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First-Order Fixpoint Constraints



My Research: Automated Verification 
of Higher-Order Functional Programs
• MoCHi: Software Model Checker for OCaml

• Assertion safety verification [PLDI’11, PEPM’13, ESOP’15, TACAS’15]
• Termination verification [ESOP’14]
• Non-termination verification [CAV’15]
• Fair-termination verification [POPL’16]

• RCaml: Refinement Type Checking and Inference System for OCaml
• Assertion safety verification [FLOPS’08, PPDP’09, POPL’13, POPL’18]
• (Maximally-weak) precondition inference [SAS’15]
• Termination and non-termination verification [SAS’15, POPL’18]
• Relational verification [CAV’17]
• Temporal safety and liveness verification [LICS’18, CAV’18]
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Based on: dependent refinement types and CHC / fixpoint constraint solving

Based on: higher-order model checking, binary reachability analysis, predicate 
abstraction, CEGAR based on recursion-free Constrained Horn Clause (CHC) solving
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Based on: dependent refinement types and CHC / fixpoint constraint solving

Based on: higher-order model checking, binary reachability analysis, predicate 
abstraction, CEGAR based on recursion-free Constrained Horn Clause (CHC) solving



Outline

1. CHC / Fixpoint Constraints for Program Verification
2. CHC Constraint Solving for Relational Verification

• Based on [Unno, Torii and Sakamoto, CAV’17]

3. Fixpoint Constraint Solving for Temporal Verification
• Based on [Nanjo, Unno, Koskinen and Terauchi, LICS’18]
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CHC based Program Verification
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Verification Problems of Programs in
Various Paradigms (e.g., functional [U.+ ’08, ’09, Rondon+ ’08, …], 
procedural [Grebenshchikov+ ’12, Gurfinkel+ ’15], object-oriented 
[Kahsai+ ’16], multi-threaded [Gupta+ ’11]) with
Advanced Language Features (e.g., algebraic data structures, 
linked data structures, exceptions, higher-order functions) with
Side-Effects (e.g., non-termination, non-determinism, concurrency, 
assertions, destructive updates)

CHC Constraint Solving Problems

Reduce



Overall Flow of CHC Constraint 
based Program Verification
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Program & Specification

CHC Constraint Set

Constraint Generation

Constraint Solving

Solution or Counterexample



Overall Flow of CHC Constraint 
based Program Verification

2018/7/13 HCVS'18, Oxford, UK 8

Program & Specification

CHC Constraint Set

Constraint Generation

Constraint Solving

Solution or Counterexample

(* OCaml *)
let rec mult x y =

if y = 0 then 0
else x + mult x (y - 1)

/* C */
int mult(int x, int y) {

int s = 0;
while(y != 0){
s += x;
y--;

}
return s;

}

{- Haskell -}
mult :: Int -> Int -> Int
mult x 0 = 0
mult x y = x + mult x (y - 1)



Overall Flow of CHC Constraint 
based Program Verification

2018/7/13 HCVS'18, Oxford, UK 9

Program & Specification

CHC Constraint Set

Constraint Generation

Constraint Solving

Solution or Counterexample
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based Program Verification

2018/7/13 HCVS'18, Oxford, UK 10

Program & Specification

CHC Constraint Set

Constraint Generation

Constraint Solving

Solution or Counterexample

𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑟𝑟 ≡ 𝑟𝑟 = 𝑥𝑥 × 𝑦𝑦



predicate variables
CHC Constraint Set
CHC constraint sets 𝐻𝐻 ∷= 𝐶𝐶1, … ,𝐶𝐶𝑛𝑛
CHCs 𝐶𝐶 ∷= ∀�𝑥𝑥. ℎ ⇐ 𝑃𝑃1 �𝑡𝑡1 ∧ ⋯∧ 𝑃𝑃𝑛𝑛 �𝑡𝑡𝑛𝑛 ∧ 𝜙𝜙
heads ℎ ∷= ⊥ ∣ 𝑃𝑃 �̃�𝑡
formulas 𝜙𝜙 ∷= ⊤ ∣ ⊥ ∣ 𝐴𝐴 �̃�𝑡 ∣ ¬𝜙𝜙 ∣ 𝜙𝜙 ∧ 𝜙𝜙 ∣ 𝜙𝜙 ∨ 𝜙𝜙
terms 𝑡𝑡 ∷= 𝑥𝑥 ∣ 𝑓𝑓 �̃�𝑡

Predicate substitution 𝜃𝜃 ∶ PVars → Preds
is called a solution of 𝐻𝐻 if ⊨ 𝜃𝜃 ⋀𝐻𝐻
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function symbols of the 
background theory

predicate symbols of the 
background theory



Overall Flow of CHC Constraint 
based Program Verification
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Imperative Program & 
Safety Specification

