Constraint Solving and Machine Learning for Program Verification and Synthesis

Hiroshi Unno
University of Tsukuba / RIKEN AIP

www.cs.tsukuba.ac.jp/~uhiro

Research Interests

- Formal specification, verification, and synthesis
 of (mainly but not limited to) higher-order functional programs
 by AI techniques such as constraint solving and machine learning
- Ongoing projects
 - Synthesis of High-Level Programs from Temporal and Relational Specifications (PI: Hiroshi Unno)
 - Program Verification Techniques for the AI Era (PI: Naoki Kobayashi)
 - AI Security and Privacy (PI: Jun Sakuma)
 - Metamathematics for Systems Design Project (PI: Ichiro Hasuo)
 - ...

This Talk

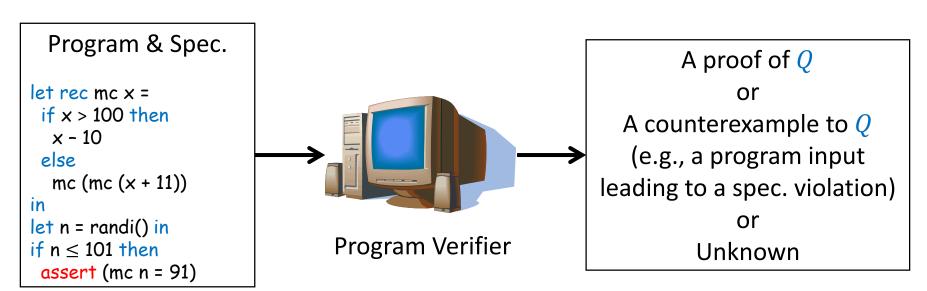
 Tutorial of program verification and synthesis based on constraint solving and machine learning

Background

- Our society heavily relies on computer systems
- Failure or malfunction of safety-critical systems would lead to human, social, economic, and environmental damage
 - 1985-1987 Therac-25 medical accelerator delivered lethal radiation doses to patients
 - June 4, 1996 Ariane 5 Flight 501 exploded
 - February, 2014 1.9 million Prius cars recalled
 - April, 2014 OpenSSL Heartbleed vulnerability disclosed
 - June 17, 2016 Ethereum DAO attacked, over \$55M stolen
- Reliability assurance of safety-critical systems is crucial

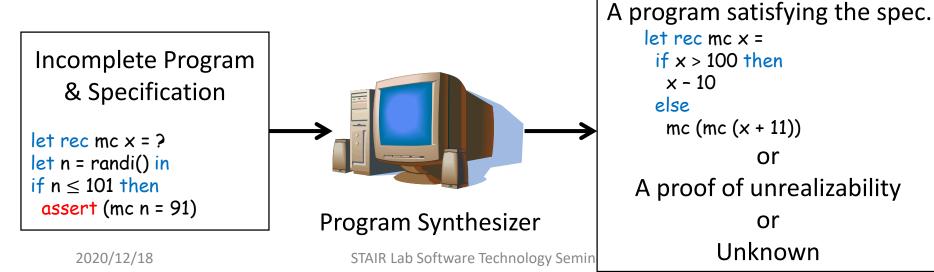
Program Verification

- Formally prove or disprove a mathematical proposition Q:
 "The given program satisfies its formal specification"
- Great attentions from industry and academia
 - Microsoft's SLAM & Everest projects, Facebook's Infer, AWS
 - Turing awards to Hoare logic, temporal logic, model checking, ...



Program Synthesis

- Input an incomplete program and its specification ϕ , and output an executable program P that satisfies ϕ
 - ϕ specifies extensional (what P computes) and/or intentional (how P computes) behaviors of P
 - ϕ is represented as a logical formula, input/output examples (e.g., MS Excel FlashFill), a natural language sentence, ...



Enabling Technologies

- **Program logics** for mechanizing verification & synthesis
 - Hoare logic for proving Hoare triples $\{P\}c\{Q\}$ meaning that: For any initial state σ that satisfies the precondition P, if the execution of the program c under σ terminates, the postcondition Q is satisfied by the resulting state
 - Separation logic
 - Dependent refinement type system
 - Graded modal type system
- Constraint solvers for automating verification & synthesis
 - SAT solvers: satisfiability checker for propositional formulas
 - SMT solvers: satisfiability checker for predicate formulas over first-order theories on *integers, reals, lists, arrays*, ...

