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Algebraic Effects and Handlers

 A mechanism to structure programs with effects in a modular way
 Can represent many kinds of effects via delimited continuations
 exception, state, I/O, nondeterminism, concurrency, etc.

 Have been adopted in OCaml 5, etc.

2

handle
if Decide () then 1 else 2

with
| return x     -> x
| Decide (), k -> k true + k false

handle
Set 1; let a1 = Get () in
Set 2; let a2 = Get () in
a1 + a2

with
| return x  -> λs. x
| Set  v, k -> λs. k () v
| Get (), k -> λs. k s s

operation

handler

15 May 2025 CHoCoLa Meeting, Lyon, France

delimited continuation



Algebraic Effects and Handlers
 Example
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with h handle (Tick (); Tock ())

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()
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This talk focuses on deep handlers

delimited continuation



Algebraic Effects and Handlers
 Example
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with h handle (Tick (); Tock ())

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

⟶ 1 :: with h handle ((); Tock ())
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⟶ 1 :: with h handle ((); Tock ())

⟶ 1 :: with h handle (Tock ())
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with h handle (Tick (); Tock ())

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

⟶ 1 :: with h handle ((); Tock ())

⟶ 1 :: with h handle (Tock ())

⟶ 1 :: 0 :: with h handle ()
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Algebraic Effects and Handlers
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with h handle (Tick (); Tock ())

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

⟶ 1 :: with h handle ((); Tock ())

⟶ 1 :: with h handle (Tock ())

⟶ 1 :: 0 :: with h handle ()
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Algebraic Effects and Handlers
 Example
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with h handle (Tick (); Tock ())

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

⟶ 1 :: with h handle ((); Tock ())

⟶ 1 :: with h handle (Tock ())

⟶ 1 :: 0 :: with h handle ()

⟶ 1 :: 0 :: []

= [1; 0]
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This talk focuses on deep handlers



Verification of Programs with Effect Handlers 

 Delimited continuations enhance expressivity but introduce 
complex control flows, posing challenges for program verification

 This talk presents two complementary approaches that addresses 
the challenges by applying type systems [Danvy+90; Materzok+11] with 
Answer Type Modification (ATM) in different way
1. Refinement types [Kawamata+ POPL’24]

 Support functional correctness verification (ongoing extensions to temporal properties) 
 Support infinite data domains (e.g., integers, algebraic data types)
 Undecidable but automated via Constrained Horn Clause (CHC) solving

2. Higher-order model checking [Sekiyama and Unno OOPSLA’24]
 Support modal mu-calculus model checking of effect trees
 Restricted to finite data domains (e.g., booleans, enum types)
 Decidable fragment expressible enough to support various effects
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Refinement Types

𝑥𝑥 ∶ 𝐵𝐵 ∣ 𝜙𝜙
 Types equipped with predicates
 E.g. 1 + 2 ∶ 𝑥𝑥 ∶ int ∣ 𝑥𝑥 = 3

1 + 2 ∶ 𝑥𝑥 ∶ int ∣ 𝑥𝑥 > 0
 Often combined with dependent function types 𝑥𝑥 ∶ 𝑇𝑇 → 𝐶𝐶
 E.g. 𝜆𝜆𝜆𝜆. 𝑥𝑥 + 1 ∶ 𝒙𝒙 ∶ int → 𝑦𝑦 ∶ int ∣ 𝑦𝑦 = 𝒙𝒙 + 1

 Can represent more specific properties
 A tool of program verification

13

Formula

Base Type (int, bool etc.)
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Contribution

Refinement type system
for algebraic effect handlers

14

⊢ with h handle (Tick (); Tock ()) ∶ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0

 Enables precise verification of algebraic effect handlers
 Can be built on top of existing languages
 Our implementation for OCaml 5 programs
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Challenge
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with h handle
(Tick (); Tock ())

(* ==> [1; 0] *)

let h = handler
| return x -> x
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

with h handle
(Tock (); Tick ())

(* ==> [0; 1] *)

The precise types depend on
what effects occur in what order

∶ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0

∶ 𝑧𝑧: int list ∣ 𝑧𝑧 = 0; 1
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𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 =

𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝟎𝟎
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with h handle
(Tick (); Tock ())

(* ==> [1; 0] *)

let h = handler
| return x -> x
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

with h handle
(Tock (); Tick ())

(* ==> [0; 1] *)

The precise types depend on
what effects occur in what order

∶ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0

∶ 𝑧𝑧: int list ∣ 𝑧𝑧 = 0; 1
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𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝟏𝟏

𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = [ ]



Challenge
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with h handle
(if Decide () then n1 else n2)

(* ==> n1 - n2 *)

let h = handler
| return x -> x
| Decide (), k -> k true - k false

The precise type depends on
which branch returns what value

∶ 𝑧𝑧: int ∣ 𝑧𝑧 = 𝑛𝑛1 − 𝑛𝑛2
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𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 ∣ 𝒛𝒛 = 𝒏𝒏𝟏𝟏

𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 ∣ 𝒛𝒛 = 𝒏𝒏𝟐𝟐



Challenge
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? ?

