|T,¢ TypeEnvironments

Here, P and ¢ are meta-variables ranging over predicate variables
and the formulas of some first-order theory respectively. In this
paper, we consider the quantifier-free theory of linear arithmetic
and equalities with uninterpreted function symbols unless other-
wise stated. We also use a meta-variable v, which ranges over the
variables not appearing in expressions. We write FV (¢) to denote
the set of free variablesin ¢.

We write T' for dependent types. Our type system supports
integer refinement types and dependent function types. We can use
the integer refinement types to express sub-types of the ordinary

integer type int. For example, {v : int | v > 0} denotes the
type of non-negative integers. We can use the dependent function
types to make the type of the return value of a function depend on
its arguments. For example, 14 : int — v» : int — {3 : int |
vs = 11 + vo} denotes the type of functions whose return value
(denoted by v3) isthe sum of the two arguments (denoted by 4 and
v2). A type environment T is a sequence of type bindings x : T,
which may include guard formulas ¢. For checking if-expressions,
we use the guard formulas to express information about the value
of the conditional we know in the then- and else- branches.

3.2 TypeJudgment

— (T-ConN
z:{v:int | ¢} €T FFC:TS(C)()
F'tz:{v:int|v =2z}))
(T-VAR-INT) Ne:Tke:T x & FV(T)
I'kFfixze: T
x:(y: T—T)eTl (T-Fix)

Ftx:(y:T—T) Tz #0Fe:T

(T-VAR-FUN) T z=0Fe:T
Dx:Tke: T I'tif x thene; elseey : T
TFAze:(z:T—1T) (T-1F)
(T-ABS) valiq([] = L)
The:(z:T —T) TF fal: 7 (O TAIL)
Fkes: T x € FV(T)
Treies:T T'ke:T r=7<:T
(T-App) I'te:T
(T-SuB)

Figure2. Typing Rules

A typing judgment is of theform " F e : T It reads that the
expression e has the type T' under the type environment I". The
typing rules are defined in Figure 2. The function 7S(c¢) returns
the dependent type of c. For example, we have 7S(n) = {v :
int | v = n} for aninteger n, and 78(+) = v1 : int — vo :
int — {vs : int | v3 = 11 + 12}.

The sub-typing relation T - T <: T5 isdefined as follows:

Valid([[F]] A ¢1 = ¢2)
FF{v:int|¢1} <: {v:int | ¢2}

(S-INT)

Ty <: Ty D,v:To Ty <:T%
Fbv:Ty =T <:v:Ty — T4

(S-Fun)

Here, [I'] is defined by:

[C,z:{v:int | ¢}] = [IIA[z/v]e
Cyz:(v: Ty —T2)] = [I]
[T.e] = [IAg

The predicate Valid(¢) holdsif and only if ¢ isvalid.

Example3.1. Letusconsider thejudgmentT" - inc 1 : 7%, where
I' = inc : Tinc, Tine = ¢ : int — {v : int | v = 2 + 1}, and
T, = {v : int | v = 2}. An example derivation of the judgment
isshownin Figure3, where 7y = {v : int | v = 1}.

Remark 1. Unlike in the dependently-typed languages A i [13, 21]
and \;, [25], we separate the language for computation (i.e. ex-
pressions) and specification (i.e. formulas), to simplify constraint
solving. Thus, the rules T-ApPpP and T-IF do not substitute expres-
sions for variables in types or type environments to make types

depend on expressions. We only allow types to depend on variables
via T-VAR-INT or T-SuB. By using T-VAR-INT and T-ABS, we
can derive, for example, - Az.z : (z : int — {v : int | v =
x}). Since we do not support refinements of function types (e.g.
{f : int — int | Vz.f > x}), the type of the return value
of a higher-order function that takes a function argument (say, f)
cannot depend on the value of f in our type system. The same re-
striction is applied in Dependent ML [27], A, and Ar.. However,
we believe that we can relax the restriction by extending our system
with bounded polymorphism on predicate variables or intersection
types.

3.3 Constraint Generation Algorithm
The constraint generation algorithm is shown in Figure 4. The
function Gen takesT', e, and T" asinputs, and returns aconstraint C'
on predicate variables, such that ¢ isasolution of 3P.C if and only
if 0T e : 6T holds, where P isthe set of the predicate variables
occurringin C' but notinT" and T'. The function Gen. takesT", T,
and 75 asinputs, and returns a constraint C' on predicate variables,
suchthat 6 isasolution of C'if andonly if 6T = 6Ty <: 675 holds.
In the algorithm, we assume TypeOf(e) returns the simple
type of e, which can be inferred with the Hindley-Milner type
inference agorithm. The following auxiliary function Lift(z; 1)
lifts a simple type 7 to a dependent type by introducing fresh
predicate variables:

Lift(z; 71 — 72) = v Lift(z;71) — Lift(Z, v;72) (v : fresh)
Lift(z;int) = {v:int|P(z,v)} (v, P :fresh)
Example 3.2. Let us consider the program of inc in Section 1.
The program can be encoded as follows in our language:
€inc = (Ainc.ess) (Az. + 1)

Here, ess = (Ab.if bthen 0 else fail) (> (inc y) y). The
Hindley-Milner algorithm infers the type int for einc, and then
the constraint generation for e;,. proceeds as follows:

Gen (F einc : int) = Gen (F Ainc.ess : (inc: T — int)) A

Gen(FXzx.+z1:T)

Here, T' = vy : Ty — T, Ty = {I/ : int | P(I/)}, and

Ty = {vp : int | Q(v1,v2)} for unknown input P(v) and output

Q(v1, v2) specifications of inc. The part Gen (F Az. + 2 1: 7))

is evaluated as follows:

Gen(FAzx.+z1:7T)
= Gen(z:TiF+al:[z/1n]T2)
{v:int | R(inc,v)} —

{v :int | S(inc,v)} — [z/11]T>
Gen(z:Th Fx: {v:int | R(inc,v)}) A
Gen(z:ThF1:{v:int|S(inc,v)})

= (P(z) A R(inc,v1) A S(inc,v2) A
vs =11+ 12 = Q(x,v3)) A
(P(z) N\v =12 = R(inc,v)) A
(P(z) ANv=1= S(inc,v))

= Plx)Av=z+1= Q(z,v)

= Gen(m:Tll—Jr:

Here, R and S are fresh predicate variables, which represent the
specifications of the sub-expressions = and 1 respectively. Simi-
larly, the part Gen (- Ainc.ess @ (inc : 7' — int)) is evaluated
to the following constraint:

(v=y=PW)AQW,r2) = (1 =y=122>y)).

Valid([IJAv =1= T)

Valid([I'z : i Av=z+1=v=2)

inc: Tipe €T T <:int SINT Fe:TiF{v:iint |v=az+1} <:Tp SINT
TFinc: T | VARFUN T Toe <: (x:T1 — Th)
I'kinc: (z: Ty — Tb) T-Sue rE1:T7 T-Con
TF inc1: 1 T-APP

Figure 3. An Example Derivation of the Typing Judgment in Example 3.1

Gene, (CH{v:int |v=2a}<:T) (fz:{v:int|¢} €T
Gen(Tkz:T) = {Gen<;(F}—§y:T1—|>Tg) <%T) Eifm:iy:Tl—[Ti)EI)‘)
Gen(I'kc:T) Gene. (T'HTS(c) <:T)
Gen('FAze:(z:Th —T2)) = Gen(T,z:Titke:Ts)
Gen(I'ejex:T) = letT' = Lift(dom(T"); TypeOf(ez)) in let x be afresh variablein
Gen(FFel : (x:T/—>T))/\Gen(FF62:T')
Gen ('t fixz.e:T) = Gen(T,z:Thke:T)
Gen(I'- if x thenejelseex:T) = Gen(Iz#0ke :T)AGen(I'z =0Fe3:7T)
Gen(I'+fail:T) = [[]=1
Gene: (T'H{v:int |1} < {v:int |¢2}) = [C]AY1 = 1
Gene. (TFv:Th =T <:v:Th — Ty) Gene. (T F Ty <:Ty) AGene. (T,v: To = T7 <: Ty)

Figure 4. Constraint Generation Algorithm

4. Constraint Solving

We now describe the key part of our dependent type inference algo-
rithm: an agorithm for solving constraints on predicate variables.
To clarify the essence of the algorithm, we present an algorithm for
solving constraints on one predicate variable in Sections 4.1-4.4.
We discuss how to extend it to deal with constraints on multiple
predicate variables in Appendix A. Appendix B discusses severa
optimizations of the algorithm.

Figure 5 presents the constraint solving algorithrm SOLVE.
We explain Expand in Section 4.1 and SolveExpanded in Sec-
tion 4.2. Section 4.3 explains the lines 6-9, where SOLVE checks
the genuineness of candidate solutions of the original constraint.
The correctness and the termination of SOLVE are discussed in
Section 4.4.

4.1 Constraint Expansion
We consider constraints of the following form in Sections 4.1-4.4:

(F(P)= 1) A(Vz.G(P)(z) = P())

Here, 7 is a sequence of variables, and F'(P) and G(P)(z) are of
the following form:

.oV (P@1) A1) V-V (P(Zn) A ¢n)
Here, 3y binds al free variables except for z.

Example 4.1. The following constraint Cs. is obtained from the
sample program for sum in Section 2:

Cow = (F(P)= L)A
(Vuh 1/2.6;1(_P)(V17 l/2) = _P(Vl7 VQ))
F(P) := 3u,v,y.P(ri,ve) A s

G(P)(v1,v2) = 3ui,v5.01V (P(V1,05) A ¢2)

Here, ¢1, ¢2, and ¢3 are defined as follows:

gf)l = I/1§0/\I/2:07
¢2 = 1/1>0/\I/£:l/l—l/\l/221/1—|—1/;7
Pz = Yy=vi =12 > Y.

We use this constraint as a running example of constraint solving.

We can expand a (possibly recursive) original constraint C'
to obtain (non-recursive) expanded constraints that are defined as
follows:

Definition 4.1. Let C be the following constraint:
(F(P)= 1)A(Vz.G(P)(T) = P())
For each i > 0, we define an expanded constraint Expand(C,)
with the new predicate variables { PV | 0 < j < i} asfollows:
Expand(C,i) := (F(P?)= 1)A
vVz.G(PYY) @) = PO@) A A
(vZ.G(P) (@) = POV (7))

The following lemma follows immediately from the construc-
tion of Expand(C, ¢) above.

Lemma4.1. For any constraint C' and ¢ > 0, Expand(C,) has
asolution if C' has a solution.

Proof. Let a substitution {P +— /\E.¢>} be a solution for C'. Then,
foranyi > 0, {P” — \z.¢,..., P — \i.¢} isasolution for
Expand(C,). O

4.2 Solving Expanded Constraints

The sub-procedure SolveExpanded checks whether an expanded
constraint Expand(C,) is satisfiable, and returns a solution of
Expand(C, 1) if it is the case. The satisfigbility of Expand(C,)

procedure SOLVE(C) :
1: foreachi>0:

2 let C' = Expand(C, i)

3 match SolveExpanded(C") with

4 Unsatisfiable — abort

5: | Satisfiable(0’) —

6 let {PY) — \F.¢0; | j € {0,...,i}} =6
7 foreachk € {0,...,4}:

8 if¢0A-~~/\¢k_1:>¢kthE|']

9 return {P — AT.¢po A -+ A pr—1}

Figure 5. Constraint Solving Algorithm based on Interpolants
(Single Predicate Variable Version)

can be reduced to the validity of the formula F/(G*(\z.1)) = L,
where G" (p) is defined as follows:

G'(p)=p, G'(p) =G "(G(p)).

To see why the reduction is correct, suppose that Expand(C, 7)
is satisfiable. Namely, we have a substitution 6 for the predicate
variables P, ..., P(") in Expand(C,) such that F(6P©) =
1L and G(OPY)(Z) = oPY~1 (%) hold for dl j € {1,...,4}.
Then, by the monotonicity of G, we get:

1L <« F@OPY)
< F@GOPYY)

<: F(G (0P"))
< F(G'(\T.1))

Conversdly, if F(G*(A\#.1)) = L holds, then the following sub-
stitution satisfies Expand(C), i):

{(PY) s G (07 L)Y

The formula F(G*(A\z.1)) can be aways transformed to a
formula of the form 3z.¢ (recall the form of F'(P) and G(P)(z)
discussed in Section 4.1). We can check thevdlidity of (3z.¢) = L
by using existing theorem provers including interpolating provers.

We now present an algorithm for finding a solution of a satisfi-
able expanded constraint Expand(C,). As mentioned earlier, we
reduce the problem of finding a solution of Expand(C),) to that
of computing interpolants.

Definition 4.2 (interpolants [12]). Given a pair of predicates
(AZ.¢1, A\T.¢2) such that ¢1 implies g2 and FV (1) NFV (¢2) C
{z}, wecdl \z.¢ an interpolant of the pair if

® ¢ implies ¢,
e ¢ implies ¢2, and
e FV(¢p) CFV(¢p1) NFV(p2).

Here, we say ¢1 implies ¢2 when V4.1 = ¢2, where y =
FV(¢1) UFV(¢2).

An interpolant of ¢1 and ¢» always exists if ¢ implies ¢2,
and can be computed by using an interpolating prover in various
first-order theories including the quantifier-free theory of linear
arithmetic and equalities with uninterpreted function symbols[20].
For example, \z. A\y.x = yisaninterpolant of thepair (Az.\y.x =
z Ay = z, \z.\y.x = 0 = y = 0). In general, there may be

more than one interpolant of given two formulas. In the example,
Az A\y.x > yisaso aninterpolant.