What about functions (that represent inductive invariants, ranking functions, recurrent sets, Skolem functions, ...)?

This Talk

- Tutorial of program verification and synthesis based on constraint solving and machine learning over functions
- First part: How to reduce program verification and synthesis to constraint solving
- Second part: How to solve constraints via integrated deductive and inductive reasoning
 - Deductive reasoning by theorem proving (e.g., SAT, SMT)
 - *Inductive* reasoning by *machine learning* (e.g., decision tree learning, reinforcement learning)

This Talk

- Tutorial of program verification and synthesis based on constraint solving and machine learning over functions
- First part: How to reduce program verification and synthesis to constraint solving
- Second part: How to solve constraints via integrated deductive and inductive reasoning
 - Deductive reasoning by theorem proving (e.g., SAT, SMT)
 - *Inductive* reasoning by *machine learning* (e.g., decision tree learning, reinforcement learning)

Program Verification via Constraint Solving

Target Program P & Specification ψ Constraint Generation Constraints *C* on *Function Variables* **Verification Intermediary** Constraint **Independent of Particular** Solving Target and Method $oldsymbol{ol}oldsymbol{ol}}}}}}}}}}}}}}$ $\boldsymbol{\mathcal{C}}$ is **Sat** (\boldsymbol{P} satisfies $\boldsymbol{\psi}$), $\boldsymbol{\mathcal{C}}$ is **Unsat** (\boldsymbol{P} violates $\boldsymbol{\psi}$), or Unknown

Program Verification via Constrained Horn Clauses (CHCs)

Target Program $extbf{ extit{P}}$ & Specification $extbf{ extit{\psi}}$

JayHorn for Java [Kahsai+ '16] SeaHorn for C [Gurfinkel+ '15]

RCaml for OCaml [Unno+'09]

CHCs Constraints **C** on **Predicate Variables**

SPACER [Komuravelli+ '14] Hoice [Champion+ '18] Eldarica [Hojjat+ '18]

 $\boldsymbol{\mathcal{C}}$ is **Sat** (\boldsymbol{P} satisfies $\boldsymbol{\psi}$), $\boldsymbol{\mathcal{C}}$ is **Unsat** (\boldsymbol{P} violates $\boldsymbol{\psi}$), or **Unknown**

CHCs: Constrained Horn Clauses (see e.g., [Bjørner+ '15])

• A finite set *C* of *Horn-clauses* of either form:

$$X_0(\widetilde{t_0}) \longleftarrow (X_1(\widetilde{t_1}) \land \dots \land X_m(\widetilde{t_m}) \land \phi)$$
or $\bot \longleftarrow (X_1(\widetilde{t_1}) \land \dots \land X_m(\widetilde{t_m}) \land \phi)$

where $X_0, X_1, ..., X_m$ are predicate variables, $\widetilde{t_0}, ..., \widetilde{t_m}$ are sequences of terms of a 1st-order theory T, ϕ is a formula of T without predicate variables.

• \mathcal{C} is *satisfiable* (modulo T) if there is an interpretation ρ of predicate variables such that $\rho \models \Lambda \mathcal{C}$

CHCs

SAT or UNSAT

Constraint Generation

Constraint Solving

Example Program and Partial Correctness Specification:

Precondition

$$\{x = x_0\}$$

$$y = 0;$$
while $x \neq 0$ do

$$y \leftarrow y + 1;$$

 $x \leftarrow x - 1$

Postcondition

$$\{y = x_0\}$$

If the initial state satisfies the pre-condition $x = x_0$ and the loop terminates

the post-condition $y = x_0$ is satisfied by the resulting state

Prog. & Spec.