Γ ⊢ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 ℎ 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝑒𝑒 ∶ ? ?

Need to track precise types of the contexts
(i.e., answer types) of each operation call in 𝑒𝑒

We adopt
Answer Type Modification

[Danvy+90; Materzok+11]
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Answer Types

 Types of delimited contexts
 = return types of delimited continuations
 = types of the closest outer handling constructs (delimiters)

Answer type of 𝑒𝑒 = type of 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 ℎ 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 ℱ

21

ℰ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 ℎ 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 ℱ 𝑒𝑒

ℱ ∷= ∣ 𝐥𝐥𝐥𝐥𝐥𝐥 𝑥𝑥 = ℱ 𝐢𝐢𝐢𝐢 𝑒𝑒
ℰ ∷= ∣ 𝐥𝐥𝐥𝐥𝐥𝐥 𝑥𝑥 = ℰ 𝐢𝐢𝐢𝐢 𝑒𝑒 ∣ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 ℎ 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 ℰ 

evaluation context handler-free
evaluation context
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Answer Types in Ordinary Type Systems

22

Γ ⊢ 𝑒𝑒 ∶ Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ 𝑇𝑇𝑏𝑏𝑏𝑏 𝑖𝑖 ⊳ 𝑇𝑇0
Γ, 𝑥𝑥:𝑇𝑇0 ⊢ 𝑒𝑒𝑟𝑟 ∶ 𝑪𝑪 Γ, 𝑥𝑥:𝑇𝑇𝑎𝑎𝑎𝑎 , 𝑘𝑘:𝑇𝑇𝑏𝑏𝑏𝑏 → 𝑪𝑪 ⊢ 𝑒𝑒𝑖𝑖 ∶ 𝑪𝑪 𝑖𝑖
Γ ⊢ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ↦ 𝑒𝑒𝑟𝑟 , Op𝑖𝑖 𝑥𝑥, 𝑘𝑘 ↦ 𝑒𝑒𝑖𝑖 𝑖𝑖 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝑒𝑒 ∶ 𝑪𝑪

Σ ∋ Op:𝑇𝑇𝑎𝑎 ↠ 𝑇𝑇𝑏𝑏 Γ ⊢ 𝑣𝑣 ∶ 𝑇𝑇𝑎𝑎
Γ ⊢ Op 𝑣𝑣 ∶ Σ ⊳ 𝑇𝑇𝑏𝑏

𝑇𝑇 ∷= 𝐵𝐵 ∣ 𝑇𝑇 → 𝐶𝐶
𝐶𝐶 ∷= Σ ⊳ 𝑇𝑇
Σ ∷= Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ 𝑇𝑇𝑏𝑏𝑏𝑏 𝑖𝑖 

value types
computation types

signatures answer type
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Γ ⊢ 𝑒𝑒 ∶ 𝐶𝐶



Answer Types in Ordinary Type Systems
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let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥

𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥
unit → 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥

𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥

⊢ with h handle (Tick();Tock()) ∶ 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥
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Answer Type Modification
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let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

with h handle (Tick (); Tock ())
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Answer Type Modification
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let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

unit → 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 =

with h handle (Tick (); Tock ())

→ 1 :: with h handle ((); Tock ())

→ 1 :: with h handle (Tock ())

→ 1 :: 0 :: with h handle ()

→ 1 :: 0 :: []

with h handle (  ) returns []

1 ::                    takes [0]
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Answer Type Modification
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let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

unit → 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝟎𝟎

with h handle (Tick (); Tock ())

→ 1 :: with h handle ((); Tock ())

→ 1 :: with h handle (Tock ())

→ 1 :: 0 :: with h handle ()

→ 1 :: 0 :: []

with h handle (  ) returns []

1 ::                    takes [0]
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Answer Type Modification
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let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

unit → 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝟎𝟎

Initial answer type Final answer type

Answer refinement modification (ARM)
Answer type modification (ATM)

with h handle (Tick (); Tock ())

→ 1 :: with h handle ((); Tock ())

→ 1 :: with h handle (Tock ())

→ 1 :: 0 :: with h handle ()

→ 1 :: 0 :: []
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Answer Type Modification
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let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

with h handle (Tick (); Tock ())

→ 1 :: with h handle ((); Tock ())

→ 1 :: with h handle (Tock ())

→ 1 :: 0 :: with h handle ()