CHC Constraint Set

Constraint Generation

Constraint Solving

Solvable or Not

Initial states: 𝑥𝑥 = 10
Program:

while ( x > 0 ) { x--; }
Error states: 𝑥𝑥 < 0

𝑅𝑅 𝑥𝑥 ⇐ 𝑥𝑥 = 10
𝑅𝑅 𝑥𝑥 − 1 ⇐ 𝑅𝑅 𝑥𝑥 ∧ 𝑥𝑥 > 0
⊥⇐ 𝑅𝑅 𝑥𝑥 ∧ 𝑥𝑥 < 0

𝑅𝑅 𝜃𝜃(𝑅𝑅)

Init Error

𝜃𝜃 = 𝑅𝑅 ↦ 𝜆𝜆𝑥𝑥. 𝑥𝑥 ≥ 0



function symbols of the 
background theory

First-Order Fixpoint Logic ℒ

• First-order logic extended with least fixpoints (LFPs) 
and greatest fixpoints (GFPs)
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predicate 
variables

predicate symbols of the 
background theory

LFPs
(𝑋𝑋 occurs only 
positively in 𝜙𝜙)

sorts (e.g. ℤ) of the 
background theory

GFPs
(𝑋𝑋 occurs only 
positively in 𝜙𝜙)



Fixpoint Constraint Solving

• Fixpoint constraint 𝜙𝜙 represented by an ℒ-formula 
is called solvable if ⊨ 𝜙𝜙

• Generalizes CHC Constraint Solving
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𝑅𝑅 𝑥𝑥 ⇐ 𝑥𝑥 = 10
𝑅𝑅 𝑥𝑥 − 1 ⇐ 𝑅𝑅 𝑥𝑥 ∧ 𝑥𝑥 > 0
⊥⇐ 𝑅𝑅 𝑥𝑥 ∧ 𝑥𝑥 < 0

has a solution

⊥⇐ 𝜇𝜇𝑅𝑅 𝑥𝑥 . 𝑥𝑥 = 10 ∨
𝑅𝑅 𝑥𝑥 + 1 ∧ 𝑥𝑥 + 1 > 0 𝑥𝑥

∧ 𝑥𝑥 < 0

is solvable

⇔



Applications to Verification of 
Liveness and Existential Properties
• Safety verification

• 𝜇𝜇Reachable �𝑥𝑥 .𝜙𝜙 �𝑥𝑥 ⇒ ¬Error �𝑥𝑥
• Termination verification

• 𝜈𝜈Diverging �𝑥𝑥 .𝜙𝜙 �𝑥𝑥 ⇒ ¬Init �𝑥𝑥
• Non-safety verification

• ∃�𝑥𝑥. Error �𝑥𝑥 ∧ 𝜇𝜇Reachable �𝑥𝑥 .𝜙𝜙 �𝑥𝑥
• Non-termination verification

• ∃�𝑥𝑥. Init �𝑥𝑥 ∧ 𝜇𝜇Diverging �𝑥𝑥 .𝜙𝜙 �𝑥𝑥
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Outline

 CHC / Fixpoint Constraints for Program Verification
2. CHC Constraint Solving for Relational Verification

• Based on [Unno, Torii and Sakamoto, CAV’17]

3. Fixpoint Constraint Solving for Temporal Verification
• Based on [Nanjo, Unno, Koskinen and Terauchi, LICS’18]
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This Work
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CHC Constraint Set

Constraint Solving

Solvable or Not

Reduce Inductive 
Theorem Proving

• Enable verification of relational specifications across 
programs in various paradigms

• Support constraints over any background theories
(if the backend SMT solver does)

SMT Solving

CHC Constraint Solving



Relational Specifications

• Specifications that relate
the inputs and outputs of multiple function calls

• Equivalence
• Invertibility
• Non-interference
• Associativity
• Commutativity
• Distributivity
• Monotonicity
• Idempotency
• …
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Overall Flow of CHC Constraint 
based Program Verification
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(Functional) Program &
Relational Specification

CHC Constraint Set

Constraint Generation

Constraint Solving

Solvable or Not



Example: (Functional) Program 
and Relational Specification
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(* recursive function to compute “x × y” *)
let rec mult x y =
if y = 0 then 0 else x + mult x (y - 1)

(* tail recursive function to compute “x × y + a” *)
let rec mult_acc x y a =
if y = 0 then a else mult_acc x (y - 1) (a + x)

(* functional equivalence of mult and mult_acc *)
let main x y a = assert (mult x y + a = mult_acc x y a)



Overall Flow of CHC Constraint 
based Program Verification
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(Functional) Program & 
Relational Specification

CHC Constraint Set

Constraint Generation

Constraint Solving

Solvable or Not



CHC Constraint Generation [U.+ ’09]
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let rec mult x y =
if y = 0 then 0
else x + mult x (y - 1)

let rec mult_acc x y a =
if y = 0 then a
else mult_acc x (y - 1) (a + x)

let main x y a =
assert (mult x y + a

= mult_acc x y a)



Overall Flow of CHC Constraint 
based Program Verification
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(Functional) Program & 
Relational Specification