CHCs

SAT or UNSAT

Constraint Generation

Constraint Solving

Input:

$$\{x = x_0\}$$

$$y = 0;$$
while $x \neq 0$ do
$$y \leftarrow y + 1;$$

$$x \leftarrow x - 1$$
done
$$\{y = x_0\}$$

Output C:

represents a *loop invariant*

- $(1) \quad I(x_0, x, y) \leftarrow x = x_0 \land y = 0,$
- 2 $I(x_0, x 1, y + 1)$ $\Leftarrow I(x_0, x, y) \land x \neq 0,$

 \mathcal{C} is *satisfiable*, witnessed by a solution $I(x_0, x, y) \equiv x_0 = x + y$

Program Verification via Constrained Horn Clauses (CHCs)

Target Program ${\it P}$ & Specification ${\it \psi}$

Constraint Generation

CHCs Constraints **C** on **Predicate Variables**

Constraint
Solving

 $\boldsymbol{\mathcal{C}}$ is **Sat** (\boldsymbol{P} satisfies $\boldsymbol{\psi}$), $\boldsymbol{\mathcal{C}}$ is **Unsat** (\boldsymbol{P} violates $\boldsymbol{\psi}$), or **Unknown**

Program Verification via Predicate Constraint Satisfaction [Satake+ '20]

Target Program ${\it P}$ & Specification ${\it \psi}$

Applicable to (Finitely-)
Branching-Time Safety
Verification ©

Constraint Generation

pCSP Constraints C on Predicate Variables

Constraint PCSat [Satake+ '20, Unno+ '20]

 $\boldsymbol{\mathcal{C}}$ is **Sat** (\boldsymbol{P} satisfies $\boldsymbol{\psi}$), $\boldsymbol{\mathcal{C}}$ is **Unsat** (\boldsymbol{P} violates $\boldsymbol{\psi}$), or **Unknown**

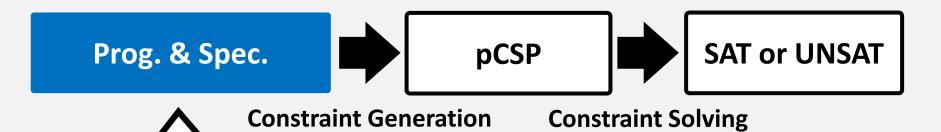
Linear-Time vs. Branching-Time Verification of Non-det. Programs

- The target program P may exhibit non-determinism caused by user input, network comm., scheduling, ...
- Linear-time verification concerns properties of the execution traces of P
- Branching-time verification concerns properties of the computation tree of P
 - Subsumes linear-time verification
 - Example: Non-termination verification of deciding whether there is an infinite execution of P
 (cf. termination verification decides whether all execution of P is finite)

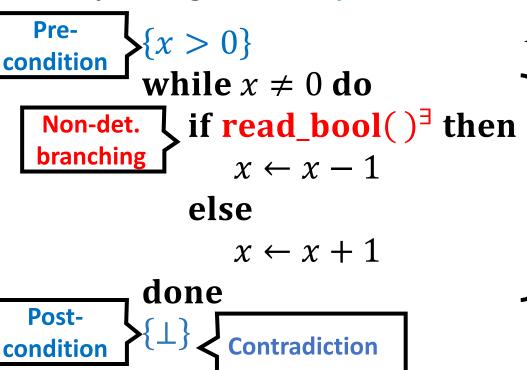
pCSP: Predicate Constraint Satisfaction Problem [Satake+ '20]

• A finite set *C* of *clauses* of the form:

- \mathcal{C} is *satisfiable* (modulo T) if there is an interpretation ρ of predicate variables such that $\rho \models \Lambda \mathcal{C}$
- \mathcal{C} is **CHCs** if $\ell \leq 1$ for all clause in \mathcal{C}



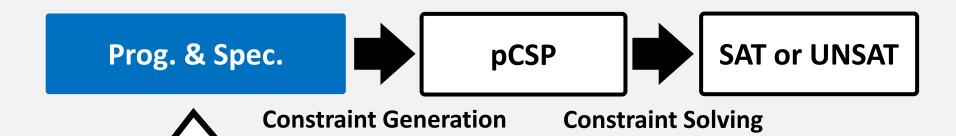
Example Program and Specification:



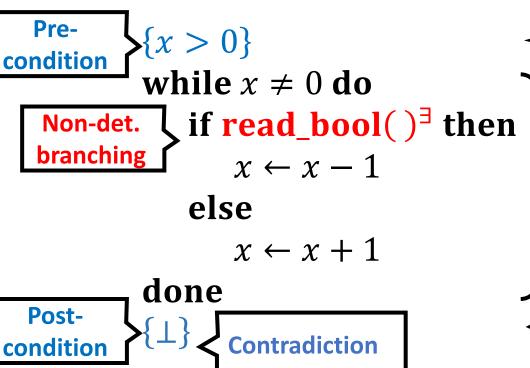
If the initial state satisfies the pre-condition x > 0

there is an execution of the program such that

the post-condition ⊥ is satisfied when the while loop terminates



Example Program and Specification:



If the initial state satisfies the pre-condition x > 0

there is an execution of the program such that

the while loop never terminates

Prog. & Spec.

pCSP

SAT or UNSAT

Constraint Generation

Constraint Solving represents a *loop invariant* preserved by **some** execution _ (i.e., re<u>current set)</u>

Input:

$$\{x > 0\}$$
while $x \neq 0$ do
if read_bool()³ then
$$x \leftarrow x - 1$$
else
$$x \leftarrow x + 1$$

done

 $I(x) \Leftarrow x > 0$

(2)
$$I(x-1) \lor I(x+1)$$

Output C:

C is beyond
$$\leftarrow I(x) \land x \neq 0$$
, CHCs!

$$\exists \quad \bot \longleftarrow I(x) \land x = 0$$

 ${\cal C}$ is *satisfiable*, witnessed by

a solution $I(x) \equiv x > 0$

 $\{\bot\}$

Program Verification via Extended Predicate Constraint Satisfaction [Unno+ '20]

Target Program ${\it P}$ & Specification ${\it \psi}$

Applicable to (Infinitely-)
Branching-Time Safety &
Liveness Verification ©

Constraint Generation

pfwCSP Constraints **C** on **Predicate Variables**

Constraint Solving

PCSat [Satake+'20, Unno+'20]

 $\boldsymbol{\mathcal{C}}$ is **Sat** (\boldsymbol{P} satisfies $\boldsymbol{\psi}$), $\boldsymbol{\mathcal{C}}$ is **Unsat** (\boldsymbol{P} violates $\boldsymbol{\psi}$), or **Unknown**

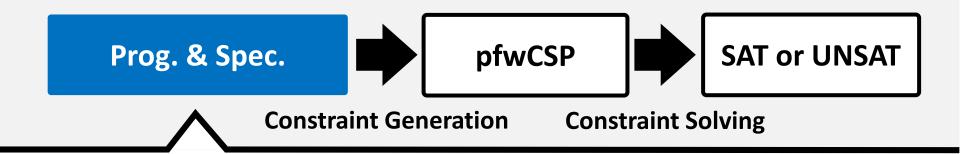
Safety vs. Liveness Verification

- Safety is a class of properties of the form "something bad will never happen"
 - Examples (absence of): assertion failure, division-by-zero, array boundary violation, ...
- Liveness is a class of properties of the form "something good will eventually happen"
 - Examples: termination, deadlock freedom, ...

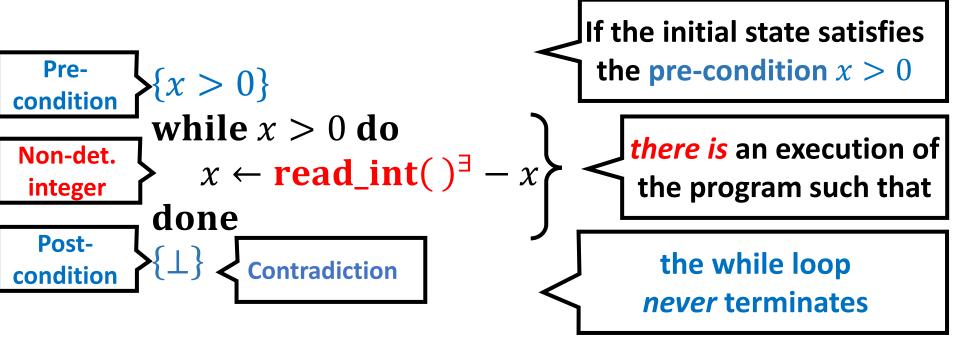
pfwCSP: Extension of pCSP with Functional and Well-founded Predicates [Unno+ '20]

(cf. ∀∃CHCs with dwf [Beyene+ '13])