→ 1 :: 0 :: []

unit → 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝟎𝟎
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Answer Type Modification
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let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

with h handle (Tick (); Tock ())

→ 1 :: with h handle ((); Tock ())

→ 1 :: with h handle (Tock ())

→ 1 :: 0 :: with h handle ()

→ 1 :: 0 :: []

unit → 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝟎𝟎 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝟏𝟏;𝟎𝟎
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Type Syntax

30

𝑇𝑇 ∷= 𝑥𝑥:𝐵𝐵 ∣ 𝜙𝜙 ∣ 𝑇𝑇 → 𝐶𝐶
𝐶𝐶 ∷= Σ ⊳ ⁄𝑇𝑇 𝑺𝑺
Σ ∷= Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝑪𝑪𝟏𝟏𝒊𝒊 ⇒ 𝑪𝑪𝟐𝟐𝒊𝒊 𝑖𝑖 
𝑺𝑺 ∷= □ ∣ 𝑪𝑪𝟏𝟏 ⇒ 𝑪𝑪𝟐𝟐 

value types
computation types

signatures
control effects
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The initial answer type 𝑪𝑪𝟏𝟏 is modified 
to the final answer type 𝑪𝑪𝟐𝟐

The answer type does not change



Typing Rules
 Example
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with h handle (

Tick ();

Tock ()

)

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

Σ = � Tick: unit ↠ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = 0 ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0 ,
 }Tock: unit ↠ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 0

∶ Σ ⊳ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = 0 ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0  

∶ Σ ⊳ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 0  
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Γ ⊢ 𝑒𝑒1 ∶ Σ ⊳ unit / 𝑪𝑪 ⇒ 𝑪𝑪𝑭𝑭 Γ ⊢ 𝑒𝑒2 ∶ Σ ⊳ 𝑇𝑇 / 𝑪𝑪𝑰𝑰 ⇒ 𝑪𝑪
Γ ⊢ 𝑒𝑒1; 𝑒𝑒2 ∶ Σ ⊳ 𝑇𝑇 / 𝑪𝑪𝑰𝑰 ⇒ 𝑪𝑪𝑭𝑭



Typing Rules
 Example
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with h handle (

Tick ();

Tock ()

)

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

Σ = � Tick: unit ↠ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = 0 ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0 ,
 }Tock: unit ↠ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 0

∶ Σ ⊳ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0  
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Γ ⊢ 𝑒𝑒1 ∶ Σ ⊳ unit / 𝑪𝑪 ⇒ 𝑪𝑪𝑭𝑭 Γ ⊢ 𝑒𝑒2 ∶ Σ ⊳ 𝑇𝑇 / 𝑪𝑪𝑰𝑰 ⇒ 𝑪𝑪
Γ ⊢ 𝑒𝑒1; 𝑒𝑒2 ∶ Σ ⊳ 𝑇𝑇 / 𝑪𝑪𝑰𝑰 ⇒ 𝑪𝑪𝑭𝑭

∶ 𝑧𝑧: int list ∣ 𝑧𝑧 =



Typing Rules
 Example

33

with h handle (

Tick ();

Tock ()

)

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

Σ = � Tick: unit ↠ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = 0 ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0 ,
 }Tock: unit ↠ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 0

∶ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0  
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Typing Rules

34

Γ ⊢ 𝑒𝑒 ∶ Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝐶𝐶1𝑖𝑖 ⇒ 𝐶𝐶2𝑖𝑖 𝑖𝑖 ⊳ ⁄𝑇𝑇0 𝐶𝐶1 ⇒ 𝐶𝐶2
Γ, 𝑥𝑥:𝑇𝑇0 ⊢ 𝑒𝑒𝑟𝑟 ∶ 𝐶𝐶1 Γ, 𝑥𝑥:𝑇𝑇𝑎𝑎𝑎𝑎 , 𝑘𝑘:𝑇𝑇𝑏𝑏𝑏𝑏 → 𝐶𝐶1𝑖𝑖 ⊢ 𝑒𝑒𝑖𝑖 ∶ 𝐶𝐶2𝑖𝑖 𝑖𝑖
Γ ⊢ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ↦ 𝑒𝑒𝑟𝑟 , Op𝑖𝑖 𝑥𝑥, 𝑘𝑘 ↦ 𝑒𝑒𝑖𝑖 𝑖𝑖 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝑒𝑒 ∶ 𝐶𝐶2

Σ ∋ Op:𝑇𝑇𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2 Γ ⊢ 𝑣𝑣 ∶ 𝑇𝑇𝑎𝑎
Γ ⊢ Op 𝑣𝑣 ∶ Σ ⊳ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2
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Γ ⊢ 𝑒𝑒 ∶ 𝐶𝐶



