
Refinement Types and Higher-
Order Model Checking for

Algebraic Effects and Handlers

115 May 2025 CHoCoLa Meeting, Lyon, France

Hiroshi Unno
Tohoku University, Japan

This talk is based on the following papers:
1. Fuga Kawamata, Hiroshi Unno, Taro Sekiyama, and Tachio Terauchi. Answer Refinement Modification:

Refinement Type System for Algebraic Effects and Handlers, POPL 2024.
2. Taro Sekiyama and Hiroshi Unno. Higher-Order Model Checking of Effect-Handling Programs with

Answer-Type Modification, OOPSLA 2024

Algebraic Effects and Handlers

 A mechanism to structure programs with effects in a modular way
 Can represent many kinds of effects via delimited continuations
 exception, state, I/O, nondeterminism, concurrency, etc.

 Have been adopted in OCaml 5, etc.

2

handle
if Decide () then 1 else 2

with
| return x -> x
| Decide (), k -> k true + k false

handle
Set 1; let a1 = Get () in
Set 2; let a2 = Get () in
a1 + a2

with
| return x -> λs. x
| Set v, k -> λs. k () v
| Get (), k -> λs. k s s

operation

handler

15 May 2025 CHoCoLa Meeting, Lyon, France

delimited continuation

Algebraic Effects and Handlers
 Example

3

with h handle (Tick (); Tock ())

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

15 May 2025 CHoCoLa Meeting, Lyon, France

Algebraic Effects and Handlers
 Example

4

with h handle (Tick (); Tock ())

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

15 May 2025 CHoCoLa Meeting, Lyon, France

This talk focuses on deep handlers

delimited continuation

Algebraic Effects and Handlers
 Example

5

with h handle (Tick (); Tock ())

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

⟶ 1 :: with h handle ((); Tock ())

15 May 2025 CHoCoLa Meeting, Lyon, France

This talk focuses on deep handlers

delimited continuation

Algebraic Effects and Handlers
 Example

6

with h handle (Tick (); Tock ())

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

⟶ 1 :: with h handle ((); Tock ())

⟶ 1 :: with h handle (Tock ())

15 May 2025 CHoCoLa Meeting, Lyon, France

This talk focuses on deep handlers

Algebraic Effects and Handlers
 Example

7

with h handle (Tick (); Tock ())

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

⟶ 1 :: with h handle ((); Tock ())

⟶ 1 :: with h handle (Tock ())

15 May 2025 CHoCoLa Meeting, Lyon, France

This talk focuses on deep handlers
delimited continuation

Algebraic Effects and Handlers
 Example

8

with h handle (Tick (); Tock ())

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

⟶ 1 :: with h handle ((); Tock ())

⟶ 1 :: with h handle (Tock ())

⟶ 1 :: 0 :: with h handle ()

15 May 2025 CHoCoLa Meeting, Lyon, France

This talk focuses on deep handlers
delimited continuation

Algebraic Effects and Handlers
 Example

9

with h handle (Tick (); Tock ())

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

⟶ 1 :: with h handle ((); Tock ())

⟶ 1 :: with h handle (Tock ())

⟶ 1 :: 0 :: with h handle ()

15 May 2025 CHoCoLa Meeting, Lyon, France

This talk focuses on deep handlers

Algebraic Effects and Handlers
 Example

10

with h handle (Tick (); Tock ())

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

⟶ 1 :: with h handle ((); Tock ())

⟶ 1 :: with h handle (Tock ())

⟶ 1 :: 0 :: with h handle ()

⟶ 1 :: 0 :: []

= [1; 0]

15 May 2025 CHoCoLa Meeting, Lyon, France

This talk focuses on deep handlers

Verification of Programs with Effect Handlers

 Delimited continuations enhance expressivity but introduce
complex control flows, posing challenges for program verification

 This talk presents two complementary approaches that addresses
the challenges by applying type systems [Danvy+90; Materzok+11] with
Answer Type Modification (ATM) in different way
1. Refinement types [Kawamata+ POPL’24]

 Support functional correctness verification (ongoing extensions to temporal properties)
 Support infinite data domains (e.g., integers, algebraic data types)
 Undecidable but automated via Constrained Horn Clause (CHC) solving

2. Higher-order model checking [Sekiyama and Unno OOPSLA’24]
 Support modal mu-calculus model checking of effect trees
 Restricted to finite data domains (e.g., booleans, enum types)
 Decidable fragment expressible enough to support various effects

15 May 2025 CHoCoLa Meeting, Lyon, France 11

Verification of Programs with Effect Handlers

 Delimited continuations enhance expressivity but introduce
complex control flows, posing challenges for program verification

 This talk presents two complementary approaches that addresses
the challenges by applying type systems [Danvy+90; Materzok+11] with
Answer Type Modification (ATM) in different way
1. Refinement types [Kawamata+ POPL’24]

 Support functional correctness verification (ongoing extensions to temporal properties)
 Support infinite data domains (e.g., integers, algebraic data types)
 Undecidable but automated via Constrained Horn Clause (CHC) solving

2. Higher-order model checking [Sekiyama and Unno OOPSLA’24]
 Support modal mu-calculus model checking of effect trees
 Restricted to finite data domains (e.g., booleans, enum types)
 Decidable fragment expressible enough to support various effects

15 May 2025 CHoCoLa Meeting, Lyon, France 12

Refinement Types

𝑥𝑥 ∶ 𝐵𝐵 ∣ 𝜙𝜙
 Types equipped with predicates
 E.g. 1 + 2 ∶ 𝑥𝑥 ∶ int ∣ 𝑥𝑥 = 3

1 + 2 ∶ 𝑥𝑥 ∶ int ∣ 𝑥𝑥 > 0
 Often combined with dependent function types 𝑥𝑥 ∶ 𝑇𝑇 → 𝐶𝐶
 E.g. 𝜆𝜆𝜆𝜆. 𝑥𝑥 + 1 ∶ 𝒙𝒙 ∶ int → 𝑦𝑦 ∶ int ∣ 𝑦𝑦 = 𝒙𝒙 + 1

 Can represent more specific properties
 A tool of program verification

13

Formula

Base Type (int, bool etc.)