- A finite set \mathcal{C} of pCSP clauses equipped with a map \mathcal{K} from predicate variable X in \mathcal{C} to $\{\star, \lambda, \downarrow\}$
 - X is ordinary predicate if $\mathcal{K}(X) = \star$
 - *X* is *functional* predicate if $\mathcal{K}(X) = \lambda$
 - X is well-founded predicate if $\mathcal{K}(X) = \emptyset$
- ${\cal C}$ is *satisfiable* (modulo T) if there is an interpretation ρ of predicate variables such that
 - $\rho \models \wedge \mathcal{C}$
 - $\forall X. \mathcal{K}(X) = \lambda \implies \rho(X)$ characterizes a **total function**
 - $\forall X. \mathcal{K}(X) = \emptyset \implies \rho(X)$ represents a well-founded relation



Example Program and Specification:



Prog. & Spec.

pfwCSP

SAT or UNSAT

Constraint Generation

Constraint Solving

Output \mathcal{C} :

represents a *loop invariant* preserved by **some** execution (i.e., recurrent set)

Input:

$$\{x > 0\}$$

while x > 0 do

$$x \leftarrow \text{read_int}()^{\exists} - x$$

 $I(x) \leftarrow x > 0$

 $(\exists r. I(r-x))$

done

$$\{\bot\}$$

 $oldsymbol{\mathcal{C}}$ is beyond $oldsymbol{\mathsf{pCSP}}$ but can be encoded in **pfwCSP** using a functional pred. *var.* that characterizes a **Skolem function** for $oldsymbol{r}$

$$\Leftarrow I(x) \land x > 0,$$

$$\bot \longleftarrow I(x) \land x \leq 0$$

Prog. & Spec.

pfwCSP

SAT or UNSAT

Constraint Generation

Constraint Solving

Input:

$$\{x > 0\}$$
while $x > 0$ do
$$x \leftarrow \text{read_int}()^{\exists} - x$$
done
 $\{\bot\}$

Output C:

characterizes a **Skolem** function mapping x to r

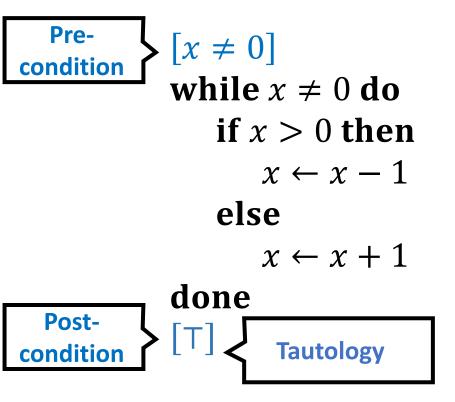
$$\wedge I(x) \wedge x > 0,$$

 $\exists \quad \bot \longleftarrow I(x) \land x \le 0$

C is *satisfiable*, witnessed by a solution

$$I(x) \equiv x > 0$$
, $S_{\lambda}(x, r) \equiv r = x + 1$

Example Program and Total Correctness Specification:



If the initial state satisfies the pre-condition $x \neq 0$

the loop always terminates and the post-condition ⊤ is satisfied by the resulting state

Prog. & Spec.

pfwCSP

SAT or UNSAT

Constraint Generation

Constraint Solving

Input:

[
$$x \neq 0$$
]
while $x \neq 0$ do
if $x > 0$ then
 $x \leftarrow x - 1$
else
 $x \leftarrow x + 1$

Output C:

represents a *loop invariant*

- $(1) \quad I(x) \leftarrow x = 0,$
- $(2) \quad I(x-1) \longleftarrow I(x) \land x > 0,$
- $(4) \quad T_{\Downarrow}(x,x-1) \longleftarrow I(x) \land x > 0,$

$$T_{\Downarrow}(x,x+1) \leftarrow I(x) \land x < 0,$$

represents a wellfounded relation for termination of the loop

done

C is satisfiable, witnessed by a solution

$$I(x) \equiv \top$$
, $T_{\downarrow\downarrow}(x, x') \equiv |x| > |x'| \ge 0$

Further Applications of pfwCSP

- Refinement type inference [Unno+'09,'13,'18, Nanjo'18, Katsura+'20]
- Validity checking of fixpoint logic formulas
- LTL, CTL*, modal-mu calculus model checking
- Infinite-state infinite-duration game solving
- Bisimulation and bisimilarity verification
- Hyperproperties verification
- Program synthesis
- ... (see [Unno+ '20] and upcoming papers)