Typing Rules

35

Γ ⊢ 𝑒𝑒 ∶ Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝐶𝐶1𝑖𝑖 ⇒ 𝐶𝐶2𝑖𝑖 𝑖𝑖 ⊳ ⁄𝑇𝑇0 𝐶𝐶1 ⇒ 𝐶𝐶2
Γ, 𝑥𝑥:𝑇𝑇0 ⊢ 𝑒𝑒𝑟𝑟 ∶ 𝐶𝐶1 Γ, 𝑥𝑥:𝑇𝑇𝑎𝑎𝑎𝑎 , 𝑘𝑘:𝑇𝑇𝑏𝑏𝑏𝑏 → 𝐶𝐶1𝑖𝑖 ⊢ 𝑒𝑒𝑖𝑖 ∶ 𝐶𝐶2𝑖𝑖 𝑖𝑖
Γ ⊢ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ↦ 𝑒𝑒𝑟𝑟 , Op𝑖𝑖 𝑥𝑥, 𝑘𝑘 ↦ 𝑒𝑒𝑖𝑖 𝑖𝑖 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝑒𝑒 ∶ 𝐶𝐶2

Σ ∋ Op:𝑇𝑇𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2 Γ ⊢ 𝑣𝑣 ∶ 𝑇𝑇𝑎𝑎
Γ ⊢ Op 𝑣𝑣 ∶ Σ ⊳ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2
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Γ ⊢ 𝑒𝑒 ∶ 𝐶𝐶



Typing Rules

36

Γ ⊢ 𝑒𝑒 ∶ Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝐶𝐶1𝑖𝑖 ⇒ 𝐶𝐶2𝑖𝑖 𝑖𝑖 ⊳ ⁄𝑇𝑇0 𝐶𝐶1 ⇒ 𝐶𝐶2
Γ, 𝑥𝑥:𝑇𝑇0 ⊢ 𝑒𝑒𝑟𝑟 ∶ 𝐶𝐶1 Γ, 𝑥𝑥:𝑇𝑇𝑎𝑎𝑎𝑎 , 𝑘𝑘:𝑇𝑇𝑏𝑏𝑏𝑏 → 𝐶𝐶1𝑖𝑖 ⊢ 𝑒𝑒𝑖𝑖 ∶ 𝐶𝐶2𝑖𝑖 𝑖𝑖
Γ ⊢ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ↦ 𝑒𝑒𝑟𝑟 , Op𝑖𝑖 𝑥𝑥, 𝑘𝑘 ↦ 𝑒𝑒𝑖𝑖 𝑖𝑖 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝑒𝑒 ∶ 𝐶𝐶2

Σ ∋ Op:𝑇𝑇𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2 Γ ⊢ 𝑣𝑣 ∶ 𝑇𝑇𝑎𝑎
Γ ⊢ Op 𝑣𝑣 ∶ Σ ⊳ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2
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Γ ⊢ 𝑒𝑒 ∶ 𝐶𝐶



Extension 1: Predicate Polymorphism

37

Γ ⊢ 𝑒𝑒 ∶ Op𝑖𝑖:∀𝑋𝑋: �𝐵𝐵.𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝐶𝐶1𝑖𝑖 ⇒ 𝐶𝐶2𝑖𝑖 𝑖𝑖 ⊳ ⁄𝑇𝑇0 𝐶𝐶1 ⇒ 𝐶𝐶2
Γ, 𝑥𝑥:𝑇𝑇0 ⊢ 𝑒𝑒𝑟𝑟 ∶ 𝐶𝐶1 Γ,𝑋𝑋: �𝐵𝐵, 𝑥𝑥:𝑇𝑇𝑎𝑎𝑎𝑎 , 𝑘𝑘:𝑇𝑇𝑏𝑏𝑏𝑏 → 𝐶𝐶1𝑖𝑖 ⊢ 𝑒𝑒𝑖𝑖 ∶ 𝐶𝐶2𝑖𝑖 𝑖𝑖

Γ ⊢ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ↦ 𝑒𝑒𝑟𝑟 , Op𝑖𝑖 𝑥𝑥, 𝑘𝑘 ↦ 𝑒𝑒𝑖𝑖 𝑖𝑖 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝑒𝑒 ∶ 𝐶𝐶2

Σ ∋ Op:∀𝑋𝑋: �𝐵𝐵.𝑇𝑇𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2 Γ ⊢ 𝑣𝑣 ∶ 𝑇𝑇𝑎𝑎 Γ ⊢ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∶ �𝐵𝐵
Γ ⊢ Op 𝑣𝑣 ∶ Σ ⊳ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃/𝑋𝑋

