
Automating Induction
for Solving Horn Clauses

Hiroshi Unno, Sho Torii, and Hiroki Sakamoto
University of Tsukuba, Japan

2017/7/28 Computer Aided Verification 2017 1



Program Verification via
Horn Constraint Solving

2017/7/28 Computer Aided Verification 2017 2

Verification Problems of Programs in
Various Paradigms (e.g., functional [U.+ ’08, ’09, Rondon+ ’08, …], 
procedural [Grebenshchikov+ ’12, Gurfinkel+ ’15], object-oriented 
[Kahsai+ ’16], multi-threaded [Gupta+ ’11], constraint logic) with
Advanced Language Features (e.g., algebraic data structures, 
linked data structures, exceptions, higher-order functions) with
Side-Effects (e.g., non-termination, non-determinism, concurrency, 
assertions, destructive updates)

Horn Constraint Solving Problems

Reduce



Overall Flow of Horn Constraint 
based Program Verification

2017/7/28 Computer Aided Verification 2017 3

Program & Specification

Horn Constraint Set

Constraint Generation

Constraint Solving

Solution or Counterexample

(* OCaml *)
let rec mult x y =

if y = 0 then 0
else x + mult x (y - 1)

/* C */
int mult(int x, int y) {

int s = 0;
while(y != 0){
s += x;
y--;

}
return s;

}

{- Haskell -}
mult :: Int -> Int -> Int
mult x 0 = 0
mult x y = x + mult x (y - 1)

𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑟𝑟 ≡ 𝑟𝑟 = 𝑥𝑥 × 𝑦𝑦



This Work

2017/7/28 Computer Aided Verification 2017 4

Horn Constraint Set

Constraint Solving

Solvable or Not

Reduce Inductive 
Theorem Proving

• Enable verification of relational specifications across 
programs in various paradigms

• Support constraints over any background theories
(if the backend SMT solver does)

SMT Solving

Horn Constratint Solving



Relational Specifications

• Specifications that involve multiple function calls
• Equivalence
• Invertibility
• Non-interference
• Associativity
• Commutativity
• Distributivity
• Monotonicity
• Idempotency
• …

2017/7/28 Computer Aided Verification 2017 5



Overall Flow of Horn Constraint 
based Program Verification

2017/7/28 Computer Aided Verification 2017 6

(Functional) Program &
Relational Specification

Horn Constraint Set

Constraint Generation

Constraint Solving

Solvable or Not



Example: (Functional) Program 
and Relational Specification

2017/7/28 Computer Aided Verification 2017 7

(* recursive function to compute “x × y” *)
let rec mult x y =
if y = 0 then 0 else x + mult x (y - 1)

(* tail recursive function to compute “x × y + a” *)
let rec mult_acc x y a =
if y = 0 then a else mult_acc x (y - 1) (a + x)

(* functional equivalence of mult and mult_acc *)
let main x y a = assert (mult x y + a = mult_acc x y a)



Overall Flow of Horn Constraint 
based Program Verification

2017/7/28 Computer Aided Verification 2017 8

(Functional) Program & 
Relational Specification

Horn Constraint Set

Constraint Generation

Constraint Solving

Solvable or Not



Horn Constraint Generation [U.+ ’09]

2017/7/28 Computer Aided Verification 2017 9

let rec mult x y =
if y = 0 then 0
else x + mult x (y - 1)

let rec mult_acc x y a =
if y = 0 then a
else mult_acc x (y - 1) (a + x)

let main x y a =
assert (mult x y + a

= mult_acc x y a)



Overall Flow of Horn Constraint 
based Program Verification

2017/7/28 Computer Aided Verification 2017 10

(Functional) Program & 
Relational Specification

Horn Constraint Set

Constraint Generation

Constraint Solving

Solvable or Not



Horn Constraint Solving
• Check the existence of a solution for predicate 

variables satisfying all the Horn constraints
• If a solution exists, the original program is 

guaranteed to satisfy the specification

2017/7/28 Computer Aided Verification 2017 11

Example (Non-relational) specification:
let main x y = if x >= 0 && y >= 0 then assert (mult x y >= 0)