15 May 2025 CHoCoLa Meeting, Lyon, France

Contribution

Refinement type system
for algebraic effect handlers

14

⊢ with h handle (Tick (); Tock ()) ∶ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0

 Enables precise verification of algebraic effect handlers
 Can be built on top of existing languages
 Our implementation for OCaml 5 programs

15 May 2025 CHoCoLa Meeting, Lyon, France

Challenge

15

with h handle
(Tick (); Tock ())

(* ==> [1; 0] *)

let h = handler
| return x -> x
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

with h handle
(Tock (); Tick ())

(* ==> [0; 1] *)

The precise types depend on
what effects occur in what order

∶ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0

∶ 𝑧𝑧: int list ∣ 𝑧𝑧 = 0; 1

15 May 2025 CHoCoLa Meeting, Lyon, France

Challenge

16

with h handle
(Tick (); Tock ())

(* ==> [1; 0] *)

let h = handler
| return x -> x
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

with h handle
(Tock (); Tick ())

(* ==> [0; 1] *)

The precise types depend on
what effects occur in what order

∶ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0

∶ 𝑧𝑧: int list ∣ 𝑧𝑧 = 0; 1

15 May 2025 CHoCoLa Meeting, Lyon, France

𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 =

𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝟎𝟎

Challenge

17

with h handle
(Tick (); Tock ())

(* ==> [1; 0] *)

let h = handler
| return x -> x
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

with h handle
(Tock (); Tick ())

(* ==> [0; 1] *)

The precise types depend on
what effects occur in what order

∶ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0

∶ 𝑧𝑧: int list ∣ 𝑧𝑧 = 0; 1

15 May 2025 CHoCoLa Meeting, Lyon, France

𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝟏𝟏

𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = []

Challenge

18

with h handle
(if Decide () then n1 else n2)

(* ==> n1 - n2 *)

let h = handler
| return x -> x
| Decide (), k -> k true - k false

The precise type depends on
which branch returns what value

∶ 𝑧𝑧: int ∣ 𝑧𝑧 = 𝑛𝑛1 − 𝑛𝑛2

15 May 2025 CHoCoLa Meeting, Lyon, France

Challenge

19

with h handle
(if Decide () then n1 else n2)

(* ==> n1 - n2 *)

let h = handler
| return x -> x
| Decide (), k -> k true - k false

The precise type depends on
which branch returns what value

∶ 𝑧𝑧: int ∣ 𝑧𝑧 = 𝑛𝑛1 − 𝑛𝑛2

15 May 2025 CHoCoLa Meeting, Lyon, France

𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 ∣ 𝒛𝒛 = 𝒏𝒏𝟏𝟏

𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 ∣ 𝒛𝒛 = 𝒏𝒏𝟐𝟐

Challenge

20

? ?

Γ ⊢ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 ℎ 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝑒𝑒 ∶ ? ?

Need to track precise types of the contexts
(i.e., answer types) of each operation call in 𝑒𝑒

We adopt
Answer Type Modification

[Danvy+90; Materzok+11]

15 May 2025 CHoCoLa Meeting, Lyon, France

Answer Types

 Types of delimited contexts
 = return types of delimited continuations
 = types of the closest outer handling constructs (delimiters)

Answer type of 𝑒𝑒 = type of 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 ℎ 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 ℱ

21

ℰ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 ℎ 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 ℱ 𝑒𝑒

ℱ ∷= ∣ 𝐥𝐥𝐥𝐥𝐥𝐥 𝑥𝑥 = ℱ 𝐢𝐢𝐢𝐢 𝑒𝑒
ℰ ∷= ∣ 𝐥𝐥𝐥𝐥𝐥𝐥 𝑥𝑥 = ℰ 𝐢𝐢𝐢𝐢 𝑒𝑒 ∣ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 ℎ 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 ℰ

evaluation context handler-free
evaluation context

15 May 2025 CHoCoLa Meeting, Lyon, France

Answer Types in Ordinary Type Systems

22

Γ ⊢ 𝑒𝑒 ∶ Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ 𝑇𝑇𝑏𝑏𝑏𝑏 𝑖𝑖 ⊳ 𝑇𝑇0
Γ, 𝑥𝑥:𝑇𝑇0 ⊢ 𝑒𝑒𝑟𝑟 ∶ 𝑪𝑪 Γ, 𝑥𝑥:𝑇𝑇𝑎𝑎𝑎𝑎 , 𝑘𝑘:𝑇𝑇𝑏𝑏𝑏𝑏 → 𝑪𝑪 ⊢ 𝑒𝑒𝑖𝑖 ∶ 𝑪𝑪 𝑖𝑖
Γ ⊢ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ↦ 𝑒𝑒𝑟𝑟 , Op𝑖𝑖 𝑥𝑥, 𝑘𝑘 ↦ 𝑒𝑒𝑖𝑖 𝑖𝑖 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝑒𝑒 ∶ 𝑪𝑪

Σ ∋ Op:𝑇𝑇𝑎𝑎 ↠ 𝑇𝑇𝑏𝑏 Γ ⊢ 𝑣𝑣 ∶ 𝑇𝑇𝑎𝑎
Γ ⊢ Op 𝑣𝑣 ∶ Σ ⊳ 𝑇𝑇𝑏𝑏

𝑇𝑇 ∷= 𝐵𝐵 ∣ 𝑇𝑇 → 𝐶𝐶
𝐶𝐶 ∷= Σ ⊳ 𝑇𝑇
Σ ∷= Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ 𝑇𝑇𝑏𝑏𝑏𝑏 𝑖𝑖

value types
computation types

signatures answer type

15 May 2025 CHoCoLa Meeting, Lyon, France

Γ ⊢ 𝑒𝑒 ∶ 𝐶𝐶

Answer Types in Ordinary Type Systems

23

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥

𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥
unit → 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥

𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥

⊢ with h handle (Tick();Tock()) ∶ 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥

15 May 2025 CHoCoLa Meeting, Lyon, France

Answer Type Modification

24

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

with h handle (Tick (); Tock ())

15 May 2025 CHoCoLa Meeting, Lyon, France

Answer Type Modification

25

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

unit → 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 =

with h handle (Tick (); Tock ())

→ 1 :: with h handle ((); Tock ())

→ 1 :: with h handle (Tock ())

→ 1 :: 0 :: with h handle ()

→ 1 :: 0 :: []

with h handle () returns []

1 :: takes [0]

15 May 2025 CHoCoLa Meeting, Lyon, France

Answer Type Modification

26

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

unit → 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝟎𝟎

with h handle (Tick (); Tock ())

→ 1 :: with h handle ((); Tock ())

→ 1 :: with h handle (Tock ())

→ 1 :: 0 :: with h handle ()

→ 1 :: 0 :: []

with h handle () returns []

1 :: takes [0]

15 May 2025 CHoCoLa Meeting, Lyon, France

Answer Type Modification

27

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

unit → 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝟎𝟎

Initial answer type Final answer type

Answer refinement modification (ARM)
Answer type modification (ATM)

with h handle (Tick (); Tock ())

→ 1 :: with h handle ((); Tock ())

→ 1 :: with h handle (Tock ())

→ 1 :: 0 :: with h handle ()

→ 1 :: 0 :: []
15 May 2025 CHoCoLa Meeting, Lyon, France

Answer Type Modification

28

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

with h handle (Tick (); Tock ())

→ 1 :: with h handle ((); Tock ())

→ 1 :: with h handle (Tock ())

→ 1 :: 0 :: with h handle ()

→ 1 :: 0 :: []

unit → 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝟎𝟎

15 May 2025 CHoCoLa Meeting, Lyon, France

Answer Type Modification

29

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

with h handle (Tick (); Tock ())

→ 1 :: with h handle ((); Tock ())

→ 1 :: with h handle (Tock ())

→ 1 :: 0 :: with h handle ()

→ 1 :: 0 :: []

unit → 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝟎𝟎 𝒛𝒛: 𝐢𝐢𝐢𝐢𝐢𝐢 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ∣ 𝒛𝒛 = 𝟏𝟏;𝟎𝟎

15 May 2025 CHoCoLa Meeting, Lyon, France

Type Syntax

30

𝑇𝑇 ∷= 𝑥𝑥:𝐵𝐵 ∣ 𝜙𝜙 ∣ 𝑇𝑇 → 𝐶𝐶
𝐶𝐶 ∷= Σ ⊳ ⁄𝑇𝑇 𝑺𝑺
Σ ∷= Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝑪𝑪𝟏𝟏𝒊𝒊 ⇒ 𝑪𝑪𝟐𝟐𝒊𝒊 𝑖𝑖
𝑺𝑺 ∷= □ ∣ 𝑪𝑪𝟏𝟏 ⇒ 𝑪𝑪𝟐𝟐

value types
computation types

signatures
control effects

15 May 2025 CHoCoLa Meeting, Lyon, France

The initial answer type 𝑪𝑪𝟏𝟏 is modified
to the final answer type 𝑪𝑪𝟐𝟐

The answer type does not change

Typing Rules
 Example

31

with h handle (

Tick ();

Tock ()

)

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

Σ = � Tick: unit ↠ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = 0 ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0 ,
 }Tock: unit ↠ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 0

∶ Σ ⊳ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = 0 ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0

∶ Σ ⊳ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 0

15 May 2025 CHoCoLa Meeting, Lyon, France

Γ ⊢ 𝑒𝑒1 ∶ Σ ⊳ unit / 𝑪𝑪 ⇒ 𝑪𝑪𝑭𝑭 Γ ⊢ 𝑒𝑒2 ∶ Σ ⊳ 𝑇𝑇 / 𝑪𝑪𝑰𝑰 ⇒ 𝑪𝑪
Γ ⊢ 𝑒𝑒1; 𝑒𝑒2 ∶ Σ ⊳ 𝑇𝑇 / 𝑪𝑪𝑰𝑰 ⇒ 𝑪𝑪𝑭𝑭

Typing Rules
 Example

32

with h handle (

Tick ();

Tock ()

)

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

Σ = � Tick: unit ↠ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = 0 ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0 ,
 }Tock: unit ↠ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 0

∶ Σ ⊳ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0

15 May 2025 CHoCoLa Meeting, Lyon, France

Γ ⊢ 𝑒𝑒1 ∶ Σ ⊳ unit / 𝑪𝑪 ⇒ 𝑪𝑪𝑭𝑭 Γ ⊢ 𝑒𝑒2 ∶ Σ ⊳ 𝑇𝑇 / 𝑪𝑪𝑰𝑰 ⇒ 𝑪𝑪
Γ ⊢ 𝑒𝑒1; 𝑒𝑒2 ∶ Σ ⊳ 𝑇𝑇 / 𝑪𝑪𝑰𝑰 ⇒ 𝑪𝑪𝑭𝑭

∶ 𝑧𝑧: int list ∣ 𝑧𝑧 =

Typing Rules
 Example

33

with h handle (

Tick ();

Tock ()

)

