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Program Verification via
Horn Constraint Solving
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Verification Problems of Programs in
Various Paradigms (e.g., functional [U.+ ’08, ’09, Rondon+ ’08, …], 
procedural [Grebenshchikov+ ’12, Gurfinkel+ ’15], object-oriented 
[Kahsai+ ’16], multi-threaded [Gupta+ ’11], constraint logic) with
Advanced Language Features (e.g., algebraic data structures, 
linked data structures, exceptions, higher-order functions) with
Side-Effects (e.g., non-termination, non-determinism, concurrency, 
assertions, destructive updates)

Horn Constraint Solving Problems

Reduce



Overall Flow of Horn Constraint 
based Program Verification
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Program & Specification

Horn Constraint Set

Constraint Generation

Constraint Solving

Solution or Counterexample

(* OCaml *)
let rec mult x y =

if y = 0 then 0
else x + mult x (y - 1)

/* C */
int mult(int x, int y) {

int s = 0;
while(y != 0){
s += x;
y--;

}
return s;

}

{- Haskell -}
mult :: Int -> Int -> Int
mult x 0 = 0
mult x y = x + mult x (y - 1)

𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑟𝑟 ≡ 𝑟𝑟 = 𝑥𝑥 × 𝑦𝑦



This Work
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Horn Constraint Set

Constraint Solving

Solvable or Not

Reduce Inductive 
Theorem Proving

• Enable verification of relational specifications across 
programs in various paradigms

• Support constraints over any background theories
(if the backend SMT solver does)

SMT Solving

Horn Constratint Solving



Relational Specifications

• Specifications that involve multiple function calls
• Equivalence
• Invertibility
• Non-interference
• Associativity
• Commutativity
• Distributivity
• Monotonicity
• Idempotency
• …
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Overall Flow of Horn Constraint 
based Program Verification
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(Functional) Program &
Relational Specification

Horn Constraint Set

Constraint Generation

Constraint Solving

Solvable or Not



Example: (Functional) Program 
and Relational Specification
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(* recursive function to compute “x × y” *)
let rec mult x y =
if y = 0 then 0 else x + mult x (y - 1)

(* tail recursive function to compute “x × y + a” *)
let rec mult_acc x y a =
if y = 0 then a else mult_acc x (y - 1) (a + x)

(* functional equivalence of mult and mult_acc *)
let main x y a = assert (mult x y + a = mult_acc x y a)



Overall Flow of Horn Constraint 
based Program Verification
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(Functional) Program & 
Relational Specification

Horn Constraint Set

Constraint Generation

Constraint Solving

Solvable or Not



Horn Constraint Generation [U.+ ’09]

2017/7/28 Computer Aided Verification 2017 9

let rec mult x y =
if y = 0 then 0
else x + mult x (y - 1)

let rec mult_acc x y a =
if y = 0 then a
else mult_acc x (y - 1) (a + x)

let main x y a =
assert (mult x y + a

= mult_acc x y a)



Overall Flow of Horn Constraint 
based Program Verification
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(Functional) Program & 
Relational Specification

Horn Constraint Set

Constraint Generation

Constraint Solving

Solvable or Not



Horn Constraint Solving
• Check the existence of a solution for predicate 

variables satisfying all the Horn constraints
• If a solution exists, the original program is 

guaranteed to satisfy the specification
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Example (Non-relational) specification:
let main x y = if x >= 0 && y >= 0 then assert (mult x y >= 0)

Solution 1: 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑟𝑟 ≡ 𝑥𝑥 ≥ 0 ∧ 𝑦𝑦 ≥ 0 ⇒ 𝑟𝑟 ≥ 0

Nonlinear QF-NIA
QF-LIASolution 2: 𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑟𝑟 ≡ 𝑟𝑟 = 𝑥𝑥 × 𝑦𝑦



Previous Methods for Solving Horn 
Clause Constraints [U.+ ’08,’09, Rondon+ ’08, 
Gupta+ ’11, Hoder+ ’11,’12, McMillan+ ’13, Rümmer+ ’13, …]
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QF-NIA

QF-LIA

Find a solution expressible in QF-LIA (or QF-LRA)