CHC Constraint Set

Constraint Generation

Constraint Solving

Solvable or Not



CHC Constraint Solving
• Check the existence of a solution for predicate 

variables satisfying all the CHC constraints
• If a solution exists, the original program is 

guaranteed to satisfy the specification
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Example (Non-relational) specification:
let main x y = if x >= 0 && y >= 0 then assert (mult x y >= 0)

Solution 1: 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑟𝑟 ≡ 𝑥𝑥 ≥ 0 ∧ 𝑦𝑦 ≥ 0 ⇒ 𝑟𝑟 ≥ 0

Nonlinear QF-NIA
QF-LIASolution 2: 𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑟𝑟 ≡ 𝑟𝑟 = 𝑥𝑥 × 𝑦𝑦



Previous Methods for CHC Solving 
[U.+ ’08,’09, Gupta+ ’11, Hoder+ ’11,’12, McMillan+ ’13, 
Rümmer+ ’13, …] (w/o Predicate Pairing [De Angelis+ ’16])
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QF-NIA

QF-LIA

Find a solution expressible in QF-LIA (or QF-LRA)

Solution 1: 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑟𝑟 ≡ 𝑥𝑥 ≥ 0 ∧ 𝑦𝑦 ≥ 0 ⇒ 𝑟𝑟 ≥ 0

Solution 2: 𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝑟𝑟 ≡ 𝑟𝑟 = 𝑥𝑥 × 𝑦𝑦



Example Constraints that Can Not 
be Solved by Previous Methods

2018/7/13 HCVS'18, Oxford, UK 26

Analyzed 
separately from 𝑄𝑄

Analyzed 
separately from 𝑃𝑃

𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ≡ 𝑠𝑠1 = 𝑥𝑥 × 𝑦𝑦 𝑄𝑄 𝑥𝑥,𝑦𝑦,𝑎𝑎, 𝑠𝑠2 ≡ 𝑠𝑠2 = 𝑥𝑥 × 𝑦𝑦 + 𝑎𝑎

Constraint 
Solving Fails!

QF-NIA



Our Constraint Solving Method
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CHC Constraint Set

Constraint Solving

Solvable or Not

Inductive 
Theorem Proving

Simultaneously analyze 
multiple predicates by 
using mutual invariants 

expressed as IHs

Reduce



∀𝑥𝑥,𝑦𝑦, 𝑠𝑠1,𝑎𝑎, 𝑠𝑠2.𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧ 𝑄𝑄 𝑥𝑥,𝑦𝑦,𝑎𝑎, 𝑠𝑠2 ⇒ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

Prove this by 
induction on 
derivation of 
𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1

Reduction from Constraint Solving 
to Inductive Theorem Proving
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𝑃𝑃 𝑥𝑥, 0,0 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑥𝑥 + 𝑟𝑟 ⇐ 𝑃𝑃 𝑥𝑥,𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑦𝑦 ≠ 0
𝑄𝑄 𝑥𝑥, 0,𝑎𝑎, 𝑎𝑎 𝑄𝑄 𝑥𝑥,𝑦𝑦, 𝑎𝑎, 𝑟𝑟 ⇐ 𝑄𝑄 𝑥𝑥,𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑟𝑟 ∧ 𝑦𝑦 ≠ 0
𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2 ⇐ 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧ 𝑄𝑄 𝑥𝑥,𝑦𝑦,𝑎𝑎, 𝑠𝑠2



Principle of Induction on Derivation
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∀𝐷𝐷. 𝜓𝜓 𝐷𝐷 if and only if
∀𝐷𝐷. ∀𝐷𝐷′.𝐷𝐷′ ≺ 𝐷𝐷 ⇒ 𝜓𝜓 𝐷𝐷′ ⇒ 𝜓𝜓 𝐷𝐷

where 𝐷𝐷′ ≺ 𝐷𝐷 represents that
𝐷𝐷′ is a strict sub-derivation of 𝐷𝐷

𝐷𝐷 =

𝐷𝐷1
𝐽𝐽3 𝐷𝐷2
𝐽𝐽2 𝐷𝐷3

𝐷𝐷4
𝐽𝐽4

𝐽𝐽1

Assume 
𝜓𝜓 𝐷𝐷1 ,𝜓𝜓 𝐷𝐷2 ,
𝜓𝜓 𝐷𝐷3 , 𝜓𝜓 𝐷𝐷4

and prove 𝜓𝜓 𝐷𝐷
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Horn Constraint Solving:

Inductive Theorem Proving:
∅;𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ,𝑄𝑄 𝑥𝑥, 𝑦𝑦,𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

Induction hypotheses and lemmas

Premises

Judgment



Unfold
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Induct

Add an induction hypothesis:

𝛾𝛾 = ∀𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ , 𝑎𝑎′, 𝑠𝑠2′ .𝐷𝐷 𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ≺ 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧
𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ∧ 𝑄𝑄 𝑥𝑥′,𝑦𝑦′, 𝑎𝑎′, 𝑠𝑠2′ ⇒ 𝑠𝑠1′ + 𝑎𝑎′ = 𝑠𝑠2′

Case analysis on the last rule used

Guard to avoid unsound application
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Unfold