Program Synthesis via Constraint Solving

Language \mathcal{L} & Specification ψ Constraint Generation Constraints C on Function Variables **Synthesis Intermediary** Constraint **Independent of Particular** Solving Target and Method 😊 \mathcal{C} is **Sat** (some $P \in \mathcal{L}$ satisfies ψ), \mathcal{C} is **Unsat** (all $P \in \mathcal{L}$ violates ψ), or Unknown

Program Synthesis via Syntax-Guided Synthesis (SyGuS)

Language $oldsymbol{\mathcal{L}}$ & Specification $oldsymbol{\psi}$

Constraint Generation

SyGuS Constraints **C** on Function Variables

Constraint Solving

CVC4 [Reynolds+'15,'19]
DryadSynth [Huang+'20]
PCSat [Satake+'20, Unno+'20]

 \mathcal{C} is **Sat** (some $P \in \mathcal{L}$ satisfies ψ), \mathcal{C} is **Unsat** (all $P \in \mathcal{L}$ violates ψ), or **Unknown**

SyGuS: Syntax-Guided Synthesis [Alur+'15]

- Fix a first-order background theory T such as:
 - Linear integer arithmetic (LIA)
 - Strings (for FlashFill benchmarks)
 - Bit-vectors (for Hackers' Delight benchmarks)
- Given
 - Specification: T-formula ϕ over a function variable f
 - Language: context-free grammar G characterizing the set $\mathcal{L}(G)$ of allowed T-terms
- Find a term $t \in \mathcal{L}(G)$ such that $\models [t/f]\phi$

Example LIA SyGuS Constraints C:

Language: G that generates any term of LIA

• Specification:
$$\phi \equiv \begin{pmatrix} f(x,y) \ge x \land f(x,y) \ge y \land \\ (f(x,y) = x \lor f(x,y) = y) \end{pmatrix}$$

- \mathcal{C} is satisfied by $f(x,y) \equiv if x > y$ then x else y
- **C** can be reduced to the **pfwCSP**:

$$r \ge x \land r \ge y \land (r = x \lor r = y) \longleftarrow F_{\lambda}(x, y, r)$$

In general, SyGuS constraints \mathcal{C} can be converted to a **pfwCSP** using a predicate that characterizes $\mathcal{L}(G)$

This Talk

- Tutorial of program verification and synthesis based on constraint solving and machine learning over functions
- First part: How to reduce program verification and synthesis to constraint solving
- Second part: How to solve constraints via integrated deductive and inductive reasoning
 - Deductive reasoning by theorem proving (e.g., SAT, SMT)
 - *Inductive* reasoning by *machine learning* (e.g., decision tree learning, reinforcement learning)

Program Verification and Synthesis via Predicate Constraint Satisfaction

Target Program P & Language £ & Specification ψ Specification ψ Constraint Generation **pfwCSP** Constraints **C** on **Predicate Variables** Constraint Solving C is Sat, C is Unsat, or Unknown

Challenges in Constraint Solving

- Undecidable in general even for decidable theories
- The search space of solutions is often very large (or unbounded), high-dimensional, and non-smooth

To address these challenges, researchers are integrating deductive & inductive reasoning techniques within the framework of CounterExample Guided Inductive Synthesis (CEGIS) [Solar-Lezama+'06]

CounterExample Guided Inductive Synthesis (CEGIS)

- Iteratively accumulate example instances \mathcal{E} of the given \mathcal{C} through the two phases for each iteration:
 - Synthesis Phase by Learner
 - Find a candidate solution ρ that satisfies \mathcal{E}
 - Validation Phase by Teacher
 - Check if the candidate ρ also satisfies \mathcal{C} (with an SMT solver)
 - If yes, return ρ as a genuine solution of C
 - If no, repeat the procedure with new example instances witnessing non-satisfaction of \mathcal{C} by ρ added

Learner

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcar{\mathcal{\matcacl{\matcaccl{\matcaccl{**

 $\mathbf{Q}_{\mathbf{p}}$

Starting from the empty set (C is a black b

Teacher

Constraints C:

- $I(x) \Leftarrow x > 0$
- $I(x-1) \lor I(x+1)$ $\Leftarrow I(x) \land x \neq 0$
- $\bot \leftarrow I(x) \land x = 0$

Is the candidate $\{I(x) \mapsto T\}$ genuine?

