
A Fixpoint Logic and
Dependent Effects for

Temporal Property Verification

Yoji Nanjo1, Hiroshi Unno1, Eric Koskinen2, Tachio Terauchi3
1 University of Tsukuba 2 Stevens Institute of Technology 3 Waseda University

2018/7/11 LICS'18, Oxford, UK 1

Temporal Property Verification

2018/7/11 LICS'18, Oxford, UK 2

𝑃𝑃 ⊨ Φ
Program Temporal property?

Check whether 𝑃𝑃 satisfies Φ

This Work

2018/7/11 LICS'18, Oxford, UK 3

𝑃𝑃 ⊨ Φ
Higher-order

functional program
Value-dependent
temporal property?

Check whether 𝑃𝑃 satisfies Φ by using
(1) a dependent refinement type & effect system and
(2) a deductive system for a first-order fixpoint logic

Main Contribution
• Foundation for compositional & algorithmic

verification of value-dependent temporal
properties of higher-order programs

• cf. previous proposals are:
• fully automated but whole program analysis

[Kobayashi+ PLDI’11], [U.+ POPL’13], [Kuwahara+
ESOP’14], [Kuwahara+ CAV’15], [Murase+ POPL’16]

• compositional but no support of the class of properties
[Koskinen+ CSL-LICS’14], [U.+ POPL’18]

2018/7/11 LICS'18, Oxford, UK 4

This Work

2018/7/11 LICS'18, Oxford, UK 5

𝑃𝑃 ⊨ Φ
Higher-order

functional program
Value-dependent
temporal property?

Check whether 𝑃𝑃 satisfies Φ by using
(1) a dependent refinement type & effect system and
(2) a deductive system for a first-order fixpoint logic

Example: Functional Program
let rec send_msgs n =

if n = 0 then ()
else (event[Send]; send_msgs (n-1))

Generated event sequences:
n < 0 ∶ Send𝜔𝜔 (infinite repetition of Send)
n = 0 ∶ 𝜖𝜖 (empty sequence)
n = 1 ∶ Send
n = 2 ∶ Send, Send

⋮

emit Send event

2018/7/11 LICS'18, Oxford, UK 6

This Work

2018/7/11 LICS'18, Oxford, UK 7

𝑃𝑃 ⊨ Φ
Higher-order

functional program
Value-dependent
temporal property?

Check whether 𝑃𝑃 satisfies Φ by using
(1) a dependent refinement type & effect system and
(2) a deductive system for a first-order fixpoint logic

This Work

2018/7/11 LICS'18, Oxford, UK 8

𝑃𝑃 ⊨ Φ𝜇𝜇 ,Φ𝜈𝜈

predicate for finite
event sequences

?

Check whether finite event sequences generated
by 𝑃𝑃 satisfy Φ𝜇𝜇 and infinite event sequences

generated by 𝑃𝑃 satisfy Φ𝜈𝜈

predicate for infinite
event sequences

Example: Value-Dependent
Temporal Property

let rec send_msgs n =
if n = 0 then

()
else

(event[Send];
send_msgs (n-1))

Φ𝜇𝜇 ≡ 𝜆𝜆𝜆𝜆 ∈ Σ∗. 𝑥𝑥 = Sendn
Φ𝜈𝜈 ≡ 𝜆𝜆𝜆𝜆 ∈ Σ𝜔𝜔. 𝑥𝑥 = Send𝜔𝜔⊨

For terminating
executions

For diverging
executions

n-times
repetition of Send

infinite repetition
of Send

2018/7/11 LICS'18, Oxford, UK 9

n < 0 ∶ Send𝜔𝜔
n = 0 ∶ 𝜖𝜖
n = 1 ∶ Send
n = 2 ∶ Send, Send

⋮

Further Examples
• See the paper for further examples that

demonstrate the range of applications

2018/7/11 LICS'18, Oxford, UK 10

This Work

2018/7/11 LICS'18, Oxford, UK 11

𝑃𝑃 ⊨ Φ
Higher-order

functional program
Value-dependent
temporal property?