Case analysis on the last rule used
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Valid

Validity checking
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Valid
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Unfold Case analysis on the last rule used
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Valid
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IndHyp Apply induction hypothesis

𝛾𝛾 = ∀𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ , 𝑎𝑎′, 𝑠𝑠2′ .𝐷𝐷 𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ≺ 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧
𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ∧ 𝑄𝑄 𝑥𝑥′,𝑦𝑦′,𝑎𝑎′, 𝑠𝑠2′ ⇒ 𝑠𝑠1′ + 𝑎𝑎′ = 𝑠𝑠2′

𝜎𝜎 𝛾𝛾 = 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦 − 1, 𝑠𝑠1 − 𝑥𝑥 ≺ 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧ 𝑃𝑃 𝑥𝑥,𝑦𝑦 − 1, 𝑠𝑠1 − 𝑥𝑥 ∧
𝑄𝑄 𝑥𝑥,𝑦𝑦 − 1,𝑎𝑎 + 𝑥𝑥, 𝑠𝑠2 ⇒ 𝑠𝑠1 − 𝑥𝑥 + (𝑎𝑎 + 𝑥𝑥) = 𝑠𝑠2
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Valid

QED



Properties of Inductive Proof 
System for CHC Constraint Solving
• Soundness: If the goal is proved, the original CHC 

constraints have a solution (which may not be 
expressible in the background theory)

• Relative Completeness: If the original constraints 
have a solution expressible in the background 
theory, the goal is provable
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Automating Induction

• Use the following rule application strategy:
• Repeatedly apply INDHYP until no new premises are added
• Apply VALID whenever a new premise is added
• Select some 𝑃𝑃 �̃�𝑡 and apply INDUCT and UNFOLD

• Close a proof branch by using:
• SMT solvers: provide efficient and powerful reasoning about 

data structures (e.g., integers, reals, algebraic data structures) 
but predicates are abstracted as uninterpreted functions 

• CHC constraint solvers: provide bit costly but powerful 
reasoning about inductive predicates
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Prototype Constraint Solver

• Use Z3 and 𝝁𝝁Z PDR engine respectively
as the backend SMT and CHC constraint solvers

• Integrated with a refinement type based verification 
tool RCaml for the OCaml functional language

• Can exploit lemmas which are:
• User-supplied,
• Heuristically obtained from the given constraints, or
• Automatically generated by an abstract interpreter

• Can generate a counterexample (if any)
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Experiments on IsaPlanner
Benchmark Set
• 85 (mostly) relational verification problems of

total functions on inductively defined data structures
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Inductive Theorem Prover #Successfully Proved
RCaml 68
Zeno 82 [Sonnex+ ’12]

HipSpec 80 [Claessen+ ’13]

CVC4 80 [Reynolds+ ’15]

ACL2s 74 (according to [Sonnex+ ’12])

IsaPlanner 47 (according to [Sonnex+ ’12])

Dafny 45 (according to [Sonnex+ ’12])

Support automatic 
lemma discovery &
goal generalization



Experiments on Benchmark Programs with 
Advanced Language Features & Side-Effects

• 30 (mostly) relational verification problems for:
• Complex integer functions: Ackermann, McCarthy91
• Nonlinear real functions: dyn_sys
• Higher-order functions: fold_left, fold_right, repeat, find, ...
• Exceptions: find
• Non-terminating functions: mult, sum, …
• Non-deterministic functions: randpos
• Imperative procedures: mult_Ccode
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• 28 (2 required lemmas) successfully proved by RCaml

• 3 proved by CHC constraint solver 𝝁𝝁Z PDR
• 2 proved by inductive theorem prover CVC4 (if inductive 

predicates are encoded using uninterpreted functions)



Summary of [Unno+ CAV’17]

• Proposed an automated verification method combining
CHC constraint solving and inductive theorem proving

• Enable relational verification across programs in various 
paradigms with advanced language features and side-effects

• Support constraints over any background theories
(if the backend SMT solver does)

• Ongoing work:
• Automatic lemma discovery and goal generalization using 

invariant synthesis techniques (e.g. Craig interpolation)
• Relational program synthesis
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Outline

 CHC / Fixpoint Constraints for Program Verification
 CHC Constraint Solving for Relational Verification
Based on [Unno, Torii and Sakamoto, CAV’17]

3. Fixpoint Constraint Solving for Temporal Verification
• Based on [Nanjo, Unno, Koskinen and Terauchi, LICS’18]
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Temporal Property Verification
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𝑃𝑃 ⊨ Φ
Program Temporal property?