Solution 1: 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑟𝑟 ≡ 𝑥𝑥 ≥ 0 ∧ 𝑦𝑦 ≥ 0 ⇒ 𝑟𝑟 ≥ 0

Solution 2: 𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑟𝑟 ≡ 𝑟𝑟 = 𝑥𝑥 × 𝑦𝑦



Example Constraints that Can Not 
be Solved by Previous Methods
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Analyzed 
separately from 𝑄𝑄

Analyzed 
separately from 𝑃𝑃

𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ≡ 𝑠𝑠1 = 𝑥𝑥 × 𝑦𝑦 𝑄𝑄 𝑥𝑥,𝑦𝑦,𝑎𝑎, 𝑠𝑠2 ≡ 𝑠𝑠2 = 𝑥𝑥 × 𝑦𝑦 + 𝑎𝑎

Constraint 
Solving Fails!

QF-NIA



Our Constraint Solving Method
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Horn Constraint Set

Constraint Solving

Solvable or Not

Inductive 
Theorem Proving

Simultaneously analyze 
multiple predicates by 

expressing and exploiting 
mutual invariants

Reduce



∀𝑥𝑥,𝑦𝑦, 𝑠𝑠1,𝑎𝑎, 𝑠𝑠2.𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧ 𝑄𝑄 𝑥𝑥,𝑦𝑦,𝑎𝑎, 𝑠𝑠2 ⇒ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

Prove this by 
induction on 
derivation of 
𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ,
Q x, y, s2

Reduction from Constraint Solving 
to Inductive Theorem Proving

2017/7/28 Computer Aided Verification 2017 15

𝑃𝑃 𝑥𝑥, 0,0 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑥𝑥 + 𝑟𝑟 ⇐ 𝑃𝑃 𝑥𝑥,𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑦𝑦 ≠ 0
𝑄𝑄 𝑥𝑥, 0,𝑎𝑎, 𝑎𝑎 𝑄𝑄 𝑥𝑥,𝑦𝑦, 𝑎𝑎, 𝑟𝑟 ⇐ 𝑄𝑄 𝑥𝑥,𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑟𝑟 ∧ 𝑦𝑦 ≠ 0
𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2 ⇐ 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧ 𝑄𝑄 𝑥𝑥,𝑦𝑦,𝑎𝑎, 𝑠𝑠2



Principle of Induction on Derivation
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∀𝐷𝐷. 𝜓𝜓 𝐷𝐷 if and only if
∀𝐷𝐷. ∀𝐷𝐷′.𝐷𝐷′ ≺ 𝐷𝐷 ⇒ 𝜓𝜓 𝐷𝐷′ ⇒ 𝜓𝜓 𝐷𝐷

where 𝐷𝐷′ ≺ 𝐷𝐷 represents that
𝐷𝐷′ is a strict sub-derivation of 𝐷𝐷

𝐷𝐷 =

𝐷𝐷1
𝐽𝐽3 𝐷𝐷2
𝐽𝐽2 𝐷𝐷3

𝐷𝐷4
𝐽𝐽4

𝐽𝐽1

Assume 
𝜓𝜓 𝐷𝐷1 ,𝜓𝜓 𝐷𝐷2 ,
𝜓𝜓 𝐷𝐷3 , 𝜓𝜓 𝐷𝐷4

and prove 𝜓𝜓 𝐷𝐷
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Horn Constraint Solving:

Inductive Theorem Proving:
∅;𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ,𝑄𝑄 𝑥𝑥, 𝑦𝑦,𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

Induction hypotheses and lemmas

Premises

Judgment



Unfold

2017/7/28 Computer Aided Verification 2017 18

Induct

Add an induction hypothesis:

𝛾𝛾 = ∀𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ , 𝑎𝑎′, 𝑠𝑠2′ .𝐷𝐷 𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ≺ 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧
𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ∧ 𝑄𝑄 𝑥𝑥′,𝑦𝑦′, 𝑎𝑎′, 𝑠𝑠2′ ⇒ 𝑠𝑠1′ + 𝑎𝑎′ = 𝑠𝑠2′