𝑇𝑇 ∷= 𝐵𝐵 ∣ 𝑇𝑇 → 𝐶𝐶
𝐶𝐶 ∷= Σ ⊳ ⁄𝑇𝑇 𝑆𝑆
Σ ∷= Op𝑖𝑖:∀𝑋𝑋: �𝐵𝐵.𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝐶𝐶1𝑖𝑖 ⇒ 𝐶𝐶2𝑖𝑖 𝑖𝑖 
𝑆𝑆 ∷= □ ∣ 𝐶𝐶1 ⇒ 𝐶𝐶2 

value types
computation types

signatures
control effects
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Γ ⊢ 𝑒𝑒 ∶ 𝐶𝐶



Extension 1: Predicate Polymorphism
 Example

38

with h handle (

Tick ();

Tock ();

Tick ();

Tock ()

)

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

Σ = � Tick ∶ ∀𝑋𝑋 ∶ int list . unit ↠ ⁄unit
𝑧𝑧: int list ∣ 𝑋𝑋 𝑧𝑧 ⇒ 𝑧𝑧: int list ∣ ∀𝑙𝑙.𝑋𝑋 𝑙𝑙 ⇒ 𝑧𝑧 = 1 ∷ 𝑙𝑙 ,

Tock ∶ ∀𝑌𝑌 ∶ int list . unit ↠ ⁄unit
 }𝑧𝑧: int list ∣ 𝑌𝑌 𝑧𝑧 ⇒ 𝑧𝑧: int list ∣ ∀𝑙𝑙.𝑌𝑌 𝑙𝑙 ⇒ 𝑧𝑧 = 0 ∷ 𝑙𝑙  

𝑋𝑋 ↦ 𝜆𝜆𝜆𝜆. 𝑧𝑧 = 0; 1; 0

𝑌𝑌 ↦ 𝜆𝜆𝜆𝜆. 𝑧𝑧 = 1; 0

𝑋𝑋 ↦ 𝜆𝜆𝜆𝜆. 𝑧𝑧 = 0

𝑌𝑌 ↦ 𝜆𝜆𝜆𝜆. 𝑧𝑧 =

𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0; 1; 0

𝑧𝑧: int list ∣ 𝑧𝑧 = 0; 1; 0

𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0

𝑧𝑧: int list ∣ 𝑧𝑧 = 0
𝑧𝑧: int list ∣ 𝑧𝑧 =
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Extension 2: Dependent Types for Continuations

40

Γ ⊢ 𝑒𝑒 ∶ Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝑦𝑦.𝐶𝐶1𝑖𝑖 ⇒ 𝐶𝐶2𝑖𝑖 𝑖𝑖 ⊳ ⁄𝑇𝑇0 𝐶𝐶1 ⇒ 𝐶𝐶2
Γ, 𝑥𝑥:𝑇𝑇0 ⊢ 𝑒𝑒𝑟𝑟 ∶ 𝐶𝐶1 Γ, 𝑥𝑥:𝑇𝑇𝑎𝑎𝑎𝑎 , 𝑘𝑘: 𝑦𝑦:𝑇𝑇𝑏𝑏𝑏𝑏 → 𝐶𝐶1𝑖𝑖 ⊢ 𝑒𝑒𝑖𝑖 ∶ 𝐶𝐶2𝑖𝑖 𝑖𝑖

Γ ⊢ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ↦ 𝑒𝑒𝑟𝑟 , Op𝑖𝑖 𝑥𝑥, 𝑘𝑘 ↦ 𝑒𝑒𝑖𝑖 𝑖𝑖 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝑒𝑒 ∶ 𝐶𝐶2

Σ ∋ Op:𝑇𝑇𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏 𝑦𝑦.𝐶𝐶1 ⇒ 𝐶𝐶2 Γ ⊢ 𝑣𝑣 ∶ 𝑇𝑇𝑎𝑎
Γ ⊢ Op 𝑣𝑣 ∶ Σ ⊳ ⁄𝑇𝑇𝑏𝑏 𝑦𝑦.𝐶𝐶1 ⇒ 𝐶𝐶2

𝑇𝑇 ∷= 𝐵𝐵 ∣ 𝑇𝑇 → 𝐶𝐶
𝐶𝐶 ∷= Σ ⊳ ⁄𝑇𝑇 𝑆𝑆
Σ ∷= Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝑦𝑦.𝐶𝐶1𝑖𝑖 ⇒ 𝐶𝐶2𝑖𝑖 𝑖𝑖 
𝑆𝑆 ∷= □ ∣ 𝑦𝑦.𝐶𝐶1 ⇒ 𝐶𝐶2 

value types
computation types

signatures
control effects
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Γ ⊢ 𝑒𝑒 ∶ 𝐶𝐶