Check whether 𝑃𝑃 satisfies Φ



This Work
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𝑃𝑃 ⊨ Φ
Higher-order 

functional program
Value-dependent 

temporal property?
Check whether 𝑃𝑃 satisfies Φ by using

(1) a dependent refinement type & effect system and 
(2) a deductive system for a first-order fixpoint logic



Main Contribution

• Foundation for compositional & algorithmic 
verification of value-dependent temporal 
properties of higher-order programs

• cf. previous proposals are:
• fully automated but whole program analysis [Kobayashi+ 

PLDI’11], [U.+ POPL’13], [Kuwahara+ ESOP’14], [Kuwahara+ 
CAV’15], [Murase+ POPL’16]

• compositional but no support of the class of properties 
[Koskinen+ CSL-LICS’14], [U.+ POPL’18]
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This Work
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𝑃𝑃 ⊨ Φ
Higher-order 

functional program
Value-dependent 

temporal property?
Check whether 𝑃𝑃 satisfies Φ by using

(1) a dependent refinement type & effect system and 
(2) a deductive system for a first-order fixpoint logic



Example: Functional Program
let rec send_msgs n =

if n = 0 then ()
else (event[Send]; send_msgs (n-1))

Generated event sequences:
n < 0 ∶ Send𝜔𝜔 (infinite repetition of Send)

n = 0 ∶ 𝜖𝜖 (empty sequence)

n = 1 ∶ Send
n = 2 ∶ Send, Send

⋮

emit Send event
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This Work
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𝑃𝑃 ⊨ Φ
Higher-order 

functional program
Value-dependent 

temporal property?
Check whether 𝑃𝑃 satisfies Φ by using

(1) a dependent refinement type & effect system and 
(2) a deductive system for a first-order fixpoint logic



This Work
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𝑃𝑃 ⊨ Φ𝜇𝜇 ,Φ𝜈𝜈

predicate for finite
event sequences

?

Check whether finite event sequences generated 
by 𝑃𝑃 satisfy Φ𝜇𝜇 and infinite event sequences 

generated by 𝑃𝑃 satisfy Φ𝜈𝜈

predicate for infinite
event sequences



Example: Value-Dependent
Temporal Property

let rec send_msgs n =
if n = 0 then

()
else

(event[Send];
send_msgs (n-1))

Φ𝜇𝜇 ≡ 𝜆𝜆𝑥𝑥 ∈ Σ∗. 𝑥𝑥 = Sendn
Φ𝜈𝜈 ≡ 𝜆𝜆𝑥𝑥 ∈ Σ𝜔𝜔. 𝑥𝑥 = Send𝜔𝜔⊨

For terminating 
executions

For diverging 
executions

n-times repetition 
of Send

infinite repetition 
of Send
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n < 0 ∶ Send𝜔𝜔
n = 0 ∶ 𝜖𝜖
n = 1 ∶ Send
n = 2 ∶ Send, Send

⋮



Further Examples

• See our LICS’18 paper for further examples that 
demonstrate the range of applications
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This Work
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𝑃𝑃 ⊨ Φ
Higher-order 

functional program
Value-dependent 

temporal property?
Check whether 𝑃𝑃 satisfies Φ by using

(1) a dependent refinement type & effect system and 
(2) a deductive system for a first-order fixpoint logic



Contributions

1. A dependent refinement type & effect system for 
compositional & algorithmic temporal verification
• Compositional analysis of dependent temporal effects

represented by predicates of first-order fixpoint logic 𝓛𝓛
• Algorithmic type checking via validity checking for ℒ

2. A deductive system for the validity of ℒ
• Use invariants and well-founded relations to

over- and under-approximate fixpoints 
• Designed by transferring ideas from verification research

• Can be used with any background first-order theory
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Contributions

1. A dependent refinement type & effect system for 
compositional & algorithmic temporal verification
• Compositional analysis of dependent temporal effects

represented by predicates of first-order fixpoint logic 𝓛𝓛
• Algorithmic type checking via validity checking for ℒ

2. A deductive system for the validity of ℒ
• Use invariants and well-founded relations to

over- and under-approximate fixpoints 
• Designed by transferring ideas from verification research

• Can be used with any background first-order theory
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LFPs (𝑋𝑋 occurs only 
positively in 𝜙𝜙)

GFPs (𝑋𝑋 occurs only 
positively in 𝜙𝜙)

function symbols of 
the background theory

First-Order Fixpoint Logic ℒ (revisited)

• First-order logic extended with least fixpoints (LFPs) 
and greatest fixpoints (GFPs)
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We here fix the theory as the one above for temporal effect analysis , though 
we could choose any background first-order theory

predicate 
variables

predicate symbols of the 
background theory

the set of finite 
event sequences

the set of infinite 
event sequences



Temporal Effect Analysis
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let rec send_msgs n =
if n = 0 then ()
else (event[Send]; send_msgs (n-1))

dependent temporal effect 
that describe the temporal 

behavior of 𝑒𝑒
𝑒𝑒 (Φ𝑒𝑒

𝜇𝜇 ,Φ𝑒𝑒
𝜈𝜈)functional program

Φ𝑒𝑒
𝜇𝜇 ≡ 𝜆𝜆𝑥𝑥 ∈ Σ∗. (𝜇𝜇𝑋𝑋𝜇𝜇 𝑛𝑛, 𝑥𝑥 .