Check whether 𝑃𝑃 satisfies Φ via
(1) a dependent refinement type & effect system and
(2) a deductive system for a first-order fixpoint logic

Contributions
1. A dependent refinement type & effect system for

compositional & algorithmic temporal verification
• Compositional analysis of dependent temporal effects

represented by predicates of first-order fixpoint logic 𝓛𝓛
• Algorithmic type checking via validity checking for ℒ

2. A deductive system for the validity of ℒ
• Use invariants and well-founded relations to

over- and under-approximate fixpoints
• Designed by transferring ideas from verification research

• Can be used with any background first-order theory
• Enable other applications to program verification,

which will be presented at the HCVS workshop on 13th

2018/7/11 LICS'18, Oxford, UK 12

Contributions
1. A dependent refinement type & effect system for

compositional & algorithmic temporal verification
• Compositional analysis of dependent temporal effects

represented by predicates of first-order fixpoint logic 𝓛𝓛
• Algorithmic type checking via validity checking for ℒ

2. A deductive system for the validity of ℒ
• Use invariants and well-founded relations to

over- and under-approximate fixpoints
• Designed by transferring ideas from verification research

• Can be used with any background first-order theory
• Enable other applications to program verification,

which will be presented at the HCVS workshop on 13th

2018/7/11 LICS'18, Oxford, UK 13

LFPs (𝑋𝑋 occurs
only positively in 𝜙𝜙)

GFPs (𝑋𝑋 occurs
only positively in 𝜙𝜙)

function symbols of
the background theory

First-Order Fixpoint Logic ℒ
• First-order logic extended with least fixpoints

(LFPs) and greatest fixpoints (GFPs)

2018/7/11 LICS'18, Oxford, UK 14

We here fix the theory as the one above for temporal effect analysis ,
though we could choose any background first-order theory

predicate
variables

predicate symbols of
the background theory

the set of finite
event sequences

the set of infinite
event sequences

Temporal Effect Analysis

2018/7/11 LICS'18, Oxford, UK 15

let rec send_msgs n =
if n = 0 then ()
else (event[Send]; send_msgs (n-1))

dependent temporal
effect that describe the
temporal behavior of 𝑒𝑒

𝑒𝑒 (Φ𝑒𝑒
𝜇𝜇 ,Φ𝑒𝑒

𝜈𝜈)functional program

Φ𝑒𝑒
𝜇𝜇 ≡ 𝜆𝜆𝜆𝜆 ∈ Σ∗. (𝜇𝜇𝑋𝑋𝜇𝜇 𝑛𝑛, 𝑥𝑥 .

𝑛𝑛 = 0 ∧ 𝑥𝑥 = 𝜖𝜖 ∨
𝑛𝑛 ≠ 0 ∧ ∃𝑦𝑦. 𝑥𝑥 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ⋅ 𝑦𝑦 ∧ 𝑋𝑋𝜇𝜇 𝑛𝑛 − 1,𝑦𝑦

)(𝑛𝑛, 𝑥𝑥)

Φ𝑒𝑒
𝜈𝜈 ≡ 𝜆𝜆𝜆𝜆 ∈ Σ𝜔𝜔. (𝜈𝜈𝑋𝑋𝜈𝜈 𝑛𝑛, 𝑥𝑥 .𝑛𝑛 ≠ 0 ∧ ∃𝑦𝑦. 𝑥𝑥 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ⋅ 𝑦𝑦 ∧ 𝑋𝑋𝜈𝜈 𝑛𝑛 − 1,𝑦𝑦)(𝑛𝑛, 𝑥𝑥)

Example: The use of first-order fixpoint logic
allows precise representation

(cf. previous work only allowed
(𝜔𝜔-)regular expressions [Skalka+’08,
Hofmann+’14] or did not specify the

effect language [Koskinen+’14])predicate variable that relates 𝑛𝑛
and the finite event sequence 𝑥𝑥

predicate variable that relates 𝑛𝑛
and the infinite event sequence 𝑥𝑥

Dependent Refinement Type & Effect System

2018/7/11 LICS'18, Oxford, UK 16

Γ ⊢ 𝑒𝑒 ∶ (𝜏𝜏 & (Φ𝜇𝜇 ,Φ𝜈𝜈))

Theorem 1 (Soundness): Γ ⊢ 𝑒𝑒 ∶ 𝜏𝜏 & Φ𝜇𝜇,Φ𝜈𝜈 implies 𝑒𝑒 ∈ Γ ⊢ 𝜏𝜏 & Φ𝜇𝜇,Φ𝜈𝜈

(𝑒𝑒 behaves as specified by 𝜏𝜏& Φ𝜇𝜇 ,Φ𝜈𝜈 under a valuation conforming to Γ)