Extension 2: Dependent Types for Continuations

 Example

41

with h handle (

let b = Decide () in

if b then n1 else n2

)

let h = handler
| return x -> x
| Decide (), k -> k true - k false

Σ = �Decide: unit ↠ ⁄bool 𝑏𝑏. 𝑧𝑧: int ∣ 𝑏𝑏 ⇒ 𝑧𝑧 = 𝑛𝑛1 ∧ ¬𝑏𝑏 ⇒ 𝑧𝑧 = 𝑛𝑛2
 �⇒ 𝑧𝑧: int ∣ 𝑧𝑧 = 𝑛𝑛1 − 𝑛𝑛2

𝑏𝑏: bool → 𝑧𝑧: int ∣ 𝑏𝑏 ⇒ 𝑧𝑧 = 𝑛𝑛1 ∧ ¬𝑏𝑏 ⇒ 𝑧𝑧 = 𝑛𝑛2

𝑧𝑧: int ∣ 𝑧𝑧 = 𝑛𝑛1 − 𝑛𝑛2

𝑧𝑧: int ∣ 𝑏𝑏 ⇒ 𝑧𝑧 = 𝑛𝑛1 ∧ ¬𝑏𝑏 ⇒ 𝑧𝑧 = 𝑛𝑛2
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Automatic Type Inference via CHC Solving

1. Obtain an ML-typed AST using OCaml’s compiler library
2. Infer refinement-free operation signatures and control effects
3. Generate refinement constraints for the program and its 

specification as Constrained Horn Clauses (CHCs) [Unno and Kobayashi ’09]

4. Solve CHCs to check if the program satisfies the specification
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The POPL’24 Paper also Includes:

 A proof of the type soundness

 Implementation in RCaml
 On top of OCaml 5.0
 Experiments on 50+ examples

 Another way of verification via CPS transformation
 Removal of handlers + verification with existing refinement type systems
 Bidirectionally type-preserving CPS transformation

 Needs type annotations on source programs

43

https://github.com/hiroshi-unno/coar
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Verification of Programs with Effect Handlers 

 Delimited continuations enhance expressivity but introduce 
complex control flows, posing challenges for program verification

 This talk presents two complementary approaches that addresses 
the challenges by applying type systems [Danvy+90; Materzok+11] with 
Answer Type Modification (ATM) in different way
1. Refinement types [Kawamata+ POPL’24]

 Support functional correctness verification (ongoing extensions to temporal properties) 
 Support infinite data domains (e.g., integers, algebraic data types)
 Undecidable but automated via Constrained Horn Clause (CHC) solving

2. Higher-order model checking [Sekiyama and Unno OOPSLA’24]
 Support modal mu-calculus model checking of effect trees
 Restricted to finite data domains (e.g., booleans, enum types)
 Decidable fragment expressible enough to support various effects
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Model Checking

CHoCoLa Meeting, Lyon, France

𝑀𝑀 ⊨ 𝜙𝜙

System
♦ Programs
♦ Graphs
♦ State transition systems ?

Model Checking Problem

Whether 𝑀𝑀 satisfies 𝜙𝜙?

Property
♦ Temporal logic formulas
♦ Automata
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Higher-Order Model Checking (HOMC) 
[Ong, LICS’06; Kobayashi, JACM’13]

CHoCoLa Meeting, Lyon, France

𝑀𝑀 ⊨ 𝜙𝜙
?

HOMC Problem is Decidable
Whether the tree generated by 𝑀𝑀 satisfies 𝜙𝜙?

♦ E.g. assertion checking, (non-)termination verification, and general 
branching-time temporal safety and liveness verification problems

Property
Predicates over trees

♦ MSO formulas
♦ Modal μ-calculus formulas
♦ Alternating parity tree automata

System
HO programs yielding trees

♦ HO recursion schemes
(tree grammars with HO funcs)

♦ PCF terms with finite ground 
types (generating Böhm trees)
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Higher-Order Model Checking (HOMC)
[Ong, LICS’06; Kobayashi, JACM’13]

CHoCoLa Meeting, Lyon, France

𝑀𝑀 ⊨ 𝜙𝜙
?

HOMC Problem is Decidable
Whether the tree generated by 𝑀𝑀 satisfies 𝜙𝜙?

♦ E.g. assertion checking, (non-)termination verification, and general 
branching-time temporal safety and liveness verification problems

Property
Predicates over trees

♦ MSO formulas
♦ Modal μ-calculus formulas
♦ Alternating parity tree automata

System
HO programs yielding trees

♦ HO recursion schemes
(tree grammars with HO funcs)

♦ PCF terms with finite ground 
types (generating Böhm trees)

Data domains need to be finite
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HOMC for Effects

What about other effects?
E.g., mutable store, I/O, backtracking, coroutines, etc. 