We obtain asubstitution for each predicatevariable P(), ..., P
in Expand(C, 4) in this order asfollows. Asin the satisfiability re-
duction discussed at the beginning of this section, we can reduce
the satisfiahility of Expand(C,) to that of the following constraint
Co that contains only the predicate variable P():

(VEG'(A\L.L)(T) = PO@) A (F(P?) = 1)

We reduce the problem of finding a solution of Cy to that of
computing interpolants. Cy isof thefollowing form (recall theform
of F(P) and G(P)(x) discussed in Section 4.1):
(VZ.(Fy.¢) = P(z)) A
(VE.(FZ.00 V (P(T1) A g1) V-V (P(Zn) A dn)) = ¢)
We can transform the second line to the following one:
(VZ,Z.¢0 = ¢') A
(VZ,Z.P(x1) = (p1 = ¢)) A--- A
(VZ,Z.P(an) = (¢n = ¢'))
Therefore, we can obtain P(Z) = ¢7 A -+ A ¢;, by computing
interpolants \z.¢), of the pairs (\Z.¢, \zx.¢r. = ¢') for dl
k € {1,...,n} with aninterpolating prover.

Similarly, for each j € {1,...,i}, given solutions P*) (%) =
..., PUY(E) = ¢UY 10 Cy,...,C;j_; respectively, the
satisfiability of Expand(C, ¢) can be reduced to that of the follow-
ing constraint C; that contains only the predicate variable PU):
(VE.G (M. L)(3) = PP @) A (VI.G(PY)(F) = ¢V V)

As in the case of C above, the problem of finding a solution to
C; (1 < j < i) can be reduced to the problem of computing
interpolants.

Example 4.2. Let us consider the constraint Csu, in Example 4.1.
The expanded constraint Expand(Ceu, 1) 0of Csun ON the new
predicate variables P(®) and P! isasfollows:

Expand(Csun, 1) = (F(P(O)) = 1)A
Vi, v (G(PY) (1, v2) = PO (11, 11))

Here, F'(P) and G(P)(v1, v2) are defined in Example 4.1. We find
asolution of Expand(Csu, 1) inthisexample. P(°) is obtained as
asolution of the following constraint:

(Yo, v2.G(Av, va. L) (1, v2) = PO (u1,02)) A (F(PP) = 1)
Thisis equivalent to the following constraint:
(Vlll, U2.¢1 = P(O) (l/17 1/2)) AN (Vl/l, Vo, y,P(O) (1/1, 7/2) = (bg)

In this example, we can obtain PV (v1,15) = vs > 1y asan

interpolant of (A1, v2.¢1, Avi, va.63). Then, P() is obtained as
asolution of the following constraint:

(Y, v2.G° (A, va. L) (1, v2) = PY (11, 1)) A
(Vyl,yg.G(P(l))(Vl, Vo) = 12 > v1)

Thisis equivalent to the following constraint:
(Vvr,v2. L = P(l)(V1,V2)) A
(Vvr,v2.01 = v2 > 1) A
(Vl/1,1/2,V{,I/é.P(D(Vi,l/é) = (P2 = 12 > 11))

Thus, we can obtain P (vy,15) = L as an interpolant of
(A1, ve. L, Avi,va.92 = vo > 11). As aresult, we obtain the

following solution s, of Expand(Ceu, 1):
{Pm) — A1, Ua.lg > 1/1,P(1> — Avq, v L}

If an expanded constraint Expand(C), ¢) is not satisfiable, C' is
not satisfiable either, and we can refute Expand(C, ¢) to obtain a
counter-example for C', namely, valuations of the variables = that
satisfy ¢, where 3z.¢ isaformulaequivalent to F(G*(A\Z..L)).

4.3 Checking Genuineness of Candidate Solutions
Givenasolution { PY) +— A\&.¢; | j € {0,...,i}} of anexpanded
constraint Expand(C),), SOLVE obtains the following candidate
solutions of C":

{{P—Ao.po A ANpr—1} | k€ {0,...,i}}

For each k € {0,...,:}, SOLVE judges whether the candidate
solution {P — AZ.¢o A -+ A ¢r_1} IS genuine by checking the
following sufficient condition:

G0N N Pr—1 = b
The correctness of the above condition is established by the follow-
ing lemma.

Lemma 4.2. Suppose that an expanded constraint Expand(C), i)
hasasolution { PY) - A\Z.¢; | 7 € {0,...,i}}. If oA~ - -Adr—1
implies ¢, for somek € {0,...,i},thend = {P +— AT.¢oA---A
¢r—1} isasolution of C.

Proof. We have F/(AZ.¢0) = L and G(AZ.¢j41)(z) = ¢; foral
j€{0,...,1—1}. Assumethat o A - - A ¢pp—1 implies ¢y, for
somek € {0,...,i}.

o If k =0,wegetdP = \z.T,and ¢o = T by the assumption.
Thus, wehave F(0P) = | and G(0P)(z) = 0P ().
e Otherwise, we get:
1 <« F(A\z.¢0)
< F(AZ.po A+ A pr—_1) (by monotonicity of F')
= F(0P)
We can also show that:
Gp(f) = ¢Go NN Pr—1
GAE.$1)(@) A+ A G(AE.¢1) (2)
G(AZ.¢o A... A ér)(z) (by monotonicity of G)
(
(

()

G(AZ.pg A.. . A ¢r—1)(Z) (by the assumption)
G(OP)(7)

O

Example 4.3. Let us consider Expand(Csu, 1) and its solution
Osun in Example 4.2. We can obtain the following candidate solu-
tions of Csun from Ogun:

P(I/l,llz) = T, P(I/Q,I/Q) = QSmP(O)(yl, 1/2) = U2 2 141

However, the former is not genuine because T does not imply
Osun P”) (v1,v2) = 12 > 11, and the latter is not genuine because
vy > vy does not imply O P (11,15) = L. Thus, we expand
Clsun further to obtain Expand(Cisu, 2). Then, we may obtain the
following solution 6z, of Expand(Clsu, 2):
{P(O) — A1, ve.ve > U,
PO v, ve.vr > 0= ve >0,
P® Avi,va. L}

We now obtain a genuine solution {P — 6., P(?} for Ceu be-
cause 0, PO (1, v2) implies 0, P (11, v2). Thus, weinferred
the following dependent type of the function sum:

sum: (v1 :int — {vo :int | v2 > v1})

4.4 Propertiesof Constraint Solving Algorithm

Correctness The following theorem, which follows immediately
from Lemmas 4.1 and 4.2, establishes the correctness of SOLVE:

Theorem 4.3 (Correctness). (a) If SOLVE(C) returns 6, 0 is a
solution for C'. (b) If SOLVE(C) aborts, C'is not satisfiable.

Termination We make the following assumptions on the under-
lying theory of the first-order logic: (i) The validity checking is
decidable; (ii) The interpolation problem is decidable. The exis-
tence of interpolants for various first-order theoriesis discussed in
[20]. Even though these problems are decidable, the type inference
problem of our dependent type system is undecidable unless we as-
sume the strong condition on the underlying theory stated in The-
orem 4.5. Therefore, our algorithm SOLVE does not terminate in
al cases.

We separate the termination property of SOLVE into two: the
termination for satisfiable constraints, and that for unsatisfiable
constraints. The former usually depends on not only the choice of
the underlying theory but aso that of an interpolating prover. In
contrast, the latter only depends on the choice of the underlying
theory. In fact, if the underlying theory satisfies a certain condition
discussed below, we can prove that SOLVE(C') aways aborts
in a finite time for any unsatisfiable constraint C'. The condition
guarantees that an expanded constraint Expand(C), i) aways gets
unsatisfiablefor some¢ > 0. The following theorem formalizesthe
condition.

Theorem 4.4. Let C' bethe following constraint:

(F(P)= 1)A(Vz.G(P)(Z) = P())
Suppose that the underlying theory has the least upper bounds
(with respect to the implication order =) of the following two
infinite sequences:

(1)L, GOz 1)(F), (A2 1)(7),...,G' (T L)(T),. ..
(2)F(\#. 1), F(G(\T. 1)), F(G*(A\Z.1)),..., F(G'(\Z.1)),...
We write ||, G'(\#.1)(Z) and ||, F(G*(\7.L1)) to denote the
least upper bounds of (1) and (2) respectively. If C'is unsatisfiable,
thereexistsi > 0 such that Expand(C,) is not satisfiable.

Proof. We prove the theorem by contraposition. We assume that
Expand(C, i) is satisfiable for any ¢ > 0, and show that P(Z) =
L, G"(A\z.L)(z) is a solution for C. Recal that F(P) and
G(P)(z) are of thefollowing form:

g0 V (P(@1) Ad1) V-V (P(Zn) A pn).

Thus, we have:

F(A%.UGi(A%.L)(%)) = UF(G’(A%.L)),
G(Ai.uGi(Ai.L)(i)) = L|Gi+1(A:E.L)(:E)
= uGi(Af.i)(f).

Since F(G*(Az.1)) = L holdsforany i > 0, L is an upper
bound of theinfinite sequence (2). Thus, weget| |, F(G*(A\z.1)) =
1 because| |, F(G*(Az.L)) isthe least upper bound of (2). O

let rec bs_aux key vec 1 u =

if 1 <= u then
let m =1+ (u-1) / 2 in
let x = elem vec m in
if x < key then bs_aux key vec (m+1) u
else if x > key then bs_aux key vec 1 (m-1)
else Some (m)

else None

let bsearch key vec = bs_aux key vec 0 (size vec - 1)

let = bsearch key vec

Figure 6. Part of Verified Array Programs

If the underlying theory satisfies a certain stronger condition, for
any choice of an interpolating prover, we can prove the termination
for both satisfiable and unsatisfiable constraints as follows:

Theorem 4.5. A sequence of formulas ¢+, . . ., ¢, issaid to be a
finite descending chain if ¢; % ¢; holdsfor all 1 < i < j <
n. We call a theory is k-bounded if any finite descending chain
has the length at most . If the underlying theory is k-bounded,
SOLVE(C') always returns a solution or aborts for any constraint
C.

Proof. Suppose that Expand(C, k) has a solution {P\Y)
M. | j € {0,...,k}} forsomek > 0and ¢o A -+ A ¢pj—1
does not imply ¢; for any j € {0, ..., k}. Then, we have afinite
descending chain T, ¢o, o A p1, ..., ¢o A~ -+ Ay With thelength
k + 2. Thisisacontradiction. Thus, either Expand(C, k) does not
have a solution for any k or ¢o A - -+ A ¢j—1 implies ¢; for some
j € {0,...,k}. Consequently, SOLVE(C') aborts (in the former
case) or returns a solution (in the latter case). O

For example, given aset of n-predicates, let us consider atheory
whose formula is L or a conjunction of predicates in the set as
in Liquid Types [25]. It is not at al impractical to require that
interpolants always exist. Since the theory is (2" + 1)-bounded,
if we adopt such a theory, we can prove termination of SOLVE as
inLiquid Types.

5. Experiments

We have implemented a prototype type inference system according
to the formalization in Appendix C, A, and B. We tested it for
several programs to show the effectiveness of our approach.

Our type inference system takes a program written in a subset
of OCaml as the input,® and outputs the inferred dependent types
of the program if the type inference succeeds. If the program is
ill-typed, the system reports a counter-example as an explanation
of why the program isiill-typed. The system may not terminate for
some well-typed program as we have discussed in Section 4.4. For
computing interpolants, we adopted CSlsat interpolating theorem
prover [5], which supports the quantifier-free theory of rational
linear arithmetic and equality with uninterpreted function symbols.

We conducted two kinds of experiments. In the first one, we
have verified that array programs never cause an array bounds
error (see Section 5.1). In the second one, we have verified that
sorting programs indeed return sorted lists. The source programs
used in the experiments except for isort wereoriginally writtenin

3 Our system supports OCaml features such as data constructors, pattern-
matches, tuples, and the let-polymorphism but does not support objects,
modules, and imperative features such as reference cells and exceptions.
Unlike in OCaml, our system allows users to define a recursively-defined
data structure with detailed specifications by writing dependent types for
the constructors.

Program | Lines]| Time (sec.)
bcopy 15 0.077
dotprod 17 0.056
bsearch 24 0.164
hanoi 90 1.359
queens 92 18.885
bcopy-bug 15 0.061
dotprod_bug 17 0.041
bsearch_bug 24 0.200
hanoi_bug 90 0.296
queens_bug 92 0.322

Table 1. Experimental Resultsfor Array Programs

DML [27, 28]. We have trandlated them into OCaml, by removing
dependent type annotations. All the experiments were conducted
on Intel Xeon CPU 5160 3.00GHz with 8GB RAM.

5.1 Verification of Absence of Array BoundsErrors

The source programs include a solver for the towers of Hanoi prob-
lem (hanoi), asolver for the N-Queens problem (queens), the bi-
nary search algorithm (bsearch), vector dot product (dotprod),
and array copy (bcopy).* The timing results are listed in the upper
part of Table 1. The first column lists the names of the input pro-
grams. The second column shows the numbers of lines of the pro-
grams after desugaring and pretty-printing. The third column show
thetime (in seconds) taken by typeinference. Our prototype system
isnot very time efficient for queens because the current naive im-
plementation causes the size of input formulas to the interpolating
prover to be large.

Let us consider the program bsearch in Figure 6. In the pro-
gram, the functions elem and size are built-in array functions,
where elem vec m returns the m-th element of the array vec, and
size vec returnsthe size of the array vec. The functions have the
following types:

elem : Va.:«array —
{v2 :int |0 < 1o < size(r)} — «
size : Va.uy:oarray — {vo:int | vy = size(v1)}

We assume that size(r) > 0 holds for any v. Our system auto-
matically inferred the following types:

bs_aux int — vec: int array — {l:int | 0 < [} —
{u:int | u < size(vec)} — int option
bsearch int — int array — int option

The programs bcopy_bug—queens_bug are buggy versions of
bcopy—queens. We have intentionally inserted the bugs into them.
As shown in the lower part of Table 1, counter-example finding is
reasonably fast. As in this result, for most of ill-typed programs,
we believe that only a small amount of constraint expansion is
necessary for the counter-example finding.

We obtained the buggy program bsearch bug from bsearch
by modifying the recursive call bs_aux key vec (m+1) u in
bs_aux to bs_aux key vec (m-1) uintentionaly . Our system
automatically found and reported the following counter-example
for bs_aux in bsearch_bug:

—1=1<m<0<u

4 For the experiment of hanoi, we needed to give one type annotation to our
system as ahint. In DML, eight type annotations are necessary for hanoi.
In the other experiments, our system required no type annotations.