𝑛𝑛 = 0 ∧ 𝑥𝑥 = 𝜖𝜖 ∨
𝑛𝑛 ≠ 0 ∧ ∃𝑦𝑦. 𝑥𝑥 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ⋅ 𝑦𝑦 ∧ 𝑋𝑋𝜇𝜇 𝑛𝑛 − 1,𝑦𝑦

)(𝑛𝑛, 𝑥𝑥)

Φ𝑒𝑒
𝜈𝜈 ≡ 𝜆𝜆𝑥𝑥 ∈ Σ𝜔𝜔. (𝜈𝜈𝑋𝑋𝜈𝜈 𝑛𝑛, 𝑥𝑥 .𝑛𝑛 ≠ 0 ∧ ∃𝑦𝑦. 𝑥𝑥 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ⋅ 𝑦𝑦 ∧ 𝑋𝑋𝜈𝜈 𝑛𝑛 − 1,𝑦𝑦 )(𝑛𝑛, 𝑥𝑥)

Example: The use of first-order fixpoint logic 
allows precise representation

(cf. previous work only allowed 
(𝜔𝜔-)regular expressions [Skalka+’08, 
Hofmann+’14] or did not specify the 

effect language [Koskinen+’14])predicate variable that relates 𝑛𝑛 and 
the finite event sequence 𝑥𝑥

predicate variable that relates 𝑛𝑛 and 
the infinite event sequence 𝑥𝑥



Dependent Refinement Type & Effect System
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Γ ⊢ 𝑒𝑒 ∶ (𝜏𝜏 & (Φ𝜇𝜇 ,Φ𝜈𝜈))

Theorem 1 (Soundness): Γ ⊢ 𝑒𝑒 ∶ 𝜏𝜏 & Φ𝜇𝜇,Φ𝜈𝜈 implies 𝑒𝑒 ∈ Γ ⊢ 𝜏𝜏 & Φ𝜇𝜇,Φ𝜈𝜈

(𝑒𝑒 behaves as specified by 𝜏𝜏& Φ𝜇𝜇,Φ𝜈𝜈 under a valuation conforming to Γ)

Check sub-effect 
relation via fixpoint
logic deduction

Sequential composition of effects

Fixpoints describing a dependent
temporal effect of a recursive function

Subtyping

Type Environment

Program Dependent Refinement Type

Dependent Temporal 
Effect

Extends existing refinement type systems [Koskinen+’14, Rondon+’08, U.+’09, Terauchi’10, …]

• Types & effects facilitate compositional analysis of dependent temporal effects
• Fixpoint logic deduction ⊩ enables algorithmic type checking

Key typing rules:



Contributions

1. A dependent refinement type & effect system for 
compositional & algorithmic temporal verification
• Compositional analysis of dependent temporal effects 

represented by predicates of first-order fixpoint logic 𝓛𝓛
• Algorithmic type checking via validity checking for ℒ

2. A deductive system for the validity of ℒ
• Use invariants and well-founded relations to

over- and under-approximate fixpoints 
• Designed by transferring ideas from verification research

• Can be used with any background first-order theory
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First-Order Fixpoint Logic ℒ (revisited)

• First-order logic extended with least fixpoints (LFPs) 
and greatest fixpoints (GFPs)
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function symbols of the 
background theory

predicate 
variables

predicate symbols of the 
background theory

LFPs
(𝑋𝑋 occurs only 
positively in 𝜙𝜙)

sorts (e.g. ℤ) of the 
background theory

GFPs
(𝑋𝑋 occurs only 
positively in 𝜙𝜙)



Deductive System ⊩ 𝜙𝜙 for
the Validity of ℒ
1. Over- and under-approximate fixpoint subformulas of 𝜙𝜙

by non-fixpoint formulas
• For soundness, subformulas that occur positively and negatively are 

respectively under- and over-approximated
2. Resulting non-fixpoint formulas are discharged by a solver 

for the background first-order theory

• Techniques for obtaining approximations:
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Analogous to techniques in safety and liveness property verification

Over-Approximation Under-Approximation

LFP Invariant (induction) Well-founded relation

GFP Well-founded relation Invariant (co-induction)



Example: Fixpoint Deduction via 
Over-Approx. of LFP
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Check that 𝑝𝑝 is a pre-fixpoint of 𝐹𝐹 (or, 
equivalently, perform induction by 
unfolding LFP and applying I.H. to the 
recursive occurrences of 𝑋𝑋)