Learner

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcar{\mathcal{\matcacl{\matcaccl{\matcaccl{**

$$\bot \Leftarrow I(0) \land 0 = 0$$

Teacher

Constraints C:

•
$$I(x) \Leftarrow x > 0$$

$$\bullet I(x-1) \lor I(x+1)$$

$$\Leftarrow I(x) \land x \neq 0$$

•
$$\bot \Leftarrow I(x) \land x = 0$$

No. $\{I(x) \mapsto T\}$ is not.

The 3^{rd} clause is violated when x = 0

Learner

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcal{\matcacl{\matcacl{\matcaccl{\matcaccl{**

 $\neg I(0)$

Teacher

Constraints C:

•
$$I(x) \Leftarrow x > 0$$

•
$$I(x-1) \lor I(x+1)$$

 $\Leftarrow I(x) \land x \neq 0$

•
$$\bot \Leftarrow I(x) \land x = 0$$

Is the cand. $\{I(x) \mapsto x < 0\}$ genuine?

Learner

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcal{\matcacl{\matcacl{\matcaccl{\matcaccl{**

$$\neg I(0)$$

$$I(1) \Leftarrow 1 > 0$$

Teacher

Constraints C:

•
$$I(x) \Leftarrow x > 0$$

•
$$I(x-1) \lor I(x+1)$$

 $\Leftarrow I(x) \land x \neq 0$

•
$$\bot \leftarrow I(x) \land x = 0$$

No. $\{I(x) \mapsto x < 0\}$ is not.

The 1st clause is violated when x = 1

Learner

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcal{\matcacl{\matcaccl{\matcaccl{\matcaccl**

 $\neg I(0)$

I(1)

Teacher

Constraints C:

•
$$I(x) \Leftarrow x > 0$$

•
$$I(x-1) \lor I(x+1)$$

 $\Leftarrow I(x) \land x \neq 0$

•
$$\bot \Leftarrow I(x) \land x = 0$$

Is the cand. $\{I(x) \mapsto x = 1\}$ genuine?

Learner

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcar{\mathcal{\matcacl{\matcaccl{\matcaccl{**

Teacher

Constraints C:

•
$$I(x) \Leftarrow x > 0$$

$$\bullet I(x-1) \lor I(x+1)$$

$$\Leftarrow I(x) \land x \neq 0$$

•
$$\bot \leftarrow I(x) \land x = 0$$

No. $\{I(x) \mapsto x = 1\}$ is not.

The 2^{nd} clause is violated when x=1

Learner

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcar{\mathcal{\matcacl{\matcaccl{\matcaccl{**

Teacher

Constraints C:

•
$$I(x) \Leftarrow x > 0$$

•
$$I(x-1) \lor I(x+1)$$

 $\Leftarrow I(x) \land x \neq 0$

•
$$\bot \Leftarrow I(x) \land x = 0$$

Is the cand. $\{I(x) \mapsto x \ge 1\}$ genuine?

Learner

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcar{\mathcal{\matcacl{\matcaccl{\matcaccl{**

$$\begin{array}{c}
\neg I(0) \\
I(0) \lor I(2) \Leftarrow I(1) \\
I(1)
\end{array}$$

Teacher

Constraints C:

•
$$I(x) \Leftarrow x > 0$$

$$\bullet I(x-1) \lor I(x+1)$$

$$\Leftarrow I(x) \land x \neq 0$$

•
$$\bot \Leftarrow I(x) \land x = 0$$

Yes. $\{I(x) \mapsto x \ge 1\}$ satisfies C!

Is CEGIS just (Online) Supervised Learning of Classification?

Similarities

- Learner trains a model to fit examples \mathcal{E} and obtain ρ
- **Teacher** requires ρ to generalize to \mathcal{C} (ρ shouldn't overfit \mathcal{E})

Differences

- E is usually assumed to have no noise & C is hard constraints
- ρ is required to **exactly** satisfy \mathcal{E} (or has no chance to satisfy \mathcal{C})
- ρ should be **efficiently** handled by **Teacher** (i.e., an SMT solver)
- Sampling of \mathcal{E} from \mathcal{C} is not i.i.d (depends on ρ and **Teacher**)
- E may contain not only positive/negative examples but also arbitrary clause ones (cf. constrained semi-supervised learning)

Despite the differences, machine learning techniques turned out to be quite useful!