Progran [Lines][Time (sec.)
isort 21 0.242
mergesort 66 10.113

Table 2. Experimental Results for Sorting Programs

The counter-example means that bs_aux can be called with, for
example, thearguments! = —1 and u = 1, and then bs_aux causes
an array bounds error. In fact, with the arguments, the then-branch
istakeninbs_aux sincel < w holds, m isbound to —1, and hence
elem vec m fails.

5.2 Verification of Orderednessfor Sorting Algorithms

The source programs include the insertion sort algorithm (isort)
in Figure 7 and the merge sort algorithm (mergesort) in Figure 8.
The timing results are listed in Table 2.

For the verification, wefirst defined arefined recursive datatype
olist, which represents increasing lists on integers. We declared
the dependent types of the constructorsONil and OCons for olist
asfollows:

ONil

0Cons

{v :olist | v = nil}
vi:{v:int X olist | ».2 =nil Vr.1 <hd(r.2)}
— {vp : olist | v # nil Ahd(r2) = v1.1}

Here, nil, hd(v), v.1, and v.2 denote the empty list, the head
of the ordered list v, the first and second elements of the tuple
v respectively. The precondition ».2 = nil V .1 < hd(v.2) of
OCons ensures that the constructed list is increasing. Note that the
definition of olist is required for specifying the property to be
verified in this experiment. Then, our system automatically inferred
the following types for the insertion sort:

insert (Vl :int — 12 : olist —
{vs : olist |
vs #1nil Ahd(r2) < hd(vs) V
v1 <hd(vs)})
isort (int list — olist)

Similarly, our system automatically inferred the following typesfor
the merge sort:

merge (v1:0list — v : olist —
{v3 : olist |
V1 =12 =nil Vv
v1 =nil Avy =3 #nil Vv
v1 =v3 #nil Avp =nil Vv
v1 #nil Ave #nil Ahd(rq) < hd(vz) V
v1 #nil Avs # nil Ahd(vz) < hd(v3)})
initList (int list — olist list)
mergeList : (olistlist — olist list)
mergeAll (olist list — olist)
mergesort (int list — olist)

In DML, users need to declare these complex specifications man-
ually. Since these specifications are not given explicitly in the
programs, Liquid Types with the simple predicate mining heuris-
tics [25] seem unable to infer these specifications automatically.

Remark 2. The current implementation requires users to use the
different sets {Nil, Cons} and {0Nil, 0Cons} of constructors for
the different refinement types 1ist and olist respectively of the
same data structure. However, even if the same set of constructors

type ’a list =

Nil: ’a list
| Cons: ’a * ’a list -> ’a list
type olist =

ONil: {x:olist | x = nil}

| OCons: (x1:{x:int*olist | snd(x) = nil \/
fst(x) <= hd(snd(x))} ->
{x2:0list | x2 <> nil /\
hd(x2) = fst(zx1)})
let rec insert x xs = match xs with
ONil -> OComns(x, ONil)
| OCons(y, ys) ->
if x <= y then 0Cons(x, 0Cons(y, ys))
else OCons(y, insert x ys)
let rec isort xs = match xs with
Nil -> ONil
| Cons(x, xs’) -> insert x (isort xs’)
let _ = isort xs

Figure 7. Verified Insertion Sorting Program

is used for 1ist and olist, we believe that we can select an
appropriate refinement type that conforms to the context for each
occurrences of the constructors by using local type inference [18,
24].

6. Related Work
6.1 Dependently Typed L anguages

Dependent types have been introduced to programming languages
for verification of detailed specifications of programs[1, 2, 27, 28].
These languages require users to write type annotations for all
functions unlike in our system, and then performs type checking.

Proof assistants support interactive devel opment of dependently
typed programs [4]. The present proof assistants seem, however,
difficult to use for ordinary programmers without a knowledge of
type theory and higher-order logic.

6.2 Dependent Type Inference Algorithms

There are other studies on inferring dependent types. The most
distinguishing feature of our agorithm is the ability to generate
a counter-example when a given program is ill-typed.

Flanagan proposed hybrid type checking, which allows usersto
refine data types with arbitrary program terms [13]. Knowles and
Flanagan [21] proposed a constraint generation agorithm similar to
the one discussed in Section 3, but did not give a constraint solving
agorithm.

Rondon et a. proposed atype inference algorithm [25] based on
predicate abstraction [14] for a variant of the Knowles and Flana-
gan’s dependent type system. Compared to their algorithm, our al-
gorithm can automatically discover predicates used in constraint
solving, while their algorithm assumes given predicates for pro-
gram abstraction. Another difference isthat our algorithm is based
on the lazy abstraction paradigm [17, 23]: we infer precise depen-
dent types only for program fragments where complex specifica-
tions are required, and just infer simple types for the other frag-
ments. In contrast, Liquid Types [25] do not change the predicates
for abstraction depending on what isrequired at each program frag-
ment.

Sizeinference can automatically infer size relations between ar-
guments and return values of functions [8, 19]. Size inference tries
toinfer as precise dependent types as possible from functions' defi-
nitions only. Compared to size inference, an advantage of our algo-
rithm isthat it can refine recursive data types with dependent types

type ’a list =
Nil: ’a list
| Cons: ’a * ’a list -> ’a list
type olist =
ONil: {x:olist | x = nil}
| OCons: (x1:{x:int*olist | snd(x) = nil \/
fst(x) <= hd(snd(x))} ->
{x2:0list | x2 <> nil
/\ hd(x2) = fst(x1)})
let rec merge xs ys = match xs with
ONil -> ys
| OCons(x, xs’) —>
(match ys with
ONil -> xs
| OCons(y, ys’) ->
if x <= y then 0Cons(x, merge xs’ ys)
else OCons(y, merge xs ys’))
let rec initList xs = match xs with
Nil -> Nil
Cons(x1, xs1) ->
(match xsl1 with
Nil -> Cons(OCons(x1, ONil), Nil)
| Cons(x2, xs2) —>
let 1 =
if x1 <= x2 then
OCons(x1, (OCons(x2, ONil)))
else 0Cons(x2, (OCons(x1l, ONil)))
in Cons(1l, initList xs2))
let rec mergelList 1ls = match 1ls with
Nil -> Nil
Cons (11, 1s’) ->
(match 1ls’ with
Nil -> 1s
| Cons(12, 1s’’) ->
Cons(merge 11 12, mergeList 1s’’))
let rec mergeAll 1ls = match 1ls with
Nil -> ONil
Cons(1, 1s’) ->
(match 1s’ with
Nil -> 1
| Cons(_, _) -> mergeAll (mergeList 1s))
let mergesort 1 = mergeAll (initList 1)
let = mergesort xs

Figure 8. Verified Merge Sorting Program

based on the user’s demand as demonstrated in the verification of
the sorting programs in Section 5.2, which cannot be verified by
size inference. On the other hand, an advantage of size inferenceis
that it can infer a more precise dependent type of a function than
ours from only the definition of the function.

Our previous work can use both information about functions'
definitions and call-sites for refining the dependent types of the
functions on demand [26]. However, a function’s output specifi-
cation is determined by taking only a part of information from the
call sites. Our agorithm presented in this paper extends the pre-
vious work so that we can determine the output specification by
taking both information from the definition and the call sites.

6.3 Other Work

The Boyer-Moore theorem provers such as ACL2 [6, 7] can auto-
matically prove inductive theorems of Lisp functions. For example,
ACL2 can verify the orderedness of the insertion sort algorithm.
However, it does not directly support partial functions and func-

tions with input specifications unlike in our type inference algo-
rithm.

One of the important components of our algorithm is interpo-
lating provers [5, 16, 22]. They have been applied to discovering
predicatesfor program abstraction in model checkers[17, 23]. They
iteratively refine a program abstraction with interpolants computed
from a spurious error path so that the refined abstraction can cor-
rectly judge that the path is safe.

Haack and Wells proposed a technique called type error slicing
for computing a slice of an ill-typed program that is sufficient and
necessary for a type error to cause as an explanation of why the
program isill-typed [15].

Our use of interpolantsin dependent type inference has been in-
spired from the use of interpolantsin model checkersfor imperative
programs. [17, 23] The main advantage of our type-based approach
over them isthat we can easily support advanced programming fea-
tures such as higher-order functions, polymorphic functions, and
recursively defined data structures.

7. Conclusion

We proposed a novel type inference algorithm for a dependently-
typed functional language, which is essentially an “implicitly-
typed” version of DML [28]. Our type inference algorithm is novel
because of the use of an interpolating prover. It can iteratively
refine dependent types with interpolants until the type inference
succeeds or the program is found to be ill-typed. In the latter case,
it can generate akind of counter-example as an explanation of why
the program is ill-typed. To our knowledge, none of the usual type
inference algorithms generate a counter-example. We have imple-
mented a prototype type inference system, which supports OCaml
features such as data constructors, pattern-matches, tuples, and the
let-polymorphism and tested it for array and sorting programs. As
a result, our system has successfully verified them. In particular,
our system has automatically inferred the complex dependent type
for the helper function merge of the merge sort defined in Figure 8,
which is very hard to declare manually by ordinary programmers,
and can not be inferred automatically by existing dependent type
inference algorithms [8, 19, 25]. For the array programs with bugs,
our system has found counter-examples in areasonably fast time.

In genera, type inference algorithms are desired to have the
modularity and scalability. Our algorithm alows modular type in-
ference. For example, when a programmer want to verify hisher
module that uses alist library module, our algorithm does not re-
quire the source code of the list library if the dependent types of
the exported list library functions are provided as the module inter-
face by thelibrary’sdesigner. If thelibrary source codeisavailable,
our algorithm may perform more precise type inference for the pro-
grammer’s module. To make our system more scalable, we plan to
improve our prototypeimplementation and the interpolating prover.

Asfuturework, we also plan to support more features of OCaml
such asreference cells and exceptions. To deal with reference cells,
we believe that we only need to give aconstraint generation rule for
them. However, for exceptions, it is not clear now whether we need
to extend our constraint solving algorithm to deal with constraints
of the form different from the one discussed in this paper.

Another direction of future work isto extend our type inference
system so that it can verify more detailed properties than those we
have dealt with in this paper. For the purpose, we may extend the
underlying theory in our dependent type system with the theories of
lists, arrays, sets, and multi-sets. For example, if we use the theory
of multi-sets, we may verify that the sorting functions alwaysreturn
a list whose elements are a permutation of the elements of the
argument as in the collection analysis [9]. To extend our constraint
solving algorithm based on interpolants with those theories, we
need to extend the interpolating prover to support them.

Acknowledgments

We would like to thank anonymous referees for useful comments.
Thiswork was partially supported by Kakenhi 20240001.

References

[1] T. Altenkirch, C. McBride, and J. McKinna. Why dependent types
matter. Manuscript, available online, April 2005.

[2] L. Augustsson. Cayenne — alanguage with dependent types. In ICFP
' 98, pages 239-250. ACM Press, 1998.

[3] T.Bdl, R. Mgumdar, T. Millstein, and S. K. Rgjamani. Automatic
predicate abstraction of C programs. In PLDI '01, pages 203-213.
ACM Press, 2001.

[4] Y. Bertot and P. Casteran. Interactive Theorem Proving and Program
Development. Springer-Verlag, 2004.

[5] D. Beyer, D. Zufferey, and R. Majumdar. CSlsat : Interpolation for
LA+EUF (tool paper). In CAV ' 08, volume 5123 of Lecture Notesin
Computer Science, pages 304308, July 2008.

[6] R.S. Boyer and J. S. Moore. Proving theorems about L | SP functions.
Journal of the ACM, 22(1):129-144, 1975.

[7] A. Bundy. The automation of proof by mathematical induction. In
Handbook of Automated Reasoning, volume I, chapter 13, pages
845-911. Elsevier Science, 2001.

[8] W.-N. Chin and S.-C. Khoo. Calculating sized types. In PEPM ' 00,
pages 62-72. ACM Press, 1999.

[9] W.-N. Chin, S.-C. Khoo, and D. N. Xu. Extending sized type with
collection analysis. In PEPM ' 03, pages 75-84. ACM Press, 2003.

[10] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT
Press, Cambridge, MA, USA, 1999.

[11] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL '77, pages 238-252. ACM
Press, 1977.

[12] W. Craig. Linear reasoning. a new form of the Herbrand-Gentzen
theorem. The Journal of Symbolic Logic, 22:250-268, September
1957.

[13] C. Flanagan. Hybrid type checking. In POPL '06, pages 245-256.
ACM Press, 2006.

[14] S. Graf and H. Seidi. Construction of abstract state graphs with PVS.
In CAV '97, volume 1254 of Lecture Notes in Computer Science,
pages 72—83. Springer-Verlag, June 1997.

[15] C. Haack and J. B. Wells. Type error slicing in implicitly typed
higher-order languages. In ESOP ' 03, volume 2618 of Lecture Notes
in Computer Science, pages 284-301. Springer-Verlag, April 2003.

[16] T. A. Henzinger, R. Jhaa, R. Majumdar, and K. L. McMillan.
Abstractions from proofs. In POPL ’'04, pages 232-244. ACM
Press, 2004.

[17] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In POPL '02, pages 58-70. ACM Press, 2002.

[18] H. Hosoya and B. C. Pierce. How good is local type inference?
Technical Report MS-CIS-99-17, University of Pennsylvania, June
1999.

[19] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive
systems using sized types. In POPL ’ 96, pages 410-423. ACM Press,
1996.

[20] D. Kapur, R. Mgjumdar, and C. G. Zarba. Interpolation for data
structures. In SSIGSOFT ’ 06/F SE-14, pages 105-116. ACM, 2006.

[21] K. Knowles and C. Flanagan. Type reconstruction for general
refinement types. In ESOP '07, volume 4421 of Lecture Notes in
Computer Science, pages 505-519. Springer-Verlag, March/April
2007.