Nondeterministic 
choice

[Kobayashi, POPL’09]

Resource
(such as files)

[Kobayashi, POPL’09][Sato+, PEPM’13]

Exception 
handling
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HOMC

Algebraic Effects & Effect Handlers
+

Can express exceptions, 
local store, backtracking, etc.

by using delimited continuations

[Dal Lago and Ghyselen, POPL’24]

Can express global store, I/O,
nondeterministic choice, etc.
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HOMC
+

is
Undecidable

[Dal Lago and Ghyselen, POPL’24]

Idea: encoding natural numbers
through delimited continuations 

Is there a useful fragment 
where HOMC is decidable?

Can express exceptions, 
local store, backtracking, etc.

by using delimited continuations
Can express global store, I/O,
nondeterministic choice, etc.

Algebraic Effects & Effect Handlers
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Our Contributions

 A new class of HO programs with effect handlers where
HOMC is decidable
Effect handlers are expressive enough to implement various effects

 A CPS-transformation to obtain terms in a decidable variant of PCF 
with finite ground types and effect operations without handlers
 Crucial both theoretically and practically

 Implementation of a model checker EffCaml for the new class

CHoCoLa Meeting, Lyon, France 51

Key idea : restrict the use of delimited continuations through an 
Answer-Type Modification (ATM) type system [Danvy+90; Materzok+11]

15 May 2025

GitHub page
of EffCaml



 Target language: HEPCF
 HEPCF = A variant of PCF + Effect Operations + Handlers

HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]

CHoCoLa Meeting, Lyon, France 52

+ Higher-order functions
+ General recursion 
+ Finite data domains (like Bool)

Terms 𝑀𝑀 ∷= ⋯ ∣ op 𝑉𝑉, 𝑥𝑥.𝑀𝑀 ∣ with 𝐻𝐻 handle 𝑀𝑀
Handlers 𝐻𝐻 ∷= return 𝑥𝑥 → 𝑀𝑀 ⊎ op𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑘𝑘𝑖𝑖 → 𝑀𝑀𝑖𝑖 𝑖𝑖

with 𝐻𝐻 handle op 𝑉𝑉,𝑦𝑦.𝑀𝑀 −→ 𝑀𝑀𝑀 𝑥𝑥 ↦ 𝑉𝑉 𝑘𝑘 ↦ 𝜆𝜆𝜆𝜆. with 𝐻𝐻 handle 𝑀𝑀
(if 𝑜𝑜𝑜𝑜 𝑥𝑥,𝑘𝑘 → 𝑀𝑀𝑀 ∈ 𝐻𝐻)

𝑀𝑀𝑀 can access to the delimited continuation via 𝑘𝑘

let 𝑥𝑥 = op 𝑉𝑉,𝑦𝑦.𝑀𝑀 in 𝑀𝑀2 −→ op(𝑉𝑉,𝑦𝑦. let 𝑥𝑥 = 𝑀𝑀 in 𝑀𝑀2)

15 May 2025



HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]

 Target language: HEPCF
 HEPCF = A variant of PCF + Effect Operations + Handlers
 Equipped with effect tree semantics

 The generated trees comprise unhandled operations as well as arguments and 
returns values of the operations
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HEPCF term Effect tree
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HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]

 Target language: HEPCF
 HEPCF = A variant of PCF + Effect Operations + Handlers
 Equipped with effect tree semantics

 The generated trees comprise unhandled operations as well as arguments and 
returns values of the operations

 Handlers “fold” over effect trees

CHoCoLa Meeting, Lyon, France

HEPCF term Effect tree

54

A handler for tell tell removed

15 May 2025



HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]

 Model checking

CHoCoLa Meeting, Lyon, France

⊨ 𝜙𝜙
?
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No unhandled "raise" operation occurs

∈ 𝜙𝜙
?
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HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]

 Model checking is undecidable for MSO formulas 𝜙𝜙
because effect handlers can encode natural numbers

CHoCoLa Meeting, Lyon, France

⊨ 𝜙𝜙
?

Reminder: infinite data domains makes the HOMC undecidable

∈ 𝜙𝜙
?

5615 May 2025

No unhandled "raise" operation occurs



Encoding of Natural Numbers [Dal Lago and Ghyselen, POPL’24]

CHoCoLa Meeting, Lyon, France

 Encoding of basic arithmetic operations

𝑛𝑛 = 𝜆𝜆𝜆𝜆. succ();⋯ ; succ(); 𝑥𝑥

case(𝑉𝑉; 0 ↦ 𝑀𝑀0; succ 𝑥𝑥 ↦ 𝑀𝑀1 = with 𝐻𝐻 handle 𝑉𝑉 ()
where H = {return _ → 𝑀𝑀0 , succ(_ , 𝑥𝑥) → 𝑀𝑀1 }

Here shallow effect handlers are assumed, but
it is possible to adapt the encoding to deep handlers