Machine Learning for CEGIS

- Adapt ML models and algorithms to implement Learner
 - Piecewise linear classifiers [Sharma+ '13a, Garg+ '14, Unno+ '20]
 - Decision trees [Krishna+'15, Garg+'16, Champion+'18, Ezudheen+'18, Zhu+'18]
 - Neural networks [Chang+ '19, Zhao+ '20, Abate+ '21]
 - Greedy set covering w/ logic minimization [Padhi+ '16, Sharma+ '13b]
 - Metropolis Hastings MCMC sampler [Sharma+ '14]
 - Probabilistic inference, survey propagation [Satake+'20]
 - Ensemble learning [Padhi+ '20]
- Learning to learn
 - Reinforcement learning of NNs to generate candidates [Si '18]
 - Reinforcement learning of strategy to adjust classification models used by Learner (joint work w/ Tsukada, Sekiyama, Suenaga)

SMT-based Piecewise Linear Classification (aka Template-based Synthesis)

- 1. Prepare a solution template with unknown coefficients,
- 2. Generate constraints on them, and
- 3. Solve them using an **SMT solver**

Examples:
$$\mathcal{E} \equiv \{I(0), I(0) \Rightarrow I(1), \neg I(-1)\}$$

Solution Template:
$$I(x) \mapsto c_1 \cdot x + c_2 \ge 0$$

Coeff. Constraints:
$$\{c_2 \ge 0, c_2 \ge 0 \Rightarrow c_1 + c_2 \ge 0, -c_1 + c_2 < 0\}$$

Satisfying Assignment:
$$\{c_1 \mapsto 1, c_2 \mapsto 0\}$$

A Candidate Solution:
$$\rho \equiv \{I(x) \mapsto x \ge 0\}$$

Decision Tree Learning

- 1. Consistently label atoms in \mathcal{E} with +/- using a SAT solver
- 2. Generate a set Q of predicates used in classification
- 3. Classify atoms in \mathcal{E} with Q using a decision tree learner

Examples:
$$\mathcal{E} \equiv \{I(0), I(0) \Rightarrow I(1), \neg I(-1)\}$$

Labeling:
$$\{I(0) \mapsto +, I(1) \mapsto +, I(-1) \mapsto -\}$$

Predicates:
$$Q \equiv \begin{cases} x \ge 0, x \le 0, x \ge 1, \\ x \ge -1, x \le 1, x \le -1 \end{cases}$$

Classifier:
$$\rho \equiv \{I(x) \mapsto x \ge 0\}$$

Template-based Synthesis vs Decision Tree Learning

- Template-based Synthesis (TB)
 - Fixes the *shape* of solution (updated upon failure)
 - © Flexibly find necessary predicates via SMT solving
 - \odot Atoms in ${\mathcal E}$ are consistently *labeled* using ${\mathcal E}$ as an SMT formula
- Decision Tree Learning (DT)

 - © Flexibly adjust the *shape* based on information gain
 - oximes Atoms are consistently *labeled* using $oldsymbol{\mathcal{E}}$ as a SAT formula
- Evaluation on SyGuS-Comp'19 Inv track XC benchmarks
 - TB solved 228 instances (out of 276) and DT solved 180 instances

Future Research Directions

- Efficient synthesis of complex and large functions from complex and large constraints
 - (Co)Inductive functions
 - Functions over (linked, (co)algebraic, array) data structures
 - Improve labeling, sampling and filtering of examples, and generation and ranking of predicates
- Convergence theory of CEGIS
- More applications

Summary

- Various program verification and synthesis problems can be reduced to constraint solving problems
 - The separation of constraint generation and solving facilitate tool development
- CEGIS-based constraint solving integrates deductive and inductive reasoning to address challenges
 - Deductive reasoning by theorem proving (e.g., SAT, SMT)
 - *Inductive* reasoning by *machine learning* (e.g., decision tree learning, reinforcement learning)