Case analysis on the last rule used

Guard to avoid unsound application
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Unfold

Case analysis on the last rule used
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Valid

Validity checking
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Valid
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Unfold Case analysis on the last rule used
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Valid
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IndHyp Apply induction hypothesis

𝛾𝛾 = ∀𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ , 𝑎𝑎′, 𝑠𝑠2′ .𝐷𝐷 𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ≺ 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧
𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ∧ 𝑄𝑄 𝑥𝑥′,𝑦𝑦′,𝑎𝑎′, 𝑠𝑠2′ ⇒ 𝑠𝑠1′ + 𝑎𝑎′ = 𝑠𝑠2′

𝜎𝜎 𝛾𝛾 = 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦 − 1, 𝑠𝑠1 − 𝑥𝑥 ≺ 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧ 𝑃𝑃 𝑥𝑥,𝑦𝑦 − 1, 𝑠𝑠1 − 𝑥𝑥 ∧
𝑄𝑄 𝑥𝑥,𝑦𝑦 − 1,𝑎𝑎 + 𝑥𝑥, 𝑠𝑠2 ⇒ 𝑠𝑠1 − 𝑥𝑥 + (𝑎𝑎 + 𝑥𝑥) = 𝑠𝑠2
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Valid

QED



Properties of Inductive Proof System 
for Horn Constraint Solving
• Soundness: If the goal is proved, the original Horn 

constraints have a solution (which may not be 
expressible in the underlying logic)

• Relative Completeness: If the original constraints 
have a solution expressible in the underlying logic, 
the goal is provable
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Automating Induction

• Use the following rule application strategy:
• Repeatedly apply INDHYP until no new premises are added
• Apply VALID whenever a new premise is added
• Select some 𝑃𝑃 �̃�𝑡 and apply INDUCT and UNFOLD

• Close a proof branch by using:
• SMT solvers: provide efficient and powerful reasoning about 

data structures (e.g., integers, reals, algebraic data structures) 
but predicates are abstracted as uninterpreted functions 

• Horn constraint solvers: provide bit costly but powerful 
reasoning about inductive predicates
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Prototype Constraint Solver

• Use Z3 and 𝝁𝝁Z PDR engine respectively
as the backend SMT and Horn constraint solvers

• Integrated with a refinement type based verification 
tool RCaml for the OCaml functional language

• Can exploit lemmas which are:
• User-supplied,
• Heuristically obtained from the given constraints, or
• Automatically generated by an abstract interpreter

• Can generate a counterexample (if any)
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Experiments on IsaPlanner
Benchmark Set
• 85 (mostly) relational verification problems of

total functions on inductively defined data structures
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Inductive Theorem Prover #Successfully Proved
RCaml 68
Zeno 82 [Sonnex+ ’12]

HipSpec 80 [Claessen+ ’13]

CVC4 80 [Reynolds+ ’15]

ACL2s 74 (according to [Sonnex+ ’12])

IsaPlanner 47 (according to [Sonnex+ ’12])

Dafny 45 (according to [Sonnex+ ’12])

Support automatic 
lemma discovery &
goal generalization



Experiments on Benchmark Programs with 
Advanced Language Features & Side-Effects

• 30 (mostly) relational verification problems for:
• Complex integer functions: Ackermann, McCarthy91
• Nonlinear real functions: dyn_sys
• Higher-order functions: fold_left, fold_right, repeat, find, ...
• Exceptions: find
• Non-terminating functions: mult, sum, …
• Non-deterministic functions: randpos
• Imperative procedures: mult_Ccode
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• 28 (2 required lemmas) successfully proved by RCaml

• 3 proved by Horn constraint solver 𝝁𝝁Z PDR
• 2 proved by inductive theorem prover CVC4 (if inductive 

predicates are encoded using uninterpreted functions)



Conclusion

• Proposed an automated verification method combining
Horn constraint solving and inductive theorem proving

• Enable relational verification across programs in various 
paradigms with advanced language features and side-effects

• Support constraints over any background theories
(if the backend SMT solver does)

• Future and ongoing work:
• Automatic lemma discovery and goal generalization
• Relational program synthesis
• Coinduction
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