𝑛𝑛 calls to operation succ

𝑉𝑉 − 𝑛𝑛 = with 𝐻𝐻 handle ⋯ (with 𝐻𝐻 handle 𝑉𝑉 () ⋯ )
where 𝐻𝐻 = {return _ → 0 , succ(_ , 𝑥𝑥) → 𝑥𝑥() }

5715 May 2025

[Hillerström and Lindley, APLAS’18]



Key Idea to Prevent the Nat Encoding

Bounding # of simultaneously active effect handlers

CHoCoLa Meeting, Lyon, France

Formal Statement
For any term 𝑒𝑒 to be model checked,
∃𝑛𝑛.∀𝑒𝑒′,𝐻𝐻1, … ,𝐻𝐻𝑛𝑛. 𝑒𝑒 −→ with 𝐻𝐻1 handle … with 𝐻𝐻𝑛𝑛 handle 𝑒𝑒′ …

Why does it prevent the encoding?
Predecessor is implemented by effect handlers

 Bounding # of simultaneously active effect handlers results in
bounding # of applications of the predecessor

 The restriction bounds the range of accessible natural numbers
5815 May 2025

𝑉𝑉 − 𝑛𝑛 = with 𝐻𝐻 handle ⋯ (with 𝐻𝐻 handle 𝑉𝑉 () ⋯ )



Approach to Implementing the Restriction

 Use a type system with answer types [Danvy+90; Materzok+11]

 Essentially the same as the ATM type system in [Kawamata+ POPL’24] without 
polymorphism, dependency, and refinements

 Answer types reveal # of delimited continuations necessary to evaluate 
terms

 # of delimited continuations = # of effect handlers that can be active 
 Bounding answer types enables bounding # of simul. active effect handlers

CHoCoLa Meeting, Lyon, France

Types of delimited continuations

5915 May 2025



Types
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Types

CHoCoLa Meeting, Lyon, France

Initial answer type: the return type of 
the delimited cont. enclosing terms

Final answer type: the argument type of 
the meta-continuation

6115 May 2025

 CPS interpretation of computation types (except for Σ)  

 For a computation type  𝐶𝐶 = 𝑇𝑇1 / 𝐴𝐴1 ⇒ (𝑇𝑇2 / 𝐴𝐴2 ⇒ … ⇒ 𝑇𝑇𝑛𝑛 / 𝐴𝐴𝑛𝑛 ⇒ 𝑇𝑇 … )

𝑇𝑇 / 𝐴𝐴1 ⇒ 𝐴𝐴2 CPS = 𝑇𝑇 CPS → 𝐴𝐴1 CPS → 𝐴𝐴2 CPS

𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑇𝑇1 CPS → 𝐴𝐴1 CPS →
𝑇𝑇2 CPS → 𝐴𝐴2 CPS → ⋯ →
𝑇𝑇𝑛𝑛 CPS → 𝐴𝐴𝑛𝑛 CPS → 𝑇𝑇 CPS



Results

CHoCoLa Meeting, Lyon, France

Proof strategy: Reducing the HOMC for effect handlers to 
the (decidable) HOMC for algebraic effects
via a semantics-preserving CPS transformation

Our type system accepts effect handlers for exceptions, local store, backtracking, etc. 

The model checking of HEPCF terms well-typed in our type system is decidable

Because it restricts the use of effect handlers, not themselves

6215 May 2025



Implementation: EffCaml

 A model checker for a subset of OCaml 5 with effect handlers
1. Inference of ML types, operation signatures, and control effects
2. CPS-transformation to eliminate effect handlers
3. Apply HOMC tool HorSat2 [Kobayashi 2016] to the result of 2.

 Preliminary experiment results

CHoCoLa Meeting, Lyon, France

GitHub page
of EffCaml

6315 May 2025



Conclusions

Takeaway: Answer types are effective in reasoning about
effect-handling programs
 Other application: type-based temporal verification [Sekiyama & Unno, POPL’23]

CHoCoLa Meeting, Lyon, France

Decidable HOMC of effect-handling programs
◊ By an ATM type system that bounds # of simultaneously active effect handlers

6415 May 2025

Automated precise verification of effect-handling programs
◊ By an ATM refinement type system that precisely tracks answer refinement types



Ongoing and Future Work

 Support other variants of effect handlers
 E.g., shallow and lexical handlers

 Extend ATM type systems with varying levels of polymorphism to 
balance modularity and precision of verification
 Effect polymorphism

 specifying a part of an operation signature as a parameter
 Control effect polymorphism
 Computation and value type polymorphism

 Enhance RCaml and EffCaml to be more scalable and to support 
more language features and specifications
 Combination with other effects such as parallelism and temporal effects
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