Deduction in background first-order theory

Over-approx. of LFP by 
pre-fixpoint

⊨ 𝐹𝐹 𝑝𝑝 𝑥𝑥 ⇒ 𝑝𝑝 𝑥𝑥 ⊨ 𝑝𝑝 𝑥𝑥 ⇒ 𝑥𝑥 = Send𝑛𝑛
⊩ 𝑝𝑝 𝑥𝑥 ⇒ 𝑥𝑥 = Send𝑛𝑛

⊩ Φ𝑒𝑒
𝜇𝜇 𝑥𝑥 ⇒ 𝑥𝑥 = Send𝑛𝑛

𝜆𝜆𝑥𝑥 ∈ Σ∗. 𝜇𝜇𝑋𝑋𝜇𝜇 𝑛𝑛, 𝑥𝑥 .𝐹𝐹 𝑋𝑋𝜇𝜇 𝑛𝑛, 𝑥𝑥 𝑛𝑛, 𝑥𝑥

where 𝐹𝐹 𝑋𝑋 𝑛𝑛, 𝑥𝑥 =
𝑛𝑛 = 0 ∧ 𝑥𝑥 = 𝜖𝜖 ∨

𝑛𝑛 ≠ 0 ∧ ∃𝑦𝑦. 𝑥𝑥 = Send ⋅ 𝑦𝑦 ∧ 𝑋𝑋 𝑛𝑛 − 1,𝑦𝑦

𝜆𝜆𝑥𝑥 ∈ Σ∗. 𝑥𝑥 = Send𝑛𝑛



Example: Fixpoint Deduction via 
Over-Approx. of GFP
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⊨ 𝑝𝑝1 𝑛𝑛, 𝑥𝑥 ∧ 𝑛𝑛 ≠ 0 ∧ 𝑥𝑥 = Send ⋅ 𝑥𝑥′ ⇒
𝑝𝑝1(𝑛𝑛 − 1, 𝑥𝑥′ ∧ 𝑝𝑝2(𝑛𝑛, 𝑥𝑥,𝑛𝑛 − 1, 𝑥𝑥′))

⋮
𝑋𝑋𝜈𝜈 𝑛𝑛, 𝑥𝑥 ;𝑝𝑝1;𝑝𝑝2 ;⊤ �↑ 𝑛𝑛 ≠ 0 ∧ ∃𝑦𝑦. 𝑥𝑥 = Send ⋅ 𝑦𝑦 ∧ 𝑋𝑋𝜈𝜈(𝑛𝑛 − 1, 𝑦𝑦)

⊨ ¬𝑝𝑝1 𝑥𝑥 ⇒ 𝑥𝑥 = Send𝜔𝜔
⊩ ¬𝑝𝑝1 𝑥𝑥 ⇒ 𝑥𝑥 = Send𝜔𝜔

⊩ Φ𝑒𝑒
𝜈𝜈 𝑥𝑥 ⇒ 𝑥𝑥 = Send𝜔𝜔

𝜆𝜆𝑥𝑥 ∈ Σ𝜔𝜔.

𝜈𝜈𝑋𝑋𝜈𝜈 𝑛𝑛, 𝑥𝑥 .𝑛𝑛 ≠ 0 ∧
∃𝑦𝑦. 𝑥𝑥 = Send ⋅ 𝑦𝑦 ∧

𝑋𝑋𝜈𝜈 𝑛𝑛 − 1,𝑦𝑦 𝑛𝑛, 𝑥𝑥

Check that the given well-founded relation 𝑝𝑝2
witnesses that the given predicate 𝒑𝒑𝟏𝟏 and 𝚽𝚽𝒆𝒆

𝝂𝝂 have no 
intersection (see the paper for details)

Over-approx. of GFP by 
negation of 𝑝𝑝1

Deduction in background 
first-order theory

𝜆𝜆 𝑛𝑛1, 𝑥𝑥1,𝑛𝑛2, 𝑥𝑥2 .𝑛𝑛1 > 𝑛𝑛2 ≥ 0

𝜆𝜆𝑥𝑥 ∈ Σ𝜔𝜔 .𝑛𝑛 ≥ 0 ∨ 𝑥𝑥 ≠ Send𝜔𝜔



Deductive System ⊩ 𝜙𝜙 for ℒ

Theorem 2 (Soundness of ⊩): ⊩ 𝜙𝜙 implies ⊨ 𝜙𝜙
2018/7/13 HCVS'18, Oxford, UK 73

𝐶𝐶+ (resp. 𝐶𝐶−) is positive (resp. negative) context.

Background
first-order 
theory solver

Over-approximation of 
LFP (induction) 

Under-approximation of 
GFP (co-induction) 

𝑛𝑛𝑛𝑛𝑓𝑓(𝜓𝜓) is negation normal form of 𝜓𝜓.

Approximation of fixpoints 
using well-founded relation
(the next slide)

𝜓𝜓 represents a fixpoint-free formula.