[22] K. L. McMillan. An interpolating theorem prover. Theoretical
Computer Science, 345(1):101-121, 2005.

procedure MSOLVE(C) :
1: TII+ {e}
2: whiletruedo
3 let C' = Expand(C, II)
4 match SolveExpanded(C") with
5 Unsatisfiable — abort
6: | Satisfiable(d’) —
7 let {P] s \2;.¢7 €Il ic{l,...,m}} =0
8 ' {e}
9: while true do
10 : let IT; = 11"\ Leaves(IT', 7)
11 let Oy = {Pi— A \o7 |i€{1,...,m}}
mell;
12: if O P;(;) doesnotimply ¢; for some
13: i€{l,...,m} and 7 € Leaves(IT',) then
14 : if m-¢ €Il then
15 : ' II' U {r -4}
16 : else
17 : II—TTU{r-i}
18: break the inner loop
19: else
20 : return O/

Figure 9. Constraint Solving Algorithm based on Interpolants
(Multiple Predicate Variable Version)

[23] K. L. McMillan. Lazy abstraction with interpolants. In CAV ’06,
volume 4144 of Lecture Notes in Computer Science, pages 123-136.
Springer-Verlag, August 2006.

[24] B. C. Pierce and D. N. Turner. Loca type inference. In POPL '98,
pages 252—265. ACM Press, 1998.

[25] P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI '08.
ACM Press, 2008.

[26] H. Unno and N. Kobayashi. On-demand refinement of dependent
types. In FLOPS’08, volume 4989 of Lecture Notes in Computer
Science, pages 81-96. Springer-Verlag, April 2008.

[27] H. Xi and F. Pfenning. Eliminating array bound checking through
dependent types. In PLDI '98, pages 249-257. ACM Press, 1998.

[28] H. Xi and F. Pfenning. Dependent typesin practical programming. In
POPL ' 99, pages 214-227. ACM Press, 1999.

Appendix
A. Extension to Multiple Predicate Variables

In this section, we extend the constraint solving algorithm pre-
sented in Sections 4.1-4.4 to support multiple predicate variables.

Figure 9 presents the constraint solving algorithm MSOLVE
for constraints on multiple predicate variables. In the lines 7-20,
the procedure MSOLVE iteratively obtains a candidate solution
O (seetheline 11) from the solution 6’ of an expanded constraint
Expand(C, IT), and checks whether it is genuine (see the lines 12—
13). If no candidate solution is genuine, MSOLVE expands the
original constraint further (see the line 17).

Constraint Expansion A constraint C' generated from a program
by the constraint generation algorithm described in Section 3 and

Appendix C can always be transformed to the following form:

(F(Pyr,...,Pn)=L1)A
(Vz1.G1(Py, ..., Pn)(x1) = Pi(z1)) A+ A
(VT .G (P, .- o, Pm)(Tm) = Pr(Tm))
Here, P, ..., P, arepredicate variables, and F'(Pi,. .., Pp) and
Gi(Py, ..., Py,)(x) areof thefollowing form:

3. (Pan@an) A APan) (@) Agr) VeV
"\ P @) A AP, (@) A ¢n)

Here, P xy € {P1,...,Pn} for al j,k and Jy binds al free

variables except for 7.
Example A.1. Let usconsider the following program:

let rec izip x y = if x = 0 then if y = O then 0 else
fail else if x > O then if y > O then 1 + izip (x -
1) (y - 1) else fail else fail let _ = izip z z

Here, we assumethat z > 0. We prepare the type template:
int | P1(1/1)} —
int | P2(v1,v2)} — int)

izip (v1:{v1:

v {ra:
Here, P (v1) and P (v1, v2) represent the preconditions of thefirst
and second arguments of izip. (We omitted the post-condition for
simplicity.) We then get the following constraint Ciip:

Cizip = (F(P,P2)=1)A
(VV1.G1(P1,P2)(V1) = P1(1/1)) A
(Vl/h Z/Q.GQ(Pl, PQ)(I/1, 112) = Pz(l/l, 112))
F(Pl,Pz) = E|I/1,l/2.P1(l/1)/\P2(l/1,I/2)/\

The following lemma follows immediately from the construc-
tion of Expand(C, IT) above.

Lemma A.1. For any constraint C' and prefix-closed and non-
empty subset IT of {1,...,m}*, Expand(C,II) has a solution if
C hasa solution.

Proof. Solutionsfor Py, ..., P, inC aresolutionsfor Pf“), ey P
in Expand(C,II) for all II. O

Example A.2. Let us consider the constraint Ci,ip in Exam-
pleA.1. Theexpanded constraint Expand(Clzip, {€, 1,2}) of Csun
on the new predicate variables P, Ps, Pi, Py, P?, and P? isas
follows:

Expand(Clizip, {€,1}) = (F(Pr,Ps) = L1)A

Vul.(Gl(Pll, PQI)(Vl) = Pi(11)) A

Vi, va.(Ga(PE, P)(vi,v2) = P5(11,12))
Here, 1'7(1917 PQ), Gh (Pl, PQ)(Z/l), GQ(P17 PQ)(Z/l7 VQ) are defined

in Example A.1.

Solving Expanded Constraints The sub-procedure SolveExpanded
checks the satisfiahility and finds a solution of Expand(C,II) in
a similar manner to the algorithm for Expand(C, i) explained in
Section 4.2. An additional technical requirement lies in solving
constraints of the form:

(Y91, FV(¢1).01 = Q1(y1)) A~ -+ A

(Vyn, EV(dn).dn = Qn(yn)) A

For eachi = n,...,2,1, we can iteratively compute a solution

(1 =0Ar2#0Vr1>0Ar2 <0V <Nj.¢. for Q; asaninterpolant of (AJi.ci, AJi-p1 A -+ A i1 A

G1(P1,P2)(l/1) = dug,zn=2z>0V

(Pl(I/1 + 1) A P2(7/1 + 1,1/2) A

vy > 0Ave >0)

dzy =2>20Ave=2>0V
(Pl(l/l —‘rl)/\Pz(l/l +17I/2+1)/\
v1 > 0A e 20)

Ga(P1, P2)(v1,12) =

We use this constraint as a running example of constraint solving.

We can expand the possibly recursive origina constraint C'
to obtain non-recursive expanded constraints that are defined as
follows:

Definition A.1. Let C bethe following constraint:

(F(Pr,...,Pn) = L) A
(VEF1.G1(P1,. .., Pn)(@1) = PLTD)) A - A
(VG (Pr, . .., Pu)(@m) = Prm(@))

Let X to denote the set of sequences of the elements in X.
We write e for the empty sequence. For 1,22 € X™, we write
x1 C ao if 21 isaprefix of zo. Wesay Y C X ™ isprefix-closed if
for all x1,T2 € X* such that 1 Caxo, 22 €Y |mp||%x1 ecyY.
For each prefix-closed and non-empty subset IT of {1, ..., m}*, we
define an expanded constraint Expand(C, IT) with the predicate
varisbles { P, ..., Py, | m € I1} asfollows:

Expand(C,1I) := /\ Expand(C,)
well
Here, Expand(C, 7) is defined asfollows:
Expand(C,e) := F(P{,...,Pn) =1
Expand(C,7-i) = V&.Gi(P{", ..., PL) (%) = Pl (%)

Piy1 A AP =).
Example A.3. In this example, we consider the expanded con-
straint Expand(Cizip, {€, 1,2}) in Example A.2. We find a solu-
tion for Expand(Cizip, {€, 1, 2}) in this example. A solution for
Pf and Ps in Expand(Ciip, {€, 1, 2}) is obtained as the one for
the following constraint:
(V1.G1(Avi. L, vy, ve. L) (11) = Pr(v1)) A
(Vlll, VQ.GQ(Al/l.J_, Alll, I/Q.J_)(lll, 1/2) = Pge(l/l, 1/2)) A
(F(P1,P;)= 1)
This can be reduced to the following constraint without Py

(Vlll, VQ.GQ(Al/l.J_, Alll, I/Q.J_)(lll, 1/2) = Pge(l/l, 1/2)) JAN
(F(G1(>\l/1.J_,)\1/1, I/Q.J_), P2€) = J_)

We can now obtain solutions for Ps, and then Py by computing
interpolants. We then compute those for P}, P}, P2, P# simi-
larly. As aresult, we may obtain the following solution 0;.;, for
Expand(Clzip, {€,1,2}):

Oizip = { Pl v, 11 >0, Py — vy, vo.01 = va,
Pl v, in T, Py = v, . T,

P} Avi,in T, Py — i, . T

Checking Genuineness of Candidate Solutions The correctness
of the genuineness checking of candidate solutions (seethelines 7—
20 in Figure9) is established by the following lemma:

Lemma A.2. We define leaves Leaves(I1,¢) of IT by {r € II |
-4 IZ 7' forany #’ € I1}. Suppose that an expanded constraint
Expand(C,1I) has a solution {P]" +— Az;.¢7 | @ € IL,i €
{17 AR m}} Let GH/ = {Pl =)\‘,E’l /\WGH’\LeaVes(H’,'L) ¢:’ | (S
{1,...,m}}. If there exists a prefix-closed and non-empty subset

IT’ of IT such that 0py P; () implies ¢ for all i € {1, ...
7 € Leaves(IT', 1), then 0y isa solution of C.

,m}and

Proof. Forall i € {1,...,m} and 7 € II, we have:

FAz1.91,..., AZm.¢r) = L,
GiNTLoT ", A0) (&) = 7 (&)
Assume that there exists a prefix-closed and non-empty subset IT'

of IT such that 6y P;(z;) implies ¢7 foral : € {1,...,m} and
m € Leaves(IT', 7).

o If IT' = {e}, weget Oy P, = A\z;.T,and ¢ = T by the
assumption. Thus, we have F (0 P, ...,0n Pyn) = L and
Gi(GH/Pl, ey HH/Pm)(fi) = QH/PZ(J,"V@)

e Otherwise, we get:

1l <« Fwh,...,00Py) (by monotonicity of F)

We can also show that:
O Pi(T) < Gz N\ o1, Azm. N\ om)
Tell’ mell’
(by monatonicity of G)
= Gi(HH/Pl,...,OHsz)(@-)

(by the assumption)
(]

Example A.4. In this example, we consider the expanded con-
straint Expand(Cizip, {€,1,2}) in Example A.2 and its solu-
tion 6i,:, in Example A.3. We regard 0;.;, as a candidate so-
lution for Cl.ip, and it is actually so because 0;,:p Pf (1) im-
plies .15 Pt (v1) and Giip PE(v1), @0 Oiy15 Ps (v1, v2) implies
Os21pP3 (1, v2) and 0.1, P3 (v1, v2). We then obtain a genuine
solution {P1 +— 0izipPr, Po + 0iz3pP5} for Cizsp. Thus, we
inferred the following dependent type of the function izip:

izip: (v1 : {v1 :int |v1 >0} — {vo @ int | vy = 1o} — int)

Correctness The following theorem, which follows immediately
from Lemmas A.1, A.2, establishes the correctness of MSOLVE:

Theorem A.3 (Correctness). (a) If MSOLVE(C) returnsé, 0 isa
solution of C'. (b) If MSOLVE(C') aborts, C' is not satisfiable.

B. Optimizations

The procedure MSOLVE in Figure 9 can further be optimized.
After II is updated to IT U {r - ¢} in the line 17, we recompute
a solution for Expand(C,II U {x - i}) in the line 4. This can
be optimized by using information about the previous solution
for Expand(C, II). Then, we reconstruct a subset I of IT U
{7 - 4} in the lines 7-20. This can also be optimized by using
information about the subset I1” of IT constructed previously. After
IT" isupdated to IT'U{ 4} in theline 15, we recheck the conditions
on Orrugx.43 in the lines 12-13. This can be optimized by using
information about the conditions on 6y, checked previously.

In Appendix A, we expressed the form of expanded constraints
by using the functions F' and GG; on predicates, and their arguments
were fixed to P, ..., P,. This may make the constraint solving
inefficient for two reasons: (1) Even though some predicate variable
P; may not actually occur in the definitions of the functions, the
agorithm may wastefully expands P;. (2) Different occurrences of
the same predicate variable are not distinguished and expanded in
the same way even though different solutions may be required for
the different occurrences. To remedy the problem, we can express

the form of constraints as follows:
(F(Po) = L) A (V21.G1(P1)(@1) = Pi(31)) A+ A
(Vitr.Gon (P (@) = Pon(Z))

Here, P, denotes a sequence of the set {Pi,..., P,.}. The ele-

ments of P represent the occurrences of the predicate variables
P, ...,P,inG; (or Fifi=0).

C. Constraint Generation for Full Language

In this section, we first introduce the higher-order functional lan-
guage \; and its dependent type system. Then, we describe the
constraint generation algorithm based on Knowles and Flanagan’'s
work [21], and prove its soundness and completeness with respect
to the type system.

C.1 Syntax
The syntax of expressions and typesin \r is defined as follows:
e = Expressions:
x variable
c constant
(e1,...,em) tuple
Ax.e abstraction
e1 e application
fixz.e fixed-point
letz = ej ines let-binding
K arity-0 constructor
Ke arity-1 constructor
match x with {p; — e; }i%, pattern-match
| fail failure
p = x| (x1,...,2m) | K| Kz Patterns
v u= c|(v,...,vm) | Aze| K| Kv Values
Y = P@)]¢ Specifications
T(B) == Type Skeletons:
| « type variable
| {»:T(B)B|B genera refinement
| {v:Ti(B)x---x
Twm(B) | B} dependent tuple
| v:T1(B)— T2(B) dependent function
S(B) == Type Schema Skeletons:
| T(B) monotype
| Va.S(B) polytype
7,0 = T(T),S(T) Types,Schemas
7,8 == T(¢),S(¢) Dep. Types,Schemas
7,8 == T(),S) Dep. Type, Schema Templates
r == 0|lz:5|T,¢ Type Environments
L == 0 | T,z: §\ T, ¢ Type Environment Templates

Here, z, ¢, K, P, and o are meta-variables ranging over variables,
constants, constructors, predicate variables, and type variables re-
spectively. We also use a meta-variable v which ranges over the
variables not appearing in expressions. We write FV (e) to denote
the set of free variables in e. Constants may include integer arith-
metic operations. The language supports data constructors, pattern-
matches, tuples, and afailure expression, which are partially or not
supported by the existing languages Az, [25] and A g [13, 21] with
dependent type systems.