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

Σ = � Tick: unit ↠ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = 0 ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0 ,
 }Tock: unit ↠ ⁄unit 𝑧𝑧: int list ∣ 𝑧𝑧 = ⇒ 𝑧𝑧: int list ∣ 𝑧𝑧 = 0

∶ 𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0

15 May 2025 CHoCoLa Meeting, Lyon, France

Typing Rules

34

Γ ⊢ 𝑒𝑒 ∶ Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝐶𝐶1𝑖𝑖 ⇒ 𝐶𝐶2𝑖𝑖 𝑖𝑖 ⊳ ⁄𝑇𝑇0 𝐶𝐶1 ⇒ 𝐶𝐶2
Γ, 𝑥𝑥:𝑇𝑇0 ⊢ 𝑒𝑒𝑟𝑟 ∶ 𝐶𝐶1 Γ, 𝑥𝑥:𝑇𝑇𝑎𝑎𝑎𝑎 , 𝑘𝑘:𝑇𝑇𝑏𝑏𝑏𝑏 → 𝐶𝐶1𝑖𝑖 ⊢ 𝑒𝑒𝑖𝑖 ∶ 𝐶𝐶2𝑖𝑖 𝑖𝑖
Γ ⊢ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ↦ 𝑒𝑒𝑟𝑟 , Op𝑖𝑖 𝑥𝑥, 𝑘𝑘 ↦ 𝑒𝑒𝑖𝑖 𝑖𝑖 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝑒𝑒 ∶ 𝐶𝐶2

Σ ∋ Op:𝑇𝑇𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2 Γ ⊢ 𝑣𝑣 ∶ 𝑇𝑇𝑎𝑎
Γ ⊢ Op 𝑣𝑣 ∶ Σ ⊳ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2

15 May 2025 CHoCoLa Meeting, Lyon, France

Γ ⊢ 𝑒𝑒 ∶ 𝐶𝐶

Typing Rules

35

Γ ⊢ 𝑒𝑒 ∶ Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝐶𝐶1𝑖𝑖 ⇒ 𝐶𝐶2𝑖𝑖 𝑖𝑖 ⊳ ⁄𝑇𝑇0 𝐶𝐶1 ⇒ 𝐶𝐶2
Γ, 𝑥𝑥:𝑇𝑇0 ⊢ 𝑒𝑒𝑟𝑟 ∶ 𝐶𝐶1 Γ, 𝑥𝑥:𝑇𝑇𝑎𝑎𝑎𝑎 , 𝑘𝑘:𝑇𝑇𝑏𝑏𝑏𝑏 → 𝐶𝐶1𝑖𝑖 ⊢ 𝑒𝑒𝑖𝑖 ∶ 𝐶𝐶2𝑖𝑖 𝑖𝑖
Γ ⊢ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ↦ 𝑒𝑒𝑟𝑟 , Op𝑖𝑖 𝑥𝑥, 𝑘𝑘 ↦ 𝑒𝑒𝑖𝑖 𝑖𝑖 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝑒𝑒 ∶ 𝐶𝐶2

Σ ∋ Op:𝑇𝑇𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2 Γ ⊢ 𝑣𝑣 ∶ 𝑇𝑇𝑎𝑎
Γ ⊢ Op 𝑣𝑣 ∶ Σ ⊳ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2

15 May 2025 CHoCoLa Meeting, Lyon, France

Γ ⊢ 𝑒𝑒 ∶ 𝐶𝐶

Typing Rules

36

Γ ⊢ 𝑒𝑒 ∶ Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝐶𝐶1𝑖𝑖 ⇒ 𝐶𝐶2𝑖𝑖 𝑖𝑖 ⊳ ⁄𝑇𝑇0 𝐶𝐶1 ⇒ 𝐶𝐶2
Γ, 𝑥𝑥:𝑇𝑇0 ⊢ 𝑒𝑒𝑟𝑟 ∶ 𝐶𝐶1 Γ, 𝑥𝑥:𝑇𝑇𝑎𝑎𝑎𝑎 , 𝑘𝑘:𝑇𝑇𝑏𝑏𝑏𝑏 → 𝐶𝐶1𝑖𝑖 ⊢ 𝑒𝑒𝑖𝑖 ∶ 𝐶𝐶2𝑖𝑖 𝑖𝑖
Γ ⊢ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ↦ 𝑒𝑒𝑟𝑟 , Op𝑖𝑖 𝑥𝑥, 𝑘𝑘 ↦ 𝑒𝑒𝑖𝑖 𝑖𝑖 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝑒𝑒 ∶ 𝐶𝐶2

Σ ∋ Op:𝑇𝑇𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2 Γ ⊢ 𝑣𝑣 ∶ 𝑇𝑇𝑎𝑎
Γ ⊢ Op 𝑣𝑣 ∶ Σ ⊳ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2

15 May 2025 CHoCoLa Meeting, Lyon, France

Γ ⊢ 𝑒𝑒 ∶ 𝐶𝐶

Extension 1: Predicate Polymorphism

37

Γ ⊢ 𝑒𝑒 ∶ Op𝑖𝑖:∀𝑋𝑋: �𝐵𝐵.𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝐶𝐶1𝑖𝑖 ⇒ 𝐶𝐶2𝑖𝑖 𝑖𝑖 ⊳ ⁄𝑇𝑇0 𝐶𝐶1 ⇒ 𝐶𝐶2
Γ, 𝑥𝑥:𝑇𝑇0 ⊢ 𝑒𝑒𝑟𝑟 ∶ 𝐶𝐶1 Γ,𝑋𝑋: �𝐵𝐵, 𝑥𝑥:𝑇𝑇𝑎𝑎𝑎𝑎 , 𝑘𝑘:𝑇𝑇𝑏𝑏𝑏𝑏 → 𝐶𝐶1𝑖𝑖 ⊢ 𝑒𝑒𝑖𝑖 ∶ 𝐶𝐶2𝑖𝑖 𝑖𝑖