Solution 1: 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑟𝑟 ≡ 𝑥𝑥 ≥ 0 ∧ 𝑦𝑦 ≥ 0 ⇒ 𝑟𝑟 ≥ 0

Nonlinear QF-NIA
QF-LIASolution 2: 𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑟𝑟 ≡ 𝑟𝑟 = 𝑥𝑥 × 𝑦𝑦



Previous Methods for Solving Horn 
Clause Constraints [U.+ ’08,’09, Rondon+ ’08, 
Gupta+ ’11, Hoder+ ’11,’12, McMillan+ ’13, Rümmer+ ’13, …]

2017/7/28 Computer Aided Verification 2017 12

QF-NIA

QF-LIA

Find a solution expressible in QF-LIA (or QF-LRA)

Solution 1: 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑟𝑟 ≡ 𝑥𝑥 ≥ 0 ∧ 𝑦𝑦 ≥ 0 ⇒ 𝑟𝑟 ≥ 0

Solution 2: 𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑟𝑟 ≡ 𝑟𝑟 = 𝑥𝑥 × 𝑦𝑦



Example Constraints that Can Not 
be Solved by Previous Methods

2017/7/28 Computer Aided Verification 2017 13

Analyzed 
separately from 𝑄𝑄

Analyzed 
separately from 𝑃𝑃

𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ≡ 𝑠𝑠1 = 𝑥𝑥 × 𝑦𝑦 𝑄𝑄 𝑥𝑥,𝑦𝑦,𝑎𝑎, 𝑠𝑠2 ≡ 𝑠𝑠2 = 𝑥𝑥 × 𝑦𝑦 + 𝑎𝑎

Constraint 
Solving Fails!

QF-NIA



Our Constraint Solving Method

2017/7/28 Computer Aided Verification 2017 14

Horn Constraint Set

Constraint Solving

Solvable or Not

Inductive 
Theorem Proving

Simultaneously analyze 
multiple predicates by 

expressing and exploiting 
mutual invariants

Reduce



∀𝑥𝑥,𝑦𝑦, 𝑠𝑠1,𝑎𝑎, 𝑠𝑠2.𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧ 𝑄𝑄 𝑥𝑥,𝑦𝑦,𝑎𝑎, 𝑠𝑠2 ⇒ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

Prove this by 
induction on 
derivation of 
𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ,
Q x, y, s2

Reduction from Constraint Solving 
to Inductive Theorem Proving

2017/7/28 Computer Aided Verification 2017 15

𝑃𝑃 𝑥𝑥, 0,0 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑥𝑥 + 𝑟𝑟 ⇐ 𝑃𝑃 𝑥𝑥,𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑦𝑦 ≠ 0
𝑄𝑄 𝑥𝑥, 0,𝑎𝑎, 𝑎𝑎 𝑄𝑄 𝑥𝑥,𝑦𝑦, 𝑎𝑎, 𝑟𝑟 ⇐ 𝑄𝑄 𝑥𝑥,𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑟𝑟 ∧ 𝑦𝑦 ≠ 0
𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2 ⇐ 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧ 𝑄𝑄 𝑥𝑥,𝑦𝑦,𝑎𝑎, 𝑠𝑠2



Principle of Induction on Derivation

2017/7/28 Computer Aided Verification 2017 16

∀𝐷𝐷. 𝜓𝜓 𝐷𝐷 if and only if
∀𝐷𝐷. ∀𝐷𝐷′.𝐷𝐷′ ≺ 𝐷𝐷 ⇒ 𝜓𝜓 𝐷𝐷′ ⇒ 𝜓𝜓 𝐷𝐷

where 𝐷𝐷′ ≺ 𝐷𝐷 represents that
𝐷𝐷′ is a strict sub-derivation of 𝐷𝐷

𝐷𝐷 =

𝐷𝐷1
𝐽𝐽3 𝐷𝐷2
𝐽𝐽2 𝐷𝐷3

𝐷𝐷4
𝐽𝐽4

𝐽𝐽1

Assume 
𝜓𝜓 𝐷𝐷1 ,𝜓𝜓 𝐷𝐷2 ,
𝜓𝜓 𝐷𝐷3 , 𝜓𝜓 𝐷𝐷4

and prove 𝜓𝜓 𝐷𝐷



2017/7/28 Computer Aided Verification 2017 17

Horn Constraint Solving:

Inductive Theorem Proving:
∅;𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ,𝑄𝑄 𝑥𝑥, 𝑦𝑦,𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

Induction hypotheses and lemmas

Premises

Judgment



Unfold

2017/7/28 Computer Aided Verification 2017 18

Induct

Add an induction hypothesis:

𝛾𝛾 = ∀𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ , 𝑎𝑎′, 𝑠𝑠2′ .𝐷𝐷 𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ≺ 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧
𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ∧ 𝑄𝑄 𝑥𝑥′,𝑦𝑦′, 𝑎𝑎′, 𝑠𝑠2′ ⇒ 𝑠𝑠1′ + 𝑎𝑎′ = 𝑠𝑠2′

Case analysis on the last rule used

Guard to avoid unsound application



2017/7/28 Computer Aided Verification 2017 19



2017/7/28 Computer Aided Verification 2017 20

Unfold

Case analysis on the last rule used



2017/7/28 Computer Aided Verification 2017 21



2017/7/28 Computer Aided Verification 2017 22

Valid

Validity checking



2017/7/28 Computer Aided Verification 2017 23



2017/7/28 Computer Aided Verification 2017 24

Valid



2017/7/28 Computer Aided Verification 2017 25



2017/7/28 Computer Aided Verification 2017 26

Unfold Case analysis on the last rule used



2017/7/28 Computer Aided Verification 2017 27



2017/7/28 Computer Aided Verification 2017 28

Valid



2017/7/28 Computer Aided Verification 2017 29



2017/7/28 Computer Aided Verification 2017 30

IndHyp Apply induction hypothesis

𝛾𝛾 = ∀𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ , 𝑎𝑎′, 𝑠𝑠2′ .𝐷𝐷 𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ≺ 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧
𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ∧ 𝑄𝑄 𝑥𝑥′,𝑦𝑦′,𝑎𝑎′, 𝑠𝑠2′ ⇒ 𝑠𝑠1′ + 𝑎𝑎′ = 𝑠𝑠2′

𝜎𝜎 𝛾𝛾 = 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦 − 1, 𝑠𝑠1 − 𝑥𝑥 ≺ 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧ 𝑃𝑃 𝑥𝑥,𝑦𝑦 − 1, 𝑠𝑠1 − 𝑥𝑥 ∧
𝑄𝑄 𝑥𝑥,𝑦𝑦 − 1,𝑎𝑎 + 𝑥𝑥, 𝑠𝑠2 ⇒ 𝑠𝑠1 − 𝑥𝑥 + (𝑎𝑎 + 𝑥𝑥) = 𝑠𝑠2



2017/7/28 Computer Aided Verification 2017 31

Valid

QED



Properties of Inductive Proof System 
for Horn Constraint Solving
• Soundness: If the goal is proved, the original Horn 

constraints have a solution (which may not be 
expressible in the underlying logic)

• Relative Completeness: If the original constraints 
have a solution expressible in the underlying logic, 
the goal is provable

2017/7/28 Computer Aided Verification 2017 32



Automating Induction

• Use the following rule application strategy:
• Repeatedly apply INDHYP until no new premises are added
• Apply VALID whenever a new premise is added
• Select some 𝑃𝑃 𝑡̃𝑡 and apply INDUCT and UNFOLD

• Close a proof branch by using:
• SMT solvers: provide efficient and powerful reasoning about 

data structures (e.g., integers, reals, algebraic data structures) 
but predicates are abstracted as uninterpreted functions 