The syntax of pattern-matches and that of patterns is re-
stricted without loss of generality for simplicity of constraint
generation. We assume the variables in the pattern (x1,...,2m)
are distinct each other. We can express if-then-else expressions
if e; then es else e3 by using the pattern-matches and data con-

structors True and False asfollows:
let b = e; inmatch bwith True — es | False — es.

We can use the fixed-point operator fix x.e to define recur-
sive functions. We abbreviate let f = fix f.Ax.e1 ines as
let rec f & = e1 in ea. For example, the function sum discussed
in Section 2 can be defined as follows:

let rec sum = Az.if £ < OthenOelsex + sum(z — 1) in ...

The meta-variable ¢ ranges over the formulas of some first-
order theory. In this paper, we especially consider the quantifier-
free theory of linear arithmetic and equalities with uninterpreted
function symbols.

Unlikein Ay, and A 7, we separate the language for computation
(i.e. expressions) and specification (i.e. formulas) for simplicity
of constraint solving. We write 7, for ordinary ML types and
schemas, 7', S for dependent types and schemas, which are used
in our dependent type system, and 7°,.S for dependent type and
schema templates, which are used in constraint generation. We
write B to denote base types which consist of user-defined and
built-intypessuch asbool and int. Basetypes can take asequence
of type parameters, which is denoted by T'(B). For example, inthe
typeT list of lists, the type parameter T representsthe type of the
list elements. Our type system supports |let-polymorphism. Thus,
we can use type variables denoted by « intypes. Wewrite FTV (T)
to denote the set of free type variables in T'. The main advantage
of our type system isthat it supports general refinement types [13],
dependent tuple types, and dependent function types. We can use
the general refinement types to express refinements of base types.
For example, {v : int | ¥ > 0} denotes the type of non-negative
integers. The dependent tuple types can expressrel ations among the
tuple elements. For example, {v : int X int | v.1 > v.2} denotes
the type of integer pairs whose first element (denoted by v.1) is
greater than or equal to the second element (denoted by ».2). We
can use the dependent function types to make the type of the return
value of afunction depend on its arguments. For example, the type
+ : (v1:int — v2 :int — {v3 :int | v3 = 11 + va})
expresses that the return value of the integer addition operator +
is the sum of the two arguments (denoted by 11 and v2). Type
environmentsT" and envirgnment templatesT" are sequences of type
bindings z : S and = : S respectively, which may include guard
formulas ¢.

C.2 Operational Semantics

The call-by-value operational semantics of the language is givenin
Figure 10. Evaluation of the failure expression fail aways gets
stuck. We can use fail to model an array access a[e] asfollows:

lett=einif 0 < i A7 < nthena; else fail.

Here, n and a; represent the size and the i-th element of the array
a respectively. Similarly, an assertion assert e can be modeled as
follows:

if e then Unit else fail.

In E-Con, the constant ¢ is interpreted as a function written [c].
For example + 1 2 — [+](1) 2 — [+](1)(2) = 3. In
E-MATCH, we use the following auxiliary function Unify(p, v)
which returns a substitution p for the variables in p such that
p(p) = v (if any):

Unify(z,v) = {z+— v}
Unify (K, K) = 0
Unify(K z, Kv) = {zw~ v}
)

v
Unify (1, ..., Zm), (V1,. .., Vm) {z1— v1,...

y Tm ’Um}

We nondeterministically select aclause p — e such that p matches
to v. We assume such a clause always exists, Note that we can
aways make a non-exhaustive pattern-match exhaustive by adding
aclausep — fail to the pattern-match for each missing pattern p.

C.3 TypeJudgment

The typing judgment is of the form I" + e : T It reads that the
expression e has the type T' under the type environment T". The
typing rules are defined in Figure 11. The helper functions 7 S(c)
and 7 S(K) return the type schemas of ¢ and K respectively. For
example, we have 7S(n) = {v : int | v = n} for an integer n,
TS(True) = {v :bool | v = true}, and 7S(<) = vy : int —
vy int — {v3 : bool | (11 < vo = v3 = true) A (v1 > 1 =
v3 = false)}.

In T-VAR, given the type T of x, the following helper function
TY(x; T) returns as precise atype of = as possible:

{v:TB|v=a} ({T={v:TB|¢})
{v:Tix- - x

Tn|v=uxa}
T (otherwise)

TY(x;T) =

Notethat it returnsamore precise typethan T if T'isnot afunction
type. In that case, information about « not included in 7" may be
added later in our type system. In other words, the helper function
can make types depend on program variables. For example, we can
derive Az.z : (z : int — {v : int | v = z}) by using T-VAR
and T-ABS.

In T-FaIL, thefollowing function [I'] translates atype environ-
ment I" to alogical formulathat isimplied by I':

[T,z :Va.a] = [
[C,z:Va{v:TB|¢}] = [I]A[z/v]e
[T,z :Va{v:Tix - xTn | ¢}] [T] A [z/v]e A
[x.1/v1, ..., zm)/vm]
2N AT Ay 4|
[T,z:Va.(v:Th — T2)] = [I]
[T.¢] = [MIA¢

In our specification language, tuple selections v.7 and constructors
K are encoded by uninterpreted function symbols. The predicate
Valid(¢) holdsif and only if ¢ isvalid.

Therelationp | = : T > T reads that T' holds if the pattern p
matchesto = with the type 7', and is defined as follows:

_ P-VAR
zla :Tox: T ()

IF'=x1:Th,...;¢2;m T,z l=21 A~ ANz.m =2
(1, yzm) lax:{v:Ti X -+ X T | Go}>T
(P-TuPLE)
TS(K)=Va{v:aB
() =Ya{v:aBlo) oo

Kla:{v:TB|¢o}>[z/v]d

TS(K)=Vauv: T —{v::aB]| ¢}

Kay | ao:{va: T B| oty : [T/A|T, [x1/v1, 32/ 12]0
(P-Kon1)

Example C.1. Let usconsider the following judgment:
b:{v:bool | v =true}t

match b with True — Unit | False — fail : unit.

(fT={v:Tix-xTnl¢})

Run-time Expressions

e == .- |matchvwith{p; — e;}iz;

Evaluation Contexts

Evaluation Rules

cv— [c](v)

[.] | (Ulv"wvi*linveiJrl,u-

sem) | Ee|vE|letz=FEine| K E

(E-Con)

(Az.e) v — [v/z]e

(E-APP)

fix z.e — [fix x.e/z]e

(E-Fix)

(E-LET)

letx =vine — [v/z]e

p—e€{pi—ei}itq

Unify(p,v) = p

match v with {p; — e;}i21 — p(e)

(E-MATCH)

e — ¢

m (E-CONTEXT)
- (E-REFL)
e — €
e L 6” e// N 6,
— (E-TRANS)
e — €

Figure 10. Operational Semantics

We can derive this judgment by using T-MATCH, T-KoNO, and
T-FAIL. In T-MATCH, we derive the following relation for the
False-Case:

False | b: {v :bool | v = true} > [taise.

Here, we get I'taie = b = false since 7S(False) = {v :
bool | v = false}. Thus, for checking the False-case, we need
to derive the following judgment:

b:{v:bool | v =true},b= falseF fail : unit.

We can derive this by T-FAIL since we have:

Valid([T,v : {v : TiX -+« XDy | $1}] = b2)

THT, < T, (i=1,...,m)
FE{v:Tix - xTm |1} < {v:Tix - XTIy, | ¢2}
(S-TuPLE)
I'HTy < T Dov:TeFT) <: T}
2 <t vl 1 2 (S-FuN)

F'Fv:Ty —T <:v:Th — T4

Here, T RP" T, is interpreted as T} <: Ty, T <: Th, Or
Ty <: To N T> <: Ti depending on the variance of the i-th

[b:{v:bool |v =true},b=false] =b = true A b= false = Lparameter of the base type B.

and therefore [b : {v : bool | v = true},b = false] = Lis
valid.

The sub-typing relation T = T <: T5 is defined as follows:

-a<:a (SVAR)
Valid([T', 1] = ¢2)
I'-T, R T (i=1,...,m)
FE{v:(Th,....,Tn) B ¢1} <:{v:(11,...,Ty,) B| $2}
(S-BASE)

Example C.2. Let us consider the following judgment:
I'kidl:{v:int|v=1}

Here, I' = id : (z : int — {v: int | v = z}). Wecan derivethe
judgment by using T-APP, T-VAR, T-CON, and T-SuUB. In T-APP,
we need to derive the following judgment:

F'Fid:(z:{v:int |v =1} - {v:int | v =1}).

Thisisderived by T-SuB. In T-SuB, we need to derive the follow-
ing relation:

'tz:int — {v:int |v =1} <:
z:{v:int |[v =1} - {v:int | v = 1}.

z:Va.T el

—— (T-VAR)
tax:TY(x;[T/aT)
TS8(c) =Va.T
Lﬁ (T-Con)
Lkec:[T/a)T
I'tw T (i:1,...,m)
T-TUPLE
Pk (viyeeyom) : {v:Ti X X Ty |v=(v1,...,0m)} ()
Dx:Thke:T (T-ABS)
'tXze:(x:T—1T)
Fte:(z:T —T) I'kFey: T’ x & FV(T)
I'Feiex: T (T-APP)
ke :T' &GNFIV(ID) =0 T,z:Val bes:T a¢FV(T) (Len
I'Fletz=e1ines: T
Tx:Tke: T x & FV(T)
'k fixze: T (T-F1%)
TS(K) =Vva.T'
I'tK:[T/aT
TS(K)=VYaT Tre:T"
Fe[T/aT <:a:T"—-T x¢&FV(T)
T-Ke:T (T-Kon1)
z:Va.T' el pila:[T/a)T'vTy D,Tibe:T
dom(T;) NFV(T) = =1,
om(T':) () 0 (i = m) (T-MATCH)
I'Fmatchz with {p; — e;}i2 : T
Valid([T] = 1)
[k fail: T (T-FaIL)
Fke:T' T <:T
Tre:T (T-Sue)

Figure 11. Typing Rules (Full)

This is broken down into derivations of the following two sub-
relations:

I'F{v:int|v =1} <:int,
Fz:{v:int |[v=1}F
{viint |v =2z} < {v:int |v =1}
Theformer isderivablesince [I', v = 1] = T isvalid. Thelatter is
asoderivablesince[I',z : {v:int |[v =1}, v =2 = v =1Iis
valid,where[[',z : {v:int |[v=1},v=z]=z=1Av==x.
Unlike in Az, and Ag, the typing rules T-App and T-MATCH
do not substitute expressions for variablesin types or type environ-
ments to make types depend on expressions. We only alow types

to depend on variables via the helper function 7Y (x;T') or the
sub-typing rules.

C.4 Type Soundness

The type system ensures that well-typed programs never get stuck.
Formally, the following theorem holds:

Theorem C.1 (Type Soundness). If = e : T is derivable and
FV(e) = 0, then e either evaluatesto a value or diverges.

Proof. It follows from type preservation and progress lemmas (see
the Appendix D for details). O

C.5 Constraint Generation Algorithm

The constraint generation algorithm is defined in Figure 12. The
algorithm Gen takes a dependent type environment template I,
an expression e, and a dependent type template T and generates
a constraint on the predicate variables in the templates and newly
generated predicate variables for the sub-expressions of e. It has
a solutioAn, namelyAa substitution for the predicate variables if and
only if I' - e : T is derivable. Basically, the algorithm tries to
derive I' + e : T without checking the validity of the formulas
of the form [I'] = ¢ in T-FAIL, S-BASE, and S-TUPLE. Instead,
it gathers these formulas and returns the conjunction of them as a
constraint.

The auxiliary algorithm Gen. is also defined in Figure 12.
Geng: takes a dependent type environment template T', a pair
(11, T>) of dependent type templates and generates a constraint on
thg pregi\cate \Lgriablesin the templates. It hasasolution if and only
if ' = T1 <: Ty isderivable.

Gen (f F 7] : f) = letz:Va.T’ € T'inGen.. (f F TY(x; [Lift(dom(T'); ?)/&]ﬁ) <: T\)
Gen (f GE f) = letVa.T' = TS(c)inGen.. (f - [Lift (dom(T); 7) /&) T <: T)

Gen (f F (U1 T Um T ¢ f) — et T, = Lift(dom(T);) (fori = 1,...,m)in

/\Gen(fl—m:ﬁ)/\(}en<: (fl—{u:ﬁx~~-><’f;|y:(v1,...,vm)}<:f)
i=1

Gen(fl—)\x‘e:(a::ﬁeﬁ) Gen(f,x:ﬁ}—e:ﬁ)

~—
Il

Gen (f Fei(ea:7): f) = leT = Lift(dom(T'); 7) in let = be afresh variablein
Gen(fl—el : (xf“\’—>f)) /\Gen(fl—ez ﬁ)
Gen (f Fletx:0=e1ines: f) = letvaTl = Lift(dom(T'); o) in
if & NFTV(T') # () then undefined else
Gen (fl— e1 j“\’) A Gen (f,x : Va.ﬁ}—eg : f)

Gen(fl—fixaz.e:f) = Gen(f,x:f}—e:f)
Gen (f - K7 :T) = letVa.T = TS(K)inGen., (r - [Lift (dom(T); 7) /&) T" <: T)
Gen (f FK[F] (e:7) : T) = leVa.l = TS(K)inletT7 = Lift(dom(T); 7) in

let = be afresh variablein
Genc: (f F [Lift(dom(f);?)/a}T/ <z TV — T\) A Gen (f Fe: ﬁ)
Gen (f = ma{;?hj[j}‘ﬁth : f) — letz:Va.T eTin
i ifi—1
letp; | = : [Lift(dom(T);)/oz}T’ oI (fori=1,...,m)in

A Gen (B, - e:: 7)

i=1

Gen (f F fail: f) = [[f] = 1
Genc. (I‘ Fa<: oz = T

~ ,1/: B|”l/}1}< =~ " ~ ~ B
G ‘FI—{V(L’\’ = ([T,¢1] = v2) A N\ Gene, (T - T, RE T/
enc. < (w:(T,....Th) B| s} ([T, 4] = ¢2) 1:/\1 enc, (z)

RS me|w1}< Py Toxee T LF
Gen<:<1“}— T e X BT o] = ([Cv:{v:Tix - xTm|1}] =) A /\Gen<(T T)
Gen.. (rw T —T <v:Ts Hff = Gene. (fl—@c ﬁ) A Gen.. (r,y;TQ -] <;T5)

Figure 12. Constraint Generation Algorithm
Inthe algorithm, the following auxiliary function Lift(e; e) lifts introducing fresh predicate variables:
a ML type (schema) to a dependent type (schema) template by LiftFa) = a
Lift(Z; 71 X --- X7m) = let P beafresh predicate variable

{v: Lift(z; 1) % - -+ X
Lift(Z; 7o) | P(Z,v)}

Lift(z; 71 — 72) = letv beafreshvariable
v : Lift(z; 7)) — Lift(Z, v; 72)
Lift(z;7 B) = let P beafresh predicate variable

let v be afresh variable
{v:Lift(z;7) B | P(z,v)}
Lift(z;Va.r) = Va.Lift(z;7)

Note that some expression is annotated with ML types and schemas
for simplicity of constraint generation. z[7], ¢[7], and K [7] mean
that atype schemaof z, ¢, and K isinstantiated with 7 respectively,
e:7andz : o meanthat e and x have aML type T and schema o
respectively. To obtain these annotations, we assume that ML types
and schemas of aprogram areinferred apriori with Hindley-Milner
type inference a gorithm.