Γ ⊢ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ↦ 𝑒𝑒𝑟𝑟 , Op𝑖𝑖 𝑥𝑥, 𝑘𝑘 ↦ 𝑒𝑒𝑖𝑖 𝑖𝑖 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝑒𝑒 ∶ 𝐶𝐶2

Σ ∋ Op:∀𝑋𝑋: �𝐵𝐵.𝑇𝑇𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2 Γ ⊢ 𝑣𝑣 ∶ 𝑇𝑇𝑎𝑎 Γ ⊢ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∶ �𝐵𝐵
Γ ⊢ Op 𝑣𝑣 ∶ Σ ⊳ ⁄𝑇𝑇𝑏𝑏 𝐶𝐶1 ⇒ 𝐶𝐶2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃/𝑋𝑋

𝑇𝑇 ∷= 𝐵𝐵 ∣ 𝑇𝑇 → 𝐶𝐶
𝐶𝐶 ∷= Σ ⊳ ⁄𝑇𝑇 𝑆𝑆
Σ ∷= Op𝑖𝑖:∀𝑋𝑋: �𝐵𝐵.𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝐶𝐶1𝑖𝑖 ⇒ 𝐶𝐶2𝑖𝑖 𝑖𝑖
𝑆𝑆 ∷= □ ∣ 𝐶𝐶1 ⇒ 𝐶𝐶2

value types
computation types

signatures
control effects

15 May 2025 CHoCoLa Meeting, Lyon, France

Γ ⊢ 𝑒𝑒 ∶ 𝐶𝐶

Extension 1: Predicate Polymorphism
 Example

38

with h handle (

Tick ();

Tock ();

Tick ();

Tock ()

)

let h = handler
| return x -> []
| Tick (), k -> 1 :: k ()
| Tock (), k -> 0 :: k ()

Σ = � Tick ∶ ∀𝑋𝑋 ∶ int list . unit ↠ ⁄unit
𝑧𝑧: int list ∣ 𝑋𝑋 𝑧𝑧 ⇒ 𝑧𝑧: int list ∣ ∀𝑙𝑙.𝑋𝑋 𝑙𝑙 ⇒ 𝑧𝑧 = 1 ∷ 𝑙𝑙 ,

Tock ∶ ∀𝑌𝑌 ∶ int list . unit ↠ ⁄unit
 }𝑧𝑧: int list ∣ 𝑌𝑌 𝑧𝑧 ⇒ 𝑧𝑧: int list ∣ ∀𝑙𝑙.𝑌𝑌 𝑙𝑙 ⇒ 𝑧𝑧 = 0 ∷ 𝑙𝑙

𝑋𝑋 ↦ 𝜆𝜆𝜆𝜆. 𝑧𝑧 = 0; 1; 0

𝑌𝑌 ↦ 𝜆𝜆𝜆𝜆. 𝑧𝑧 = 1; 0

𝑋𝑋 ↦ 𝜆𝜆𝜆𝜆. 𝑧𝑧 = 0

𝑌𝑌 ↦ 𝜆𝜆𝜆𝜆. 𝑧𝑧 =

𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0; 1; 0

𝑧𝑧: int list ∣ 𝑧𝑧 = 0; 1; 0

𝑧𝑧: int list ∣ 𝑧𝑧 = 1; 0

𝑧𝑧: int list ∣ 𝑧𝑧 = 0
𝑧𝑧: int list ∣ 𝑧𝑧 =

15 May 2025 CHoCoLa Meeting, Lyon, France

Extension 2: Dependent Types for Continuations

40

Γ ⊢ 𝑒𝑒 ∶ Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝑦𝑦.𝐶𝐶1𝑖𝑖 ⇒ 𝐶𝐶2𝑖𝑖 𝑖𝑖 ⊳ ⁄𝑇𝑇0 𝐶𝐶1 ⇒ 𝐶𝐶2
Γ, 𝑥𝑥:𝑇𝑇0 ⊢ 𝑒𝑒𝑟𝑟 ∶ 𝐶𝐶1 Γ, 𝑥𝑥:𝑇𝑇𝑎𝑎𝑎𝑎 , 𝑘𝑘: 𝑦𝑦:𝑇𝑇𝑏𝑏𝑏𝑏 → 𝐶𝐶1𝑖𝑖 ⊢ 𝑒𝑒𝑖𝑖 ∶ 𝐶𝐶2𝑖𝑖 𝑖𝑖

Γ ⊢ 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ↦ 𝑒𝑒𝑟𝑟 , Op𝑖𝑖 𝑥𝑥, 𝑘𝑘 ↦ 𝑒𝑒𝑖𝑖 𝑖𝑖 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝑒𝑒 ∶ 𝐶𝐶2

Σ ∋ Op:𝑇𝑇𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏 𝑦𝑦.𝐶𝐶1 ⇒ 𝐶𝐶2 Γ ⊢ 𝑣𝑣 ∶ 𝑇𝑇𝑎𝑎
Γ ⊢ Op 𝑣𝑣 ∶ Σ ⊳ ⁄𝑇𝑇𝑏𝑏 𝑦𝑦.𝐶𝐶1 ⇒ 𝐶𝐶2