Check sub-effect
relation via fixpoint
logic deduction

Sequential composition of effects

Fixpoints describing a dependent
temporal effect of a recursive function

Subtyping

Type Environment
Program Dependent Refinement Type

Dependent
Temporal Effect

Extends existing refinement type systems [Koskinen+’14, Rondon+’08, U.+’09, Terauchi’10, …]
• Types & effects facilitate compositional analysis of dependent temporal effects
• Fixpoint logic deduction ⊩ enables algorithmic type checking

Key typing rules:

Contributions
1. A dependent refinement type & effect system for

compositional & algorithmic temporal verification
• Compositional analysis of dependent temporal effects

represented by predicates of first-order fixpoint logic 𝓛𝓛
• Algorithmic type checking via validity checking for ℒ

2. A deductive system for the validity of ℒ
• Use invariants and well-founded relations to

over- and under-approximate fixpoints
• Designed by transferring ideas from verification research

• Can be used with any background first-order theory
• Enable other applications to program verification,

which will be presented at the HCVS workshop on 13th

2018/7/11 LICS'18, Oxford, UK 17

First-Order Fixpoint Logic ℒ (revisited)

• First-order logic extended with least fixpoints
(LFPs) and greatest fixpoints (GFPs)

2018/7/11 LICS'18, Oxford, UK 18

function symbols of
the background theory

predicate
variables

predicate symbols of
the background theory

LFPs
(𝑋𝑋 occurs only
positively in 𝜙𝜙)

sorts (e.g. ℤ) of the
background theory

GFPs
(𝑋𝑋 occurs only
positively in 𝜙𝜙)

Deductive System ⊩ 𝜙𝜙 for
the Validity of ℒ
1. Over- and under-approximate fixpoint subformulas

of 𝜙𝜙 by non-fixpoint formulas
• For soundness, subformulas that occur positively and

negatively are respectively under- and over-approximated
2. Resulting non-fixpoint formulas are discharged by

a solver for the background first-order theory

• Techniques for obtaining approximations:

2018/7/11 LICS'18, Oxford, UK 19

Analogous to techniques in safety and liveness property verification

Over-Approximation Under-Approximation
LFP Invariant (induction) Well-founded relation
GFP Well-founded relation Invariant (co-induction)

Example: Fixpoint Deduction via
Over-Approx. of LFP

2018/7/11 LICS'18, Oxford, UK 20

Check that 𝑝𝑝 is a pre-fixpoint of 𝐹𝐹
(or, equivalently, perform induction
by unfolding LFP and applying I.H.
to the recursive occurrences of 𝑋𝑋)

Deduction in background first-order theory

Over-approx. of LFP
by pre-fixpoint

⊨ 𝐹𝐹 𝑝𝑝 𝑥𝑥 ⇒ 𝑝𝑝 𝑥𝑥 ⊨ 𝑝𝑝 𝑥𝑥 ⇒ 𝑥𝑥 = Send𝑛𝑛
⊩ 𝑝𝑝 𝑥𝑥 ⇒ 𝑥𝑥 = Send𝑛𝑛

⊩ Φ𝑒𝑒
𝜇𝜇 𝑥𝑥 ⇒ 𝑥𝑥 = Send𝑛𝑛

𝜆𝜆𝜆𝜆 ∈ Σ∗. 𝜇𝜇𝑋𝑋𝜇𝜇 𝑛𝑛, 𝑥𝑥 .𝐹𝐹 𝑋𝑋𝜇𝜇 𝑛𝑛, 𝑥𝑥 𝑛𝑛, 𝑥𝑥

where 𝐹𝐹 𝑋𝑋 𝑛𝑛, 𝑥𝑥 =
𝑛𝑛 = 0 ∧ 𝑥𝑥 = 𝜖𝜖 ∨

𝑛𝑛 ≠ 0 ∧ ∃𝑦𝑦. 𝑥𝑥 = Send ⋅ 𝑦𝑦 ∧ 𝑋𝑋 𝑛𝑛 − 1,𝑦𝑦

𝜆𝜆𝜆𝜆 ∈ Σ∗. 𝑥𝑥 = Send𝑛𝑛

Example: Fixpoint Deduction via
Over-Approx. of GFP

2018/7/11 LICS'18, Oxford, UK 21

⊨ 𝑝𝑝1 𝑛𝑛, 𝑥𝑥 ∧ 𝑛𝑛 ≠ 0 ∧ 𝑥𝑥 = Send ⋅ 𝑥𝑥′ ⇒
𝑝𝑝1(𝑛𝑛 − 1, 𝑥𝑥′ ∧ 𝑝𝑝2(𝑛𝑛, 𝑥𝑥,𝑛𝑛 − 1, 𝑥𝑥𝑥))