Example C.3. Let us consider the function sum presented in
Section C.1. After Hindley-Milner type inference, the program is
desugared and annotated with ML types as follows:

€san = let sum: (int — int) = fix sum.\z.
let y : bool = (<) (x : int) (0 : int) in
match y with True — 0
| False —
() (z : int) (sum (— (z : int) (1 : int) : int))

in ...

We explain how the constraint Gen (@ Foesm: T) is computed

below. First, the ML type int — int of sum is lifted to the
following dependent type template:

i; = Lift(e; int — int)
= vi:{vi:int | P(v1)} — {vo :int | Q(v1,1v2)}.

Then, we compute the following constraint:
Gen (@ FfixsumAz.lety :bool=... in ...: iu\m) .

The computation is reduced to that of the following constraint for
['=sum: Tsum,x{z/ int | P(v)}:

Gen(f#lety:boolz... in...:{l/:int\Q(m,l/)}).

We then lift the ML type bool of y to Lift(sum,x;bool) =

{v : bool | Py(sumz,v)}, the type int of = to
Lift(sum, z; int) = {v : int | P,(sum,z,v)}, and the type
int of 0 to Lift(sum, z;int) = {v : int | Py(sum,z,v)} by
introducing fresh predicate variables P, P,, and Py, and compute
the following constraints:

Gen (f - (<) (z : int) (0 : int) : T;) ,
Gen(e T Fmatch ...: {v:int| Q(az,l/)}) .

The computation of the former is reduced to that of the following
constraints:

Gene, (I‘ FTS(L) <: i“\’) ,

Genc. (FI—{V int |[v=2} <:{v: 1nt\P(sumx1/)})

Genc. (P F{v:int |v =0} <: {v:int| Po(sum,as7l/)}) .

Here, T/ = vy : {v:int | Py(sum,z,v)} — vo: {v : int |
Py(sum,z,v)} — {v : bool | Py(sum,z,v)}. The conjunction
of the results is equivalent to the following constraint without P,
and Fo:

(x <0=v=trueAz >0= v =false) = P,(sum,z,v).

The computation of the latter proceeds similarly, and we obtain the
following constraints:

P(z) A Py(sum, z,v) A v = true = Q(z,0),
P(z) A Py(sum, z,v) Av = false = P(z — 1),
P(z) A Py(sum,z,v) Av = false A Q(z — 1,V') =

Qe,z+).

The conjunction of the constraintsis equivalent to the following
one without P,:
(P(z) Az < 0= Q(z,0)) A
(P(x)Az>0= P(x —1)) A
(P(x) Az >0AQ(x—1,V) = Q(z,x +1')).

C.6 Algorithm Soundness and Completeness

The following theorem establishes soundness and completeness of
the constraint generation algorithm with respect to the type system:
Theorem C.2 (Algorithm Soundness and Completeness). (a) If
0(Gen (T +e: 7)) isvalid, then 0(T) + ¢ : 0(T) is derivable.
(b) 1f O(T) + e : 6(T) is derivable, then there exists 6 such that
0 C ¢ and ' (Gen (f Fe: f)) isvalid.

Proof. (a) Induction on the structure of e. (b) Induction on the
derivation of (') e : (T'). See the Appendix E for details. [

D. Proof of Type Soundness

This section proves Theorem C.1. The theorem is a corollary of
the type preservation (Lemma D.4) and the progress (Lemma D.5)
lemmas, which are proved in Sections D.1 and D.2 respectively.
We assumethatif T Hc: (v : Ty — T5), '+ v : T, and
I'ET <: Ty, then [c](v) isdefinedand T', v : T+ [c] (v) : T

We definethetyping rulefor therun-timeexpressionmatch v with {p; —

e; }ivq asfollows:

TFov:T pi Lv:T Ty I,Iibke : T
dom(T;) NFV(T) =0 (t=1,...,m)
' matchvwith{p; —e;}izy : T

(T-MATCH")

In T-MATCH’, therelationp | v : T'> I readsthat I" holds if the
pattern p matches to v with thetype 7', and is defined as follows:

zlv:Tox:T (P-VAR')
P=x:Th,...,¢e;m :Th,v.1l=x1 A--- ANv.m =z,
(1, yzm) lv:i{v:Thi X X T | o} > T
(P-TupLE")
TS(K)=Va{v:aB

Klv:{v:TB|¢o}v[v/v]d

TS(K)=Va. : T — {vs:aB| ¢}

Kzlv:{va:TB|do}va:[T/a|T,[z/11,v/va]d
(P-Kon1")

D.1 Preservation

LemmaD.l fT'Fwv:Tand D,z : T,T' - Ty <: T, then
T, [v/z]T + [v/x]T) <: [v/x]T% isderivable.

Proof. By induction on the derivation of ',z : 7.1V - T <:
Ts. O

Lemma D.2 (Substitution). If T v : 7" and ',z : T/, TV - e :
T,thenT, [v/z|I" I [v/z]e : [v/z]T isderivable.

Proof. We prove thelemma by induction on the derivation of T, « :
T.1"+e:T.

T-Var Wehavee = y.

o If x = y, then we get [v/xz]e = v. Thus, we have " +
[v/x]e : T'. We prove I' + [v/z]e : [v/z]|T by case
analysis on v:

sIfv=cthenT = {v:T B | ¢} and [v/z]T =
{v:T B|v=uv}.ByT-Con,weobtanT I [v/x]e :
[v/z]T.

slfo=K,thenT' ={v:T B| ¢} and [v/z|T = {v:
T B | v = v}. By T-KONO, we obtain " - [v/x]e :
[v/z]T.

“Ifo=KdJ,thenT' ={v:T B| ¢} and [v/z|]T =
{v : T B | v = v}. By T-KONL, we obtain I" +
[v/zle : [v/z]T.

“Ifv=(vi,...,om), thenT = {v: Ti x---xXT), | ¢}
and [v/z]T = {v : T1 X -+ X Ty | v = v}. By
T-TupLE, weobtainT' + [v/z]e : [v/x]T.

= Otherwise, [v/z|T = T'. Thus, T' [v/z]e :
follows immediately.

Thus, T, [v/z]T" + [v/z]e : [v/z]T follows.

e Otherwise, we get [v/z]e = y and T, [v/z]T” + [v/z]e :
[v/z]T isderivable by T-VAR.

T-Con Wehavee = c.

Since [v/zle = c and [v/x]T = T, we get T, [v/z]T"
[v/z]e : [v/z]T by T-CON.

T-Tuple Wehavee = (vi,...,v), whereT,z : T/, T Fv; : T;
foralie {1,....m}andT ={v:Thv x - xTp | v =
(V1,..,m)}. By LH., weget T, [v/z|T" & [v/z]v; : [v/z]|T;
foralie {1,...,m}.

[v/2]T

By T-TupLE, wehave T, [v/x]T" = ([v/x]vi, ..., [v/x]vm) :
v/x|T.

[Sir/lcl [v/z]e = ([v/z]v1,. .., [v/x]vm),itfollowsthat T, [v/z]T"
[v/z]e: [v/z]T.

T-Abs We have e = \y.e’, where T = y : Ty — T» and
T,z : T'\T,y : Ty + € : Ty We can safely assume
that = # y. we get [v/x]le = Ay.[v/x]e’. By I.H., we get
L, v/l y : [v/z]Ty & [v/z]e’ : [v/x]T>. By T-ABS, we
have T, [v/z]T" + Ay.[v/z]e’ @y : /2Ty — [v/z]T>.
T, [v/z]l" + [v/z]e : [v/z]T followsimmediately.

T-App Wehavee = e ea, where T,z : T/ T ey : (y : T —
T), T,z : T\ T' ey : T, and y ¢ FV(T). We can safely
assume that z # y. By I.H., we have T, [v/z|T" F [v/z]e; :
w/zl(y : T" — T)and T,[v/z|T" & [v/z]es : [v/x]T".
By T-Aprp, we get T, [v/z|T" - ([v/z]e1)([v/z]e2) : [v/z]|T.
Since [v/x]e = ([v/x]e1) ([v/z]e2), we obtain T, [v/z]T"
[v/z]e: [v/z]T.

T-Let We have e = lety = e; ines, Where ',z : T/, T’ F
er : T"and T,z : T',T,y : T" F ez : T. We can safely
assumethat = # y. By I.H., weobtain T, [v/z]T - [v/z]e; :
[v/z]T" and T, [v/x]T",y : [v/z|T" + [v/z]es : [v/z]|T. By
T-LET, we get T, [v/z|T" F lety = [v/z|er in [v/z]es :

[v/z]T. Since [v/z]e = let y = [v/z]e; in [v/x]es, We get
T, [v/z]T" + [v/x]e : [v/z]T.

T-Fix We have e = fixy.e/,where,z : T/, T,y : T - €’ :
T. We can safely assume that = # y. By |.H., we obtain
L, v/l y : [v/z]T + [v/x]e’ : [v/x]T. By T-FIX, we
get I, [v/x]I" F fixy.[v/z]e’ : [v/z]T. Since [v/z]e =
fixy.[v/z]e’,weget T, [v/z]T" - [v/z]e : [v/z]T.

T-Kon0 Wehavee = K. Since [v/z]e = K and [v/z]T = T, we
obtain T,z : T, [v/z|T" + [v/x]e : [v/x]|T.

T-Konl Wehavee = K ¢’, where

L4 TS(K) = V&.TK,

el x:T' I"Fe: T,

oT,z:T T+ [T/a|Tx <:v:T" — T, and

o v & FV(T).

By I.H., we have T, [v/z|l" + [v/x]e’ : [v/z]T". By
Lemma D.1, we get I, [v/z]I" + [[v/a]T/d|Tx <: v :
[v/z]T" — [v/z]T. By T-KoN1, we obtain T, [v/z]T" +
K ([v/z]e') : [v/x]T.

Since [v/z]e = K ([v/z]e"), weobtan T, [v/z]T" F [v/z]e :
[v/z]T.

T-Match Wehave e = match y with {p; — e;};~;, where

e y:va.T, e (T,z: T 1),

epily:[T/a]Ty > 1,

o[z T’,F’,Fi Fe; :T,and

e dom(I';) NFV(T) =0 forali e {1,...,m}.

By I.H., we obtain T", [v/z]T",T; + [v/x]e; : [v/z]T for all
1e{l,...,m}.

o If z # y, we have [v/z]y = y. By T-MATCH, we obtain
T, [v/z]T" + match [v/z]y with {p; — [v/x]e;}/~ :
[v/z]T.Sincewehave[v/z]e = match [v/z|y with {p; —
[v/x]e;}i,, wegetT, [v/z]" & [v/x]e : [v/x]T.

e Otherwise, we have [v/zly = v and Va.T, = T'.
I, [v/z]I" + v : T" follows immediately. We prove that
pi L v:T > [v/z]T; by case analysison p;.

Casep; = z By P-VAR,wegetI'; = z : 7. By P-VAR’,
wegetp; | v: T > [v/x]T;.

Casep; = (z1,...,Tm) By P-TUPLE, weget['; = z; :
Ti,....Zm : Tyl = 21 A -+ ANxz.m = x,, and
T ={v:Ti X+ XTn | ¢o}. By P-TUPLE', we get
pi L v:T o [v/z]T;.

Casep; = K By P-KONO, we obtain

ST = /)6,

“T'={v:T B| ¢o},and

*TS(K)=Va.{v:aB| ¢}
By P-KoNO', wegetp; | v: T’ > [v/z]T;.

Casep; = K z By P-KON1, we get

0y =2z:[T/a|T., [z/v1,z/v2]0,

*T' ={vy: T B| ¢}, and

" TS(K)=Vauw :T. - {1 :aB| ¢}
By P-KoNl',wegetp; | v: T > [v/z]T;.

By T-MATCH’,weobtainT, [v/x]T” F match [v/z]y with {p; —

[v/z]ei}izy @ [v/z]T. Since it follows that [v/z]e =
match [v/z|y with {p; — [v/z]e; }i~,, wegetT, [v/z]T
[v/zle : [v/z]T.
T-Match’ We have e = match v’ with {p; — e;}{~,, where
e x:T' TVFo : Ty,
® D; Lv' :TmDFi,
e,z:T' IT'.TiFe;: T, and
e dom(I;) NFV(T) =0foralie{1,...,m}.
By I.H., we obtain T, [v/z]l" F [v/z]v" : [v/z]T, and
T, [v/z|T',T; & [v/z]e; : [v/x]T fordli € {1,...,m}. By

T-MATCH', we get ', [v/x]T” + match [v/z]v’ with {p; —

e If ¢; isnot avalue, only E-CONTEXT appliesto e and thus

[v/x]e;}ity : [v/z]T. Sincewehave [v/x]e = match [v/z]v’ with {p, — wegete = e} e> for somee} suchthat ey — ef.