𝑇𝑇 ∷= 𝐵𝐵 ∣ 𝑇𝑇 → 𝐶𝐶
𝐶𝐶 ∷= Σ ⊳ ⁄𝑇𝑇 𝑆𝑆
Σ ∷= Op𝑖𝑖:𝑇𝑇𝑎𝑎𝑎𝑎 ↠ ⁄𝑇𝑇𝑏𝑏𝑏𝑏 𝑦𝑦.𝐶𝐶1𝑖𝑖 ⇒ 𝐶𝐶2𝑖𝑖 𝑖𝑖
𝑆𝑆 ∷= □ ∣ 𝑦𝑦.𝐶𝐶1 ⇒ 𝐶𝐶2

value types
computation types

signatures
control effects

15 May 2025 CHoCoLa Meeting, Lyon, France

Γ ⊢ 𝑒𝑒 ∶ 𝐶𝐶

Extension 2: Dependent Types for Continuations

 Example

41

with h handle (

let b = Decide () in

if b then n1 else n2

)

let h = handler
| return x -> x
| Decide (), k -> k true - k false

Σ = �Decide: unit ↠ ⁄bool 𝑏𝑏. 𝑧𝑧: int ∣ 𝑏𝑏 ⇒ 𝑧𝑧 = 𝑛𝑛1 ∧ ¬𝑏𝑏 ⇒ 𝑧𝑧 = 𝑛𝑛2
 �⇒ 𝑧𝑧: int ∣ 𝑧𝑧 = 𝑛𝑛1 − 𝑛𝑛2

𝑏𝑏: bool → 𝑧𝑧: int ∣ 𝑏𝑏 ⇒ 𝑧𝑧 = 𝑛𝑛1 ∧ ¬𝑏𝑏 ⇒ 𝑧𝑧 = 𝑛𝑛2

𝑧𝑧: int ∣ 𝑧𝑧 = 𝑛𝑛1 − 𝑛𝑛2

𝑧𝑧: int ∣ 𝑏𝑏 ⇒ 𝑧𝑧 = 𝑛𝑛1 ∧ ¬𝑏𝑏 ⇒ 𝑧𝑧 = 𝑛𝑛2

15 May 2025 CHoCoLa Meeting, Lyon, France

Automatic Type Inference via CHC Solving

1. Obtain an ML-typed AST using OCaml’s compiler library
2. Infer refinement-free operation signatures and control effects
3. Generate refinement constraints for the program and its

specification as Constrained Horn Clauses (CHCs) [Unno and Kobayashi ’09]

4. Solve CHCs to check if the program satisfies the specification

15 May 2025 CHoCoLa Meeting, Lyon, France 42

The POPL’24 Paper also Includes:

 A proof of the type soundness

 Implementation in RCaml
 On top of OCaml 5.0
 Experiments on 50+ examples

 Another way of verification via CPS transformation
 Removal of handlers + verification with existing refinement type systems
 Bidirectionally type-preserving CPS transformation

 Needs type annotations on source programs

43

https://github.com/hiroshi-unno/coar

15 May 2025 CHoCoLa Meeting, Lyon, France

Verification of Programs with Effect Handlers

 Delimited continuations enhance expressivity but introduce
complex control flows, posing challenges for program verification

 This talk presents two complementary approaches that addresses
the challenges by applying type systems [Danvy+90; Materzok+11] with
Answer Type Modification (ATM) in different way
1. Refinement types [Kawamata+ POPL’24]

 Support functional correctness verification (ongoing extensions to temporal properties)
 Support infinite data domains (e.g., integers, algebraic data types)
 Undecidable but automated via Constrained Horn Clause (CHC) solving

2. Higher-order model checking [Sekiyama and Unno OOPSLA’24]
 Support modal mu-calculus model checking of effect trees
 Restricted to finite data domains (e.g., booleans, enum types)
 Decidable fragment expressible enough to support various effects

15 May 2025 CHoCoLa Meeting, Lyon, France 44

Model Checking

CHoCoLa Meeting, Lyon, France

𝑀𝑀 ⊨ 𝜙𝜙

System
♦ Programs
♦ Graphs
♦ State transition systems ?

Model Checking Problem

Whether 𝑀𝑀 satisfies 𝜙𝜙?

Property
♦ Temporal logic formulas
♦ Automata

4515 May 2025

Higher-Order Model Checking (HOMC)
[Ong, LICS’06; Kobayashi, JACM’13]

CHoCoLa Meeting, Lyon, France

𝑀𝑀 ⊨ 𝜙𝜙
?

HOMC Problem is Decidable
Whether the tree generated by 𝑀𝑀 satisfies 𝜙𝜙?

♦ E.g. assertion checking, (non-)termination verification, and general
branching-time temporal safety and liveness verification problems

Property
Predicates over trees

♦ MSO formulas
♦ Modal μ-calculus formulas
♦ Alternating parity tree automata

System
HO programs yielding trees

♦ HO recursion schemes
(tree grammars with HO funcs)

♦ PCF terms with finite ground
types (generating Böhm trees)

4615 May 2025

Higher-Order Model Checking (HOMC)
[Ong, LICS’06; Kobayashi, JACM’13]

CHoCoLa Meeting, Lyon, France

𝑀𝑀 ⊨ 𝜙𝜙
?

HOMC Problem is Decidable
Whether the tree generated by 𝑀𝑀 satisfies 𝜙𝜙?

♦ E.g. assertion checking, (non-)termination verification, and general
branching-time temporal safety and liveness verification problems

Property
Predicates over trees

♦ MSO formulas
♦ Modal μ-calculus formulas
♦ Alternating parity tree automata

System
HO programs yielding trees

♦ HO recursion schemes
(tree grammars with HO funcs)

♦ PCF terms with finite ground
types (generating Böhm trees)

Data domains need to be finite

4715 May 2025

CHoCoLa Meeting, Lyon, France

HOMC for Effects

What about other effects?
E.g., mutable store, I/O, backtracking, coroutines, etc.

Nondeterministic
choice

[Kobayashi, POPL’09]

Resource
(such as files)

[Kobayashi, POPL’09][Sato+, PEPM’13]

Exception
handling

4815 May 2025

CHoCoLa Meeting, Lyon, France

HOMC

Algebraic Effects & Effect Handlers
+

Can express exceptions,
local store, backtracking, etc.

by using delimited continuations

[Dal Lago and Ghyselen, POPL’24]

Can express global store, I/O,
nondeterministic choice, etc.