• Horn constraint solvers: provide bit costly but powerful 
reasoning about inductive predicates

2017/7/28 Computer Aided Verification 2017 33



Prototype Constraint Solver

• Use Z3 and 𝝁𝝁Z PDR engine respectively
as the backend SMT and Horn constraint solvers

• Integrated with a refinement type based verification 
tool RCaml for the OCaml functional language

• Can exploit lemmas which are:
• User-supplied,
• Heuristically obtained from the given constraints, or
• Automatically generated by an abstract interpreter

• Can generate a counterexample (if any)

2017/7/28 Computer Aided Verification 2017 34



Experiments on IsaPlanner
Benchmark Set
• 85 (mostly) relational verification problems of

total functions on inductively defined data structures

2017/7/28 Computer Aided Verification 2017 35

Inductive Theorem Prover #Successfully Proved
RCaml 68
Zeno 82 [Sonnex+ ’12]

HipSpec 80 [Claessen+ ’13]

CVC4 80 [Reynolds+ ’15]

ACL2s 74 (according to [Sonnex+ ’12])

IsaPlanner 47 (according to [Sonnex+ ’12])

Dafny 45 (according to [Sonnex+ ’12])

Support automatic 
lemma discovery &
goal generalization



Experiments on Benchmark Programs with 
Advanced Language Features & Side-Effects

• 30 (mostly) relational verification problems for:
• Complex integer functions: Ackermann, McCarthy91
• Nonlinear real functions: dyn_sys
• Higher-order functions: fold_left, fold_right, repeat, find, ...
• Exceptions: find
• Non-terminating functions: mult, sum, …
• Non-deterministic functions: randpos
• Imperative procedures: mult_Ccode

2017/7/28 Computer Aided Verification 2017 36



2017/7/28 Computer Aided Verification 2017 37

• 28 (2 required lemmas) successfully proved by RCaml

• 3 proved by Horn constraint solver 𝝁𝝁Z PDR
• 2 proved by inductive theorem prover CVC4 (if inductive 

predicates are encoded using uninterpreted functions)



Conclusion

• Proposed an automated verification method combining
Horn constraint solving and inductive theorem proving

• Enable relational verification across programs in various 
paradigms with advanced language features and side-effects

• Support constraints over any background theories
(if the backend SMT solver does)

• Future and ongoing work:
• Automatic lemma discovery and goal generalization
• Relational program synthesis
• Coinduction

2017/7/28 Computer Aided Verification 2017 38


	Automating Induction�for Solving Horn Clauses
	Program Verification via�Horn Constraint Solving
	Overall Flow of Horn Constraint based Program Verification
	This Work
	Relational Specifications
	Overall Flow of Horn Constraint based Program Verification
	Example: (Functional) Program and Relational Specification
	Overall Flow of Horn Constraint based Program Verification
	Horn Constraint Generation [U.+ ’09]
	Overall Flow of Horn Constraint based Program Verification
	Horn Constraint Solving
	Previous Methods for Solving Horn Clause Constraints [U.+ ’08,’09, Rondon+ ’08, Gupta+ ’11, Hoder+ ’11,’12, McMillan+ ’13, Rümmer+ ’13, …]
	Example Constraints that Can Not be Solved by Previous Methods
	Our Constraint Solving Method
	Reduction from Constraint Solving to Inductive Theorem Proving
	Principle of Induction on Derivation
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	スライド番号 21
	スライド番号 22
	スライド番号 23
	スライド番号 24
	スライド番号 25
	スライド番号 26
	スライド番号 27
	スライド番号 28
	スライド番号 29
	スライド番号 30
	スライド番号 31
	Properties of Inductive Proof System for Horn Constraint Solving
	Automating Induction
	Prototype Constraint Solver
	Experiments on IsaPlanner Benchmark Set
	Experiments on Benchmark Programs with Advanced Language Features & Side-Effects
	スライド番号 37
	Conclusion