[v/x]e; }it i, wegetT, [v/z]T" & [v/z]e : [v/x]T.
T-Fail Wehavee = fail.
Since [v/z]e = fail, wehave T, [v/z|l" + [v/x]e : [v/z]|T.
T-Sub Wehave I',z : T/, " - e : T" and ',z : T',TV +
T" <: T.By lH, weget T, [v/z]l" F [v/z]e : [v/x]T".
By LemmaD.1, we obtain T, [v/z]I" + [v/x]T" <: [v/z]|T.
By T-SuB, weobtain T, [v/z]T" I [v/z]e : [v/z]T.

O

LemmaD.3. Suppose that

elkuov:T,
eplv:T T,
e.T"+Fe:T,and
* p = Unify(p,v).
Then, ' = p(e) : p(T') isderivable.

Proof. We prove the lemma by case analysis of the structure of p.

Casep =z Wehavep = {z — v}. By P-VAR,wegetT’ =z :
T'.By LemmaD.2, weobtain T - p(e) : p(T).

Casep= K Wehavev = k and p = (). By P-KONO’, we get
I'" = [v/vjpand T = {v : T B | ¢o}, where TS(K) =
Va{v : @ B | ¢}. Weget T, [v/v]¢p F p(e) : T. Since
[v/vlp =T and p(T) = T, weobtan ' - p(e) : p(T).

Casep=KzWehaev = Ko adp = {z — o'}. By
P-KON1', we get

o =g : [T/AT", [x/v1,v/v2]0,

o T'={us:T B|¢o},and

e 7TS(K) =Va.v : T" — {vs : a B | ¢}.
We have I' + o : [T/a&]T". By Lemma D.2, we obtain
T, [v' /v1,v/ve)é = ple) : p(T). Since [v /vi,v/va]p = T,
weobtan 't p(e) : p(T).

Casep = (z1,...,2m) We have v = (v1,...,vm) and p =
{1 — vi,...,Tm — vm}. By P-TUPLE’, we get TV =
z1 > Ty, 2 Tyvl = 1 Ao Avm = Ty

ad T = {v : Th X -+ X Ty | ¢o}. We have T
v; + Ty foral i € {1,...,m}. By Lemma D.2, we obtain
Dovl = vi A~ Avm = v, F ple) + p(T). Since
vl=viA---Av.m=uvy, =T,weobtanT I p(e) : p(T).

O

Lemma D.4 (Preservation). SupposethatT' Fe: T ande — €.
Then, I' - €’ : T isderivable.

Proof. We prove the lemma by induction on the derivation of T +
e:T.

T-Var Wehavee = .

This caseisimpossible since thereisno e’ such that e — ¢’.
T-Con Wehavee = c.

This caseisimpossible sincethereisno e’ such that e — €.
T-Tuple Wehavee = (v1,...,vm).

This caseisimpossible since thereisno e’ such that e — ¢’.
T-Abs Wehavee = Az.e;.

This caseisimpossible since thereisno e’ such that e — ¢’.
T-App We havee = e ea, Wwhere T ey @ (z : T — T),

T'kes: T andz & FV(T).

By l.H,wegetT' e} : (z: T —T).
By T-App, weobtainT' I~ ¢} ex : T'
If e; isavaue and ez is not a value, only E-CONTEXT
applies to e and thus we get ¢’ = e; €5 for some e such
that e; — €5.
By l.H.,wegetT e : T".
By T-App, weobtanT' ey e : T
e Otherwise, e; = Az.e¢” and only E-APP appliesto e and
thuswe get e’ = [e2/z]e”.
Wehavel',z : Ty Fe’ :Toand Tz : T) — Ty <: x :

T —T.

By S-FuN,weobtainI' - 7" <: Ty and ',z : T - T <:
T.

By LemmaD.land [ex/z]T = T',wehavel \- [ex/x]Toh <:
T

By T-SuB, wegetI' - e5 : T}
By LemmaD.2, wehaveT | [e2/x]e” : [e2/x]|To.
By T-SuB, weobtain T + [e2/x]e” : T.
T-Let We have e = letx = e; ines, WhereT + e; @ T,
Dyx:T' Fex:T,andx & FV(T).
e If ¢; isavaue, only E-LET applies to e and thus we get
e = [e1/]ea.
By LemmaD.2, wehavel' & [e1/x]es : T
e Otherwise, only E-CONTEXT applies to e and thus we get
e/ =let x =€} in e, for somee] suchthat e; — €.
By l.H,wegetT' ¢} : T".
By T-LET, weobtanI' - let . = €} inep : T
T-Fix We have e = fixx.e;, Wwhere ',z : T + e; :: T and
x & FV(T).
Only E-Fix appliesto e and thuswe get ¢’ = [fix z.e/x]e.
By LemmaD.2, wehavel & [fix z.e/z]e: T.
T-Kon0 Wehavee = K.
This caseisimpossible since thereisno e’ such that e — ¢’.
T-Konl We havee = K e;, where TS(K) = Va.T',T + e; :
T . TH[T/aT <:2z:T" —T,andx ¢ FV(T).
Only E-CONTEXT applied to e and thuswe get ¢’ = K ¢} for
some e suchthat e; — ef.
By I.H.,weobtainI" ¢} : T".
By T-KoN1,wehavel' - K ¢} : T.
T-Match Wehave e = match = with {p; — e;}i~;.
This caseisimpossible sincethereisno ¢’ such that e — ¢’.
T-Match’ Wehave e = match v with {p; — e;}i~;, where
el'Fw:T,
epi |v:T' Ty,
° F,Fi Foe; :T,and
e dom(I) NFV(T) =0foralie{1,...,m}.
Only E-MATCH applies and thus we get ¢’ = p(e;) for some
1 € {1,...,m} and p = Unify(p;,v). By Lemma D.3, we
obtainT' F p(e;) : p(T'). Thus,wegetT' - p(e;) : T.
T-Fail Wehavee = fail.
This caseisimpossible sincethereisno ¢’ such that e — ¢€’.
T-Sub Wehavel' e : T'andT' - T' <: T.
By I.H.,weobtainI" ¢’ : T".
By T-SuB,weget' ¢’ : T.

D.2 Progress

Lemma D.5 (Progress). Suppose that - e : T and FV(e) = 0.
Then, either e isa value or there exist ¢’ such that e — ¢’.

Proof. We prove the lemma by induction on the derivation oft- ¢ :
T.

T-Var Thiscaseisimpossiblesince FV (e) = (.
T-Con Wehavee = c.

cisavalue.

T-Pair We have ¢ = (e1,...,em), Where - ¢; : T; for (i =
1,...,m).
By I.H., either e isavalue or there existsi € {1,...,m} such

that e; — €.
In the latter case, we can apply E-CONTEXT.
T-Abs Wehavee = Ax.e;.
Az.e; isavalue.
T-App Wehavee = e; ea, Where-e; : T — T, ex : T'
By I.H, (@ e; — ¢} or (b) ez — €5 or () e; and ez are
values.
In the cases (a) and (b), we can apply E-CONTEXT.
In the case (c), e1 = Az.e’ for some x and €’. Thus, we can
apply E-APP.
T-Let Wehavee = let = e; in eg, Wherel e : T7.
By |.H., either (@) e; — ¢ or (b) e, isavalue.
In the case (a), we can apply E-CONTEXT.
In the case (b), we can apply E-LET.
T-Fix Wehavee = fix z.e;.
We can apply E-Fix.
T-Kon0 Wehavee = K.
K isavaue.
T-Konl Wehavee = K e1, wheret e, : T".
By I.H., either (a) e; isavaueor (b) ey — €.
In the case (8), K e; isavalue.
In the case (b), we can apply E-CONTEXT.
T-Match Thiscaseisimpossiblesince FV (e) = {).
T-Match’ We have e = match v with {p; — e;}iz;.
We can apply E-MATCH.
T-Fail We havee = fail, where Valid([0] = L).
This caseisimpossible since Valid([] = L) isinconsistent.
T-Sub Wehavele: T'.
By I.H., either e isavalue or there exists ¢’ such that e — ¢’.

O

E. Proof of Soundness and Completeness of
Constraint Generation

This section proves Theorem C.2, which consists of agorithm
soundness and compl eteness. The algorithm soundness (LemmakE.2)
isproved in Section E.1. The algorithm completeness (LemmaE.5)
isproved in Section E.2.

E.1 Algorithm Soundness
LemmaE.1. If §(Gen.. (f - Ty < :’r;)) is valid, then 0(T') -
0(Ty) <: 0(T%) isderivable.
Proof. We prove the lemma by induction on the structure of T
CaseT, = a WehaveT, =
By S-VAR, weobtain (T") - a <: a.
CaseTy ={v: (T1,...,Tm) B | ¢1} Wehave
Ty ={v:(1{,...,T}) B | ¢}, and O([I', 1] = 12) and
0(Gen.. (f - T RE T;)) foralie {1,...,m}.
[0(T), 6(21)] = 6(x2) followsimmediately.

By I.H., we obtain 0(T) + 0(T,) R?" 0(T)) for al i €
{1,...,m}.

— —~

By S-Bask, itfollowsthat 6(T) - {v : (0(T1), ...
O(y1)} < {v: (0(T7),...,0(Th)) B | 0(1p2)}.

Siﬂce {l//\ (6(11),...,0(Tw)) B \/g(wl)} :AO({I/ :
(Th,...,Tw) B | 1/)/1\}) and/{\u : (G(T{),...,B(T,’n))AB |
0(v2)} = 0({v : (TV,....T},) B | 2}), weget 6(T') F
w{}u):(Tl,...,)B\q/)l}) <:0({v : (Ty,...,T%) B |

Caseﬁ:{u Ty x \1/;1}WehaveT2—{y: 1><
X T | s}, and@([[F vi{v:Tix - x T | 91}] = ¢2)

and 0(Gen., (r - T < T;)) forall i € {1, ... m}.
[0D), v« {v : 6(T1) x -+ x 0(T) | 0(y1)}] = 0(¢n)
follows immediately. -
By I.H., we obtain 6(T') + 6(T}) <: 6(T/) for dl i €
{1,...,m}.
By S-TUPLE, itfollovvsthate() {1/ (1) X -+
O(p1)} < {v: G(T’) x 0(T7) | 0(2)}-
Since {v : 0(T1) x (Tm) | 0(v1)} =0
T | ¢1}) and {v : G(T’) % 0(T}) | 9(¢)} =0({v:

’ﬂ
_/
o
/-\

T{x-..xT;anz}) wegeta(YEO{v Ty % - x T |
Ui}) < 0w T x -+ x Ty, | 42})
CaseTi =v:1T1 — Tll WehaveT2 =v:T5 — TQ’,
0(Genc. (f FT < Tl)), and
0(Genc. (f, v:Ty b i’ < ﬁ))
By I.H., we get 0(T) - 0(T) <: 6(Ty) and (T, v : T) +

0(T}) <: 0(T3).

Sinced(T, v : T3) = 0(T),v : 0(T>
0(T}) <: 0(T3).

By S-FUN, we obtain §(T') + v
0(T2) — 0(T3).

Sincev : Q(Tl) — 0(51\’) =0(v: T, — ﬁ) and v : 0(T) —
0() =0(v: T —>§1\’) weget@(f) Fo(v: ﬁaﬁ) <
0(1/ T2 — TQ)

), wegetO(T), v : 0(T)

L 0(Th) — 0(T}) <

O

Lemma E.2 (Algorithm Soundness). If 8(Gen (f Fe: T“)) is
valid, then 6(T) F e : 6(T) is derivable.

Proof. We prove the lemma by induction on the structure of e.

Casee =z Wehavez : Va. 0(’?) S Q(A) and
0(Gen.., (f - TY(x; [Lift(dom(T); 7) /& T7) < T))

ByT—VAR,weobtainO(Yz TY(x

By LemmaE.1, weget o) F O(TY(x

(7).

Since (7Y (x; [Lift(dom(T); 7)/a]T7)) =

TY(x; [0(Lift(dom(T); 7)) /a]0(T")), we get N

O(T) F TY(x; [0(Lift(dom(T); 7)) /a]0(T")) <: 0(T).
By T-SuB, weget O(T") -z : (7).

Casee = c Wehaveva.T' = TS() and
9(Gen.., (f F [Lift(dom(T); 7) /&) T" <: :F)).
By T-CoN, we have 6(T') + ¢ : [0(Lift(dom(I'); 7)) /a]T".
By LemmaE.1, we get (T) I 6([Lift(dom(T); 7)/a]T") <
0(T).

;[Lift (dom(); 7)/a]T"

; [B(Lift(dom (T)»?))/a]G(T’)

S|nceweget6([L1ft(dom();7)/a]T "= [H(Llft(dom();7))/aT’ ([L1ft(dom();7)/a)T’) = [0(Lift(dom(),T))A/&]G(T’),
we obtain 0(T) + [B(Lift(dom(T'); 7)) /G]T" <: 0(T). " weget O(T) - [0(Lift(dom(T); 7)) /al(T") <: 6(T).
By T-SuB, weget (T') - ¢ : 6(T). By T-SuB, weobtain () + K : o(f)

Casee = (v1,...,vm) We have T, = Lift(dom(T); ;) and Casee = K ¢’ Wehaveva.T' = K),T” = Lift(dom(T); 7),
G(Gen(f}—vi:ﬁ))foralli:{l,...,m},and x ¢ FV(T), o
0(Genc. (fl—{y;ﬁx...xf; v =(v1,...,0m)} <f)) 0(Genc. (FF[Llft(m(T);T)/a]T’<:a7:T//_>T)),and
By I.H., weobtain 6(T') - v; : (T}) forall i = {1,...,m} 6(Gen (F'_e/)

By T-TUPLE, we have O(T) F (v1,...,vm) : {v : G(ﬁ) X By I.H., we obtain 6(T') - ¢’ (T”)

- X 9(m) | v=(v1,...,0m)}. By LemmaE.1, we get (f) 9([L1ft(d0m();7)/a)T) <
ByLemmaE.l,wegete(FO{v :Tix - x T | v = 0(z:T" —T).
(W1, om)}) <: 6(T). Snce@([Llft(dom(f);?) JAIT") = [0(Lift(dom(T); 7)) /a)T"
Sincewe ({v : Th x -+ x Tpn | v = (v1,...,0m)}) = and Oz : T — T) = x : (T") — 6(T), we obtain
{2 0T) % - X v O(Tn) | v = (v1,...,0m)}, 0(T) F [0(Lift (dom(T); 7)) /&) T <: & : 0(T") — 6(T).
we have O(T) = {v1 : O(T1) x -+ X v+ 0(L) | v = By T-KoN1, weget 6(T') - K ¢’ : 0(T).
(V1 ..oy Um)} <t G(A) R Casee = match z with {p; — e;}/Z; Wehave : V&'.@(i\’) €
By T-Sus, weget 0(T") - (eq, .. em) : G(T). o(I),

Casee = Az.¢’ We have §(Gen (F Ty ke)) and T = pilax: [f(LAift(dom(lA“) 7)/alo(T")) > 6(1) and
2 T ST (Gen(FF-}—ei:))forallz‘e{l m}.