⋮
𝑋𝑋𝜈𝜈 𝑛𝑛, 𝑥𝑥 ;𝑝𝑝1;𝑝𝑝2 ;⊤ �↑ 𝑛𝑛 ≠ 0 ∧ ∃𝑦𝑦. 𝑥𝑥 = Send ⋅ 𝑦𝑦 ∧ 𝑋𝑋𝜈𝜈(𝑛𝑛 − 1, 𝑦𝑦)

⊨ ¬𝑝𝑝1 𝑥𝑥 ⇒ 𝑥𝑥 = Send𝜔𝜔
⊩ ¬𝑝𝑝1 𝑥𝑥 ⇒ 𝑥𝑥 = Send𝜔𝜔

⊩ Φ𝑒𝑒
𝜈𝜈 𝑥𝑥 ⇒ 𝑥𝑥 = Send𝜔𝜔

𝜆𝜆𝜆𝜆 ∈ Σ𝜔𝜔.

𝜈𝜈𝑋𝑋𝜈𝜈 𝑛𝑛, 𝑥𝑥 .𝑛𝑛 ≠ 0 ∧
∃𝑦𝑦. 𝑥𝑥 = Send ⋅ 𝑦𝑦 ∧

𝑋𝑋𝜈𝜈 𝑛𝑛 − 1,𝑦𝑦 𝑛𝑛, 𝑥𝑥

Check that the given well-founded relation 𝑝𝑝2
witnesses that the given predicate 𝒑𝒑𝟏𝟏 and 𝚽𝚽𝒆𝒆

𝝂𝝂

have no intersection (see the paper for details)

Over-approx. of GFP
by negation of 𝑝𝑝1

Deduction in background
first-order theory

𝜆𝜆 𝑛𝑛1, 𝑥𝑥1,𝑛𝑛2, 𝑥𝑥2 .𝑛𝑛1 > 𝑛𝑛2 ≥ 0

𝜆𝜆𝜆𝜆 ∈ Σ𝜔𝜔 .𝑛𝑛 ≥ 0 ∨ 𝑥𝑥 ≠ Send𝜔𝜔

Deductive System ⊩ 𝜙𝜙 for ℒ

Theorem 2 (Soundness of ⊩): ⊩ 𝜙𝜙 implies ⊨ 𝜙𝜙
2018/7/11 LICS'18, Oxford, UK 22

𝐶𝐶+ (resp. 𝐶𝐶−) is positive (resp. negative) context.

Background
first-order
theory solver

Over-approximation
of LFP (induction)

Under-approximation
of GFP (co-induction)

𝑛𝑛𝑛𝑛𝑛𝑛(𝜓𝜓) is negation normal form of 𝜓𝜓.

Approximation of fixpoints
using well-founded relation
(see the paper for details)

𝜓𝜓 represents a fixpoint-free formula.

Conclusion
• Foundation for compositional & algorithmic

verification of value-dependent temporal properties
of higher-order programs

1. Dependent refinement type & effect system
• Compositional analysis of dependent temporal effects

represented by predicates of first-order fixpoint logic 𝓛𝓛
• Algorithmic type checking via validity checking for ℒ

2. Deductive system for the validity of ℒ

• Can be used with any background first-order theory
• Enable other applications to program verification,

which will be presented at the HCVS workshop on 13th

2018/7/11 LICS'18, Oxford, UK 23

Over-Approximation Under-Approximation
LFP Invariant (induction) Well-founded relation
GFP Well-founded relation Invariant (co-induction)

	A Fixpoint Logic and Dependent Effects for Temporal Property Verification
	Temporal Property Verification
	This Work
	Main Contribution
	This Work
	Example: Functional Program
	This Work
	This Work
	Example: Value-Dependent Temporal Property
	Further Examples
	This Work
	Contributions
	Contributions
	First-Order Fixpoint Logic ℒ
	Temporal Effect Analysis
	Dependent Refinement Type & Effect System
	Contributions
	First-Order Fixpoint Logic ℒ (revisited)
	Deductive System ⊩𝜙 for�the Validity of ℒ
	Example: Fixpoint Deduction via Over-Approx. of LFP
	Example: Fixpoint Deduction via Over-Approx. of GFP
	Deductive System ⊩𝜙 for ℒ
	Conclusion