4915 May 2025

CHoCoLa Meeting, Lyon, France

HOMC
+

is
Undecidable

[Dal Lago and Ghyselen, POPL’24]

Idea: encoding natural numbers
through delimited continuations

Is there a useful fragment
where HOMC is decidable?

Can express exceptions,
local store, backtracking, etc.

by using delimited continuations
Can express global store, I/O,
nondeterministic choice, etc.

Algebraic Effects & Effect Handlers

5015 May 2025

Our Contributions

 A new class of HO programs with effect handlers where
HOMC is decidable
Effect handlers are expressive enough to implement various effects

 A CPS-transformation to obtain terms in a decidable variant of PCF
with finite ground types and effect operations without handlers
 Crucial both theoretically and practically

 Implementation of a model checker EffCaml for the new class

CHoCoLa Meeting, Lyon, France 51

Key idea : restrict the use of delimited continuations through an
Answer-Type Modification (ATM) type system [Danvy+90; Materzok+11]

15 May 2025

GitHub page
of EffCaml

 Target language: HEPCF
 HEPCF = A variant of PCF + Effect Operations + Handlers

HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]

CHoCoLa Meeting, Lyon, France 52

+ Higher-order functions
+ General recursion
+ Finite data domains (like Bool)

Terms 𝑀𝑀 ∷= ⋯ ∣ op 𝑉𝑉, 𝑥𝑥.𝑀𝑀 ∣ with 𝐻𝐻 handle 𝑀𝑀
Handlers 𝐻𝐻 ∷= return 𝑥𝑥 → 𝑀𝑀 ⊎ op𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑘𝑘𝑖𝑖 → 𝑀𝑀𝑖𝑖 𝑖𝑖

with 𝐻𝐻 handle op 𝑉𝑉,𝑦𝑦.𝑀𝑀 −→ 𝑀𝑀𝑀 𝑥𝑥 ↦ 𝑉𝑉 𝑘𝑘 ↦ 𝜆𝜆𝜆𝜆. with 𝐻𝐻 handle 𝑀𝑀
(if 𝑜𝑜𝑜𝑜 𝑥𝑥,𝑘𝑘 → 𝑀𝑀𝑀 ∈ 𝐻𝐻)

𝑀𝑀𝑀 can access to the delimited continuation via 𝑘𝑘

let 𝑥𝑥 = op 𝑉𝑉,𝑦𝑦.𝑀𝑀 in 𝑀𝑀2 −→ op(𝑉𝑉,𝑦𝑦. let 𝑥𝑥 = 𝑀𝑀 in 𝑀𝑀2)

15 May 2025

HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]

 Target language: HEPCF
 HEPCF = A variant of PCF + Effect Operations + Handlers
 Equipped with effect tree semantics

 The generated trees comprise unhandled operations as well as arguments and
returns values of the operations

CHoCoLa Meeting, Lyon, France

HEPCF term Effect tree

5315 May 2025

HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]

 Target language: HEPCF
 HEPCF = A variant of PCF + Effect Operations + Handlers
 Equipped with effect tree semantics

 The generated trees comprise unhandled operations as well as arguments and
returns values of the operations

 Handlers “fold” over effect trees

CHoCoLa Meeting, Lyon, France

HEPCF term Effect tree

54

A handler for tell tell removed

15 May 2025

HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]

 Model checking

CHoCoLa Meeting, Lyon, France

⊨ 𝜙𝜙
?

55

No unhandled "raise" operation occurs

∈ 𝜙𝜙
?

15 May 2025

HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]

 Model checking is undecidable for MSO formulas 𝜙𝜙
because effect handlers can encode natural numbers

CHoCoLa Meeting, Lyon, France

⊨ 𝜙𝜙
?

Reminder: infinite data domains makes the HOMC undecidable

∈ 𝜙𝜙
?

5615 May 2025

No unhandled "raise" operation occurs

Encoding of Natural Numbers [Dal Lago and Ghyselen, POPL’24]

CHoCoLa Meeting, Lyon, France

 Encoding of basic arithmetic operations

𝑛𝑛 = 𝜆𝜆𝜆𝜆. succ();⋯ ; succ(); 𝑥𝑥

case(𝑉𝑉; 0 ↦ 𝑀𝑀0; succ 𝑥𝑥 ↦ 𝑀𝑀1 = with 𝐻𝐻 handle 𝑉𝑉 ()
where H = {return _ → 𝑀𝑀0 , succ(_ , 𝑥𝑥) → 𝑀𝑀1 }

Here shallow effect handlers are assumed, but
it is possible to adapt the encoding to deep handlers

𝑛𝑛 calls to operation succ

𝑉𝑉 − 𝑛𝑛 = with 𝐻𝐻 handle ⋯ (with 𝐻𝐻 handle 𝑉𝑉 () ⋯)
where 𝐻𝐻 = {return _ → 0 , succ(_ , 𝑥𝑥) → 𝑥𝑥() }

5715 May 2025

[Hillerström and Lindley, APLAS’18]

Key Idea to Prevent the Nat Encoding

Bounding # of simultaneously active effect handlers

CHoCoLa Meeting, Lyon, France

Formal Statement
For any term 𝑒𝑒 to be model checked,
∃𝑛𝑛.∀𝑒𝑒′,𝐻𝐻1, … ,𝐻𝐻𝑛𝑛. 𝑒𝑒 −→ with 𝐻𝐻1 handle … with 𝐻𝐻𝑛𝑛 handle 𝑒𝑒′ …

Why does it prevent the encoding?
Predecessor is implemented by effect handlers

 Bounding # of simultaneously active effect handlers results in
bounding # of applications of the predecessor