By I.H., wegete(2 e 0(2). By I.H., wegete(l“l“)l—el o(r)forallze{l ., m}.
since 6(T', Il) = 0(r) : 0(Tr), we obtain O(T), z : Since §(T, ;) = (),0(F), we get (T), 0(F) | e : 0(T)
O(Th) e : 6(Tz). foralie {1,. R

By T-ABs, weobtain 0(T) - Az.¢’ : (z : O(T)) — 6(2)) By T-MATEH, we obtain () + matchzwith{p; —
Since O(T) = « : O(T1) — 0(T3), we get O(T) + Aa.e’ ei}izy : 0(T). R

o(T). Casee = fail Wehaved([I'] = L1).

Casee = e1 e2 Wehave T’ = Lift(dom(f); 7), [[9(=1 fOHO\NS'mmed'ately
0(Gen (f Fei:(z:T — f))), « ¢ FV(T), and By T-FAIL, we get 0(T) - fail : 0(T).
0(Gen (f}—eg T\’)) O
E%H wegetO(I') Fep : 0(x: T — T)and (") - ez : E.2 Algorithm Completeness
Si(ncg oz : T - T) = a - 0@\,) — 6(T), we have Lemma Ef. II\O(F)AF 0(Ty) <: 6(T) is derivable, then
g(f) Fep:a: G(f\’) N g(f) 0(Genc. (F =T <: Tg)) isvalid.

By T-APP, we obtain 6(T') + e; s : 6(T).

Casee = let # = e in ey We have Va1’ — Lift(dom(f); o), Proof. We prove the lemma by induction on the derivation of
anFTV(T) =0, O(T) - 0(Th) <: 6(Tz).
0(Gen (TFexs 7)), and0(Gen (T2 :VaT Fex: T)). svar Wehaved(T)) = o and 0(T5) = .

By/\I.H., we get 9(?) Ferp: 9(51\’) and G(ﬁx : V&.?) Fes: We ha\/eﬁ = q, i"; = o, and Gen.. (f - ﬁ <: ﬁ) =T
o0(T).

0(T) follows.
S-Base We have §(T}) = {v : (T1,...,T) B | ¢1} and
0(To) = {v: (T},...,T.) B | ¢}, where Valid([0(T), 1] =

Since§(T,z : Va.T') = 6(T), = : Va.0(T"), we get 6(T), =
Va.o(T") b= ez : O(T).

By T-LET, wehave 6(I') - let z=el iAnez : OET). ¢2) and §(T) - T; RE T for dlie{l,...,m}.

Casee = fix z.e/ Wehave@(Gen(F z:Tke:T)). We haveT1 = {v: (T17-~~7T) B | 1111} T2 _ {,/ .
By L.H., weobtame(r T T)}—e o(T). R (T{,...,T}h) B | 12}, and Gen., (FFTl < Tz) = ([T, 1] =
Sm;e(zegl“ z:T)=0(T),z: 0(T), wehave (), z : 0(T)) A AT, Gen, (Fl—Ti REB T{)-

e = . .
By T-Fix, weget 6(T') b fix z.c : 0(T). ([T, 1] = ¢2) followsimmediately.

Casee = K WehaveVa.T' = TS(K) and By I.H., we get (Gen.. (r - T, R Tg)) for dl i €
0(Gen.. (f F [Lift(dom(T); 7)/&|T" <: :F)) {,..omp
By T-KonO, weget 6(T) - K : [¢(Lift(dom(T);7))/alo(7”). ~ STuple Wehave 0(11) = {v : Ti x - x T | 1} and
By LemmaE.1, weobtain 6(T') - 6([Lift(dom(T); 7)/a|T") <: 0(Tz) = {v : Ty x - X Ty, | @2}, where Valid([0(I'), v
g(j“\) {l/ Ty X oo X T, | ¢1}H = ¢2) and G(P) T <: Ti, for all
Sinceit isthe case that ie{l,...,m

WehaveTi = {v : T\ x - x T | 1}, b = {v :
T x - x T} | 2}, and

Genc. (fl—ﬁ<:ﬁ) = ([[f,u v ﬁx an |
il =) n
Ny Gene, (DT, < T7).

O(C,v : {v : Ty x -+ x Ton | t¥1}] = 2) follows
immediately.

By I.H.,weget §(Gen_. (f T < ﬁ))forall ie{l,...,m}.

S-Fun Wehave 0(T) = v : Ty — T{ and 0(T3) = v : T» — T3,
where 6(T ") B To <: Ty and (T) v:Tp Ty < T2
Weha\/eT1: T11—>T12 T2:V T21_>T221
and Gen.. (f T < Tz) = Genc, (f - Toa < Tl,l)
Gen.. (f,l/ : fg\l = ’1/’1\2 <: f;)

Since (L), v : Ty = O(T, v : To1), wehave O(T, v : Toy)
Q(Tl,g) <: Q(TQ’Q).

By I.H., we get §(Gen., (F FToq < TM)) and

0(Gen. (f, v fz\l F 1/“1\2 < @;))

O

LemmaE.4. 1f0(Gen (f Fe: T’)) and 0(Gen-, (f FT < T)),

then 6(Gen (f Fe: T))

Proof. We can prove the lemma by induction on the structure of
e. O

Lemma E.5 (Algorithm Completeness). 1f (T) + e : 6(T) is

derivable, then thereexists#’ suchthat 6 C 6’ and 6’ (Gen (f Fe: :F))

isvalid.

Proof. We prove the lemma by induction on the derivation of
() - e:6(T).

T-Var We have e = z and 0T) = T
z:Va.T € ().
We have Gen (f F (7] : IA“) =
Gen.. (fl—Ty([Lift(dom(T); 7)/&T) <: T) where
z:va.T eT.
There exists ¢’ such that 0 C 6’ and

0'(TY(x; [Lift(dom(T); 7) /&]T)) = 6/(T).
By LemmaE.3, there exists #” such that ¢’ C 6" and

0" (Gen., (f - TY(x; [Lift(dom(T); 7) /&] T) <: T)).
T-Con We have ¢ = ¢ and 6(T) = [T/a|T, where TS(c) =
Va.T. ~ -
We have Gen (r GE T) =
Genc. (f b [Lift(dom(T'); 7) /& T <: f)
Thereexists#’ suchthat 6 C 6’ and ¢’ ([Lift(dom(T'); 7) /&|T) =
0'(T).
By LemmaE.3, there exists 0" such that 0’ C 6" and
9" (Gen., (r - [Lift (dom(T); 7) /& T <: T))
T-TupleWe have ¢ = (v1,...,vm) and 6(T) = {v : T) x

X Ty | v = (vl,...,um)},wherea(f) v @ T for
dlie{l,...,m

We have Gen (fl— (v1 : Tl,...,vm:Tm):f) =
AL, Gen (fFvi:ﬁ) A

(z; [T /&T), where

T-Abs We have e =

T-Let We have e = letx = erines and 9() =

Genc. (fl—{y:ﬁx ~~an|uz(v1,...,vm)}<:f),

where 7, = Lift(dom(T); ;) forali € {1,...,m}.

There exists 6’ such that 6 C 6" and T, = ¢/(T) for all
1e{l,...,m}.

0'(T) - v, : 0/'(T;) followsimmediately forall i € {1,...,m}.

By I.H., thereexists " suchthat 6’ C 6" and 0" (Gen (f Foe ﬁ))
fordlie {1,...,m}.

gncﬁg”({y Tix o x T | v = (v1,...,0m)}) = {v:
0" (T1) X -+ x 0"(Tp) | v = (v1,...,vm)}) = 0"(T), we
have ¢ (T) + 0" ({v Tyix- - xTm [v=(vi,...,0m)}) <

0" (T).

By LemmaE.3, there exists §”’ such that "’ C 0"’ and

0" (Gen, (f F{v:Th X XTm|v=_(v1,...,0m)} <: f))
Mr.e' and 0(T) = = : T — T', where
OT),x:Tkre :T.

We have Gen (f FAz.e :(x: T — ﬁ)) =

Gen (f,m:ﬁF e : f’;)

Thereexists 6’ suchthat 0 C ¢/, T = ¢'(T3),and T" = 0’ (T%).
Since®’(T),z: T =6 (T,z:T1),wegetd' (T',x: Ty) ke :
0'(T>).

By Lemma E.3, there exists 6" such that ¢ C 6" and
0" (Gen (f,:r ‘T Feé - ﬁ))

T-App Wehavee = e; e; and §(T) = T, where (T') - e1 : (z

T —T),0T)Fey: T, andz ¢ FV(T).

We have Gen (F Fei(e2:7): T) =

Gen (Fl—el : (m:T’ —>T)) A Gen (fl—eg :i’\’), where
T’ = Lift(dom(T'); 7) and = ¢ FV(T).

Thereexists ¢’ suchthat 0 C 0', 7' = 6'(T"),and T = 6'(T).
Sincex : T" - T =0(z: T — T),wehave 0'(T') F e; :
0 (x:T —1T).

By I.H., there exists #” such that 8" C 6",

0" (Gen (f Fei:(z: T — ’f))),and "’ (Gen (F Fes:)
T, where
OT) ke : T, anFTV(0 () =0, 9(), o Va.T F es :
T,andz ¢ FV(T).

We have Gen (fl— letz:0 =e1ines: f) =
Gen(fFel :T\’)/\

Gen (f z:VaT b eyt f),wherev&j:’ = Lift(dom(T); o)
and @ NFTV(T) = 0. N

Thereexists ¢’ suchthat ¢ C ¢" and 7" = 6'(T").

Since ¢’ @),z :va.T =0 T,z :Va.T"), weobtain 0/ (T,

Va. T eyt 0 (T)

By I.H., thereexists " suchthat 6" C 6", 0" (Gen (f Fep: fF\')),

and
0" (Gen (f z:VaT ket TA"))

TleWehavee_flxxe and 6(T) = T, where §(T'),z : T +

T

:Tandz ¢ FV(T).
WehaveGen (f Ffixz.e :)
Since 0(T),z : T = (T, z : T), w
o(T).

(f,w:f%e’:f’).
havee(f,x :T) ke :

By |.H., thereexists 6’ suchthat 6 C 6’,6'(Gen (f,x Tre: f)).

T-Kon0 Wehavee = K and 6(T) = [T/a|T’, where TS(K) =
va.T'. - -

We have Gen (F FKI[7]: T) =

Genc, (f F [Lift(dom(D); 7) /T <: cf)

whereVa.T' = TS(K). ~
Thereexists¢’ suchthat § C 6" and ¢’ ([Lift(dom(T'); 7)/&]T") =
6'(T).

By LemmaE.3, there exists #” such that ¢’ C ¢"" and

0" (Gen., (r - [Lift (dom(T); 7) /& T" <: T))

T-Konl We have e = K ¢’ and 0(~) = T, where TS(K) =
va.T, o) Fe T, 0() - [T/a]T <:z:T" — T, and
x & FV(T).

We have Gen (fFK[“](g)f) =

Genc. (F F [Lift(dom(D); 7)/&)T" <: 2 : T7 — T)

Gen (F Fe': T”),WhereVa.T’ = TS(K),T” = Lift(dom(T); 7),
andz ¢ FV(T). R -

There exists ¢ such that 0 C ¢', ¢'(Lift(dom(T'); 7)) = T,
0T =T",and ¢ (T) = T.

By LemmakE.3, there exists " such that ' C 6" and

0" (Genc, (F - [Lift(dom(T); 7) /&) T <: 2 : T" — T
By I.H., there exists 8" such that 0” C 0" and

0" (Gen (f e f’\’))

T-Match Wehave e = match z with {p; — e;}i, and o(T) =
T,Awhere x o vaT € 00), p; | z : [T/a)T" > Ty,
9(1—‘),1—‘1 = e, T, and dom(f‘l) N FV(T) = @ for all
1e{l,...,m}.
We have Gen <f“ =

).

SN——

match z[7] with
m 2T) =
{pi = eidity
/\TIGen(f Tikei: A) wherez : Va.7’ € T and p; |
x ¢ [Lift(dom(T); 7)/a]T" > T foral i € {1,...,m}.
There exists 0" suchthat 0 C ¢, ¢’ (L1ft(dom() 7-)) :AT.
Since (1), T; = 0/(T',T), we get ¢'(T', 1) + e; : 0/ (T) for
alie{l,.
By I.H., thereemsts@” suchthat ¢ C 9" and

0" (Gen (RFZ Fei:)) foralie {1,...,m}.

T-Fail Wehavee = fail and 6(T) = T, where Valid ([6(T')] =
1).
We have Gen (f F fail: f) = [[f]] = 1.
0([T] = L) followsimmediately.

T-Sub We have 6(T) = T, where 6(T) + e : T' and () +
T <:T. N
By I.H., thereexists§’ suchthat C ¢’ and ¢’ (Gen (T e : T")).
By Lemma E.3, there exists §” such that & C 6” and
0" (Gen.. (f T < T)).
By LemmaE.4, we get 8" (Gen (f Fe: T)).

