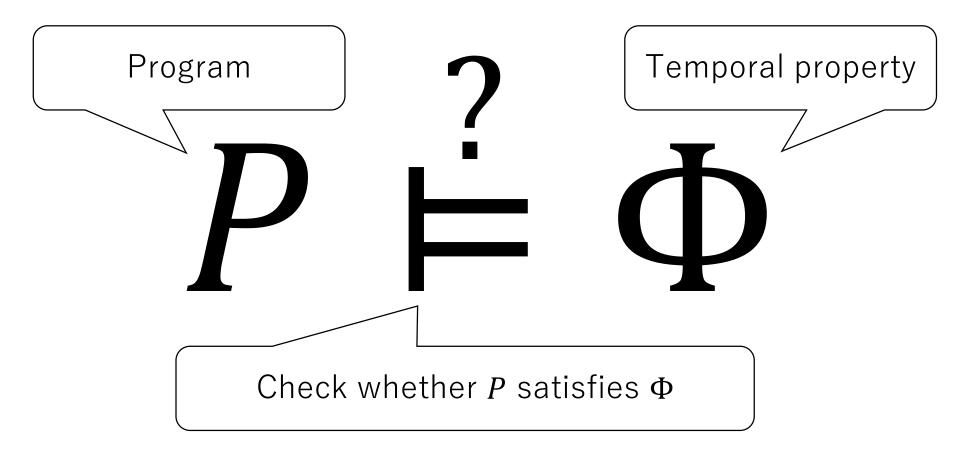
A Fixpoint Logic and Dependent Effects for Temporal Property Verification

Yoji Nanjo¹, <u>Hiroshi Unno</u>¹, Eric Koskinen², Tachio Terauchi³

¹ University of Tsukuba ² Stevens Institute of Technology ³ Waseda University

Temporal Property Verification



Check whether P satisfies Φ by using

- (1) a dependent refinement type & effect system and
- (2) a deductive system for a first-order fixpoint logic

Main Contribution

- Foundation for compositional & algorithmic verification of value-dependent temporal properties of higher-order programs
 - cf. previous proposals are:
 - fully automated but whole program analysis [Kobayashi+ PLDI'11], [U.+ POPL'13], [Kuwahara+ ESOP'14], [Kuwahara+ CAV'15], [Murase+ POPL'16]
 - compositional but no support of the class of properties [Koskinen+ CSL-LICS'14], [U.+ POPL'18]

Higher-order functional program

Palue-dependent temporal property

Output

Description:

Check whether P satisfies Φ by using

- (1) a dependent refinement type & effect system and
- (2) a deductive system for a first-order fixpoint logic

Example: Functional Program

```
let rec send_msgs n =
  if n = 0 then ()
  else (event[Send]; send_msgs (n-1))
```


Generated event sequences:

```
n < 0 : Send^{\omega} (infinite repetition of Send) n = 0 : \epsilon (empty sequence) n = 1 : Send n = 2 : Send, Send \vdots
```

Higher-order functional program

Paragram

Value-dependent temporal property

Output

Description:

Output

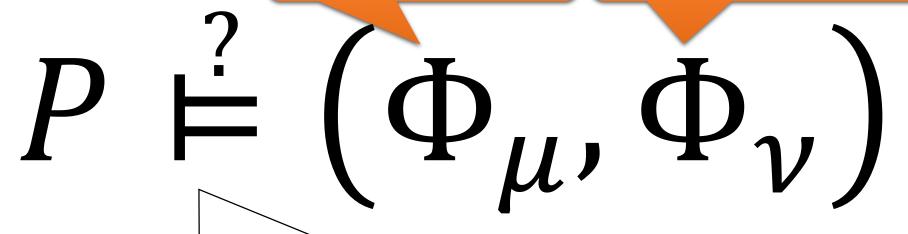
De

Check whether P satisfies Φ by using

- (1) a dependent refinement type & effect system and
- (2) a deductive system for a first-order fixpoint logic

predicate for *finite* event sequences

predicate for *infinite* event sequences



Check whether *finite* event sequences generated by P satisfy Φ_{μ} and *infinite* event sequences generated by P satisfy Φ_{ν}