Fixpoint Approximation Rules 
based on Well-Founded Relation
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Lemma: Suppose that 𝜓𝜓 is in negation normal form, 𝑋𝑋 is not free in 𝜓𝜓′
and 𝑝𝑝2 is a well-founded relation. We have:
• 𝑋𝑋 �𝑥𝑥 ;𝑝𝑝1;𝑝𝑝2;𝜓𝜓′ ↓ 𝜓𝜓 implies 𝑝𝑝1 �𝑥𝑥 ⇒ (𝜇𝜇𝑋𝑋 �𝑥𝑥 . ¬𝜓𝜓′ ∨ 𝜓𝜓)( �𝑥𝑥)
• 𝑋𝑋 �𝑥𝑥 ;𝑝𝑝1;𝑝𝑝2;𝜓𝜓′ �↑ 𝜓𝜓 implies 𝜈𝜈𝑋𝑋 �𝑥𝑥 . 𝜓𝜓′ ∧ 𝜓𝜓 �𝑥𝑥 ⇒ ¬𝑝𝑝1( �𝑥𝑥)

Under-approximation of LFP Over-approximation of GFP

Dual



Summary of [Nanjo+ LICS’18]

• Foundation for compositional & algorithmic verification of value-
dependent temporal properties of higher-order programs

1. Dependent refinement type & effect system
• Compositional analysis of dependent temporal effects represented by 

predicates of first-order fixpoint logic 𝓛𝓛
• Algorithmic type checking via validity checking for ℒ

2. Deductive system for the validity of ℒ

• Can be used with any background first-order theory
• Ongoing Work

• Automation and implementation
• Extensions to branching- and relational-properties verification
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Over-Approximation Under-Approximation

LFP Invariant (induction) Well-founded relation

GFP Well-founded relation Invariant (co-induction)



Outline

 CHC / Fixpoint Constraints for Program Verification
 CHC Constraint Solving for Relational Verification
Based on [Unno, Torii and Sakamoto, CAV’17]

 Fixpoint Constraint Solving for Temporal Verification
Based on [Nanjo, Unno, Koskinen and Terauchi, LICS’18]

2018/7/13 HCVS'18, Oxford, UK 76



Conclusion

• Fixpoint constraint solving generalizes CHC solving
• Significantly widen the range of applications to verification of 

liveness and existential properties

• Inductive theorem proving techniques
facilitate (relational) CHC solving, and vice versa

• Safety and liveness verification techniques (invariants and 
well-founded relations) facilitate fixpoint constraint solving

• Future Work
• Fixpoint constraint solving based on inductive and co-inductive 

theorem proving for verification of temporal relational properties 
(e.g. trace equivalence) and hyperproperties [Clarkson+ ’09]

2018/7/13 HCVS'18, Oxford, UK 77


	Horn Clauses and Beyond for Relational and Temporal Program Verification
	My Research: Automated Verification of Higher-Order Functional Programs
	This Talk
	Outline
	Outline
	CHC based Program Verification
	Overall Flow of CHC Constraint based Program Verification
	Overall Flow of CHC Constraint based Program Verification
	Overall Flow of CHC Constraint based Program Verification
	Overall Flow of CHC Constraint based Program Verification
	CHC Constraint Set
	Overall Flow of CHC Constraint based Program Verification
	First-Order Fixpoint Logic ℒ
	Fixpoint Constraint Solving
	Applications to Verification of Liveness and Existential Properties
	Outline
	This Work
	Relational Specifications
	Overall Flow of CHC Constraint based Program Verification
	Example: (Functional) Program and Relational Specification
	Overall Flow of CHC Constraint based Program Verification
	CHC Constraint Generation [U.+ ’09]
	Overall Flow of CHC Constraint based Program Verification
	CHC Constraint Solving
	Previous Methods for CHC Solving [U.+ ’08,’09, Gupta+ ’11, Hoder+ ’11,’12, McMillan+ ’13, Rümmer+ ’13, …] (w/o Predicate Pairing [De Angelis+ ’16])
	Example Constraints that Can Not be Solved by Previous Methods
	Our Constraint Solving Method
	Reduction from Constraint Solving to Inductive Theorem Proving
	Principle of Induction on Derivation
	スライド番号 30
	スライド番号 31
	スライド番号 32
	スライド番号 33
	スライド番号 34
	スライド番号 35
	スライド番号 36
	スライド番号 37
	スライド番号 38
	スライド番号 39
	スライド番号 40
	スライド番号 41
	スライド番号 42
	スライド番号 43
	スライド番号 44
	Properties of Inductive Proof System for CHC Constraint Solving
	Automating Induction
	Prototype Constraint Solver
	Experiments on IsaPlanner Benchmark Set
	Experiments on Benchmark Programs with Advanced Language Features & Side-Effects
	スライド番号 50
	Summary of [Unno+ CAV’17]
	Outline
	Temporal Property Verification
	This Work
	Main Contribution
	This Work
	Example: Functional Program
	This Work
	This Work
	Example: Value-Dependent Temporal Property
	Further Examples
	This Work
	Contributions
	Contributions
	First-Order Fixpoint Logic ℒ (revisited)
	Temporal Effect Analysis
	Dependent Refinement Type & Effect System
	Contributions
	First-Order Fixpoint Logic ℒ (revisited)
	Deductive System ⊩𝜙 for�the Validity of ℒ
	Example: Fixpoint Deduction via Over-Approx. of LFP
	Example: Fixpoint Deduction via Over-Approx. of GFP
	Deductive System ⊩𝜙 for ℒ
	Fixpoint Approximation Rules based on Well-Founded Relation
	Summary of [Nanjo+ LICS’18]
	Outline
	Conclusion