 The restriction bounds the range of accessible natural numbers
5815 May 2025

𝑉𝑉 − 𝑛𝑛 = with 𝐻𝐻 handle ⋯ (with 𝐻𝐻 handle 𝑉𝑉 () ⋯)

Approach to Implementing the Restriction

 Use a type system with answer types [Danvy+90; Materzok+11]

 Essentially the same as the ATM type system in [Kawamata+ POPL’24] without
polymorphism, dependency, and refinements

 Answer types reveal # of delimited continuations necessary to evaluate
terms

 # of delimited continuations = # of effect handlers that can be active
 Bounding answer types enables bounding # of simul. active effect handlers

CHoCoLa Meeting, Lyon, France

Types of delimited continuations

5915 May 2025

Types

CHoCoLa Meeting, Lyon, France 6015 May 2025

Types

CHoCoLa Meeting, Lyon, France

Initial answer type: the return type of
the delimited cont. enclosing terms

Final answer type: the argument type of
the meta-continuation

6115 May 2025

 CPS interpretation of computation types (except for Σ)

 For a computation type 𝐶𝐶 = 𝑇𝑇1 / 𝐴𝐴1 ⇒ (𝑇𝑇2 / 𝐴𝐴2 ⇒ … ⇒ 𝑇𝑇𝑛𝑛 / 𝐴𝐴𝑛𝑛 ⇒ 𝑇𝑇 …)

𝑇𝑇 / 𝐴𝐴1 ⇒ 𝐴𝐴2 CPS = 𝑇𝑇 CPS → 𝐴𝐴1 CPS → 𝐴𝐴2 CPS

𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑇𝑇1 CPS → 𝐴𝐴1 CPS →
𝑇𝑇2 CPS → 𝐴𝐴2 CPS → ⋯ →
𝑇𝑇𝑛𝑛 CPS → 𝐴𝐴𝑛𝑛 CPS → 𝑇𝑇 CPS

Results

CHoCoLa Meeting, Lyon, France

Proof strategy: Reducing the HOMC for effect handlers to
the (decidable) HOMC for algebraic effects
via a semantics-preserving CPS transformation

Our type system accepts effect handlers for exceptions, local store, backtracking, etc.

The model checking of HEPCF terms well-typed in our type system is decidable

Because it restricts the use of effect handlers, not themselves

6215 May 2025

Implementation: EffCaml

 A model checker for a subset of OCaml 5 with effect handlers
1. Inference of ML types, operation signatures, and control effects
2. CPS-transformation to eliminate effect handlers
3. Apply HOMC tool HorSat2 [Kobayashi 2016] to the result of 2.

 Preliminary experiment results

CHoCoLa Meeting, Lyon, France

GitHub page
of EffCaml

6315 May 2025

Conclusions

Takeaway: Answer types are effective in reasoning about
effect-handling programs
 Other application: type-based temporal verification [Sekiyama & Unno, POPL’23]

CHoCoLa Meeting, Lyon, France

Decidable HOMC of effect-handling programs
◊ By an ATM type system that bounds # of simultaneously active effect handlers

6415 May 2025

Automated precise verification of effect-handling programs
◊ By an ATM refinement type system that precisely tracks answer refinement types

Ongoing and Future Work

 Support other variants of effect handlers
 E.g., shallow and lexical handlers

 Extend ATM type systems with varying levels of polymorphism to
balance modularity and precision of verification
 Effect polymorphism

 specifying a part of an operation signature as a parameter
 Control effect polymorphism
 Computation and value type polymorphism

 Enhance RCaml and EffCaml to be more scalable and to support
more language features and specifications
 Combination with other effects such as parallelism and temporal effects

15 May 2025 CHoCoLa Meeting, Lyon, France 65

	Refinement Types and Higher-Order Model Checking for Algebraic Effects and Handlers
	Algebraic Effects and Handlers
	Algebraic Effects and Handlers
	Algebraic Effects and Handlers
	Algebraic Effects and Handlers
	Algebraic Effects and Handlers
	Algebraic Effects and Handlers
	Algebraic Effects and Handlers
	Algebraic Effects and Handlers
	Algebraic Effects and Handlers
	Verification of Programs with Effect Handlers
	Verification of Programs with Effect Handlers
	Refinement Types
	Contribution
	Challenge
	Challenge
	Challenge
	Challenge
	Challenge
	Challenge
	Answer Types
	Answer Types in Ordinary Type Systems
	Answer Types in Ordinary Type Systems
	Answer Type Modification
	Answer Type Modification
	Answer Type Modification
	Answer Type Modification
	Answer Type Modification
	Answer Type Modification
	Type Syntax
	Typing Rules
	Typing Rules
	Typing Rules
	Typing Rules
	Typing Rules
	Typing Rules
	Extension 1: Predicate Polymorphism
	Extension 1: Predicate Polymorphism
	Extension 2: Dependent Types for Continuations
	Extension 2: Dependent Types for Continuations
	Automatic Type Inference via CHC Solving
	The POPL’24 Paper also Includes:
	Verification of Programs with Effect Handlers
	Model Checking
	Higher-Order Model Checking (HOMC) �[Ong, LICS’06; Kobayashi, JACM’13]
	Higher-Order Model Checking (HOMC)�[Ong, LICS’06; Kobayashi, JACM’13]
	スライド番号 48
	スライド番号 49
	スライド番号 50
	Our Contributions
	HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]
	HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]
	HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]
	HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]
	HOMC for Effect Handlers [Dal Lago and Ghyselen, POPL’24]
	Encoding of Natural Numbers [Dal Lago and Ghyselen, POPL’24]
	Key Idea to Prevent the Nat Encoding
	Approach to Implementing the Restriction
	Types
	Types
	Results
	Implementation: EffCaml
	Conclusions
	Ongoing and Future Work