Example: Value-Dependent Temporal Property

```
For terminating
                                                                            n-times
let rec send_msgs n =
                                          executions
                                                                    repetition of Send
 if n = 0 then
                                                       \Phi^{\mu} \equiv \lambda x \in \Sigma^* . x = \text{Send}^{\mathsf{n}}
 else
                                                       \Phi^{\nu} \equiv \lambda x \in \Sigma^{\omega} . x = \text{Send}^{\omega}
   (event[Send];
                                                                    infinite repetition
                                         For diverging
    send msgs (n-1))
                                          executions
                                                                           of Send
n < 0 : Send^{\omega}
\mathbf{n} = 0 : \epsilon
n = 1 : Send
```

n = 2: Send, Send

Further Examples

 See the paper for further examples that demonstrate the range of applications

Amortized Complexity	Higher-Order	Web Server Fairness
let rev l =	let rec zoom () =	let rec listener npool pend =
let rec aux l acc = match l with	event[Zoom]; zoom ()	if * && pend < npool then
[] -> acc h::t ->		(event[Accept];
<pre>event[Tick]; aux t (h::acc)</pre>	let rec shrink t f d =	listener npool (pend + 1))
in aux l []	if f () <= 0 then	else if pend > 0 then
let is_empty (l1,l2) = l1 = [] && l2 = []	zoom ()	(event[Handle];
<pre>let enqueue e (l1,l2) = event[Enq];(l1,e::l2)</pre>	else	listener npool (pend - 1))
let rec dequeue (l1,l2) = match l1 with	<pre>(event[Shrink];</pre>	else
[] -> dequeue (rev l2, [])	let t' = f() - d in	(event[Wait];
e::l1' -> event[Deq]; (e, (l1', l2))	shrink t' (fun x -> t') d)	listener npool pend)
let rec main (l1,l2) =		
if * then main (enqueue 42 (l1,l2))	let shrinker t d =	let server npool =
else if is_{empty} (l1,l2) then ()	shrink t (fun x -> t) d	listener npool 0
else main (snd (dequeue (l1,l2)))		
main · ((11 12) · int list v int list) · (unit S Φ)	shrinker : $(t : \{t \mid t \ge 0\}) \rightarrow$	$server \; : \; (npool \; : \; \{ \nu \; \mid \; \nu \; \geq \; 0 \}) \; \rightarrow \;$
$main: ((l1, l2): int list \times int list) \rightarrow (unit \& \Phi)$	$(d: \{d \mid d > 0 \land t \bmod d = 0\}) \rightarrow$	$(\text{unit &}(\lambda x.\bot,\lambda x.\phi))$
$\Phi^{\mu} = \lambda x. \#_{\text{Enq}}(x) + l2 = \#_{\text{Tick}}(x) = \#_{\text{Deq}}(x) - l1 $	$(\text{unit } \& \Phi)$ $\Phi^{\mu} = \lambda x. \bot$	$\int_{\Delta} \int_{\Delta} \left(x \in (\Sigma^* \cdot (\Sigma \setminus \underline{Accept})^{npool+1})^{\omega} \right) $
$\Phi^{\nu} = \lambda x. \top$	$\Phi' = \lambda x . \perp$ $\Phi^{\nu} = \lambda x . x \in Shrink^{t/d} \cdot Zoom^{\omega}$	$\phi = \left(\begin{array}{c} x \in (\Sigma^* \cdot (\Sigma \setminus \underline{Accept})^{npool+1})^{\omega} \\ \Rightarrow x \in (\Sigma^* \cdot \underline{\mathtt{Wait}})^{\omega} \end{array}\right)$
	Ψ - Λλ.λ ∈ <u>311 111K</u> · · <u>20011</u>	

Higher-order functional program

Paragram

Value-dependent temporal property

The state of the s

Check whether P satisfies Φ via (1) a dependent refinement type & effect system and (2) a deductive system for a first-order fixpoint logic

Contributions

- 1. A dependent refinement type & effect system for compositional & algorithmic temporal verification
 - Compositional analysis of dependent temporal effects represented by predicates of first-order fixpoint logic £
 - Algorithmic type checking via validity checking for £
- 2. A deductive system for the validity of \mathcal{L}
 - Use invariants and well-founded relations to over- and under-approximate fixpoints
 - Designed by transferring ideas from verification research
 - Can be used with any background first-order theory
 - Enable other applications to program verification, which will be presented at the HCVS workshop on 13th

Contributions

- 1. A dependent refinement type & effect system for compositional & algorithmic temporal verification
 - Compositional analysis of dependent temporal effects represented by predicates of first-order fixpoint logic £
 - Algorithmic type checking via validity checking for £
- 2. A deductive system for the validity of \mathcal{L}
 - Use invariants and well-founded relations to over- and under-approximate fixpoints
 - Designed by transferring ideas from verification research
 - Can be used with any background first-order theory
 - Enable other applications to program verification, which will be presented at the HCVS workshop on 13th

First-Order Fixpoint Logic £

 First-order logic extended with least fixpoints (LFPs) and greatest fixpoints (GFPs)

predicate variables

predicate symbols of the background theory

```
(formulas) \phi ::= \top \mid \bot \mid A(\widetilde{t}) \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid \forall x \in \mathcal{S}.\phi \mid \exists x \in \mathcal{S}.\phi \mid X(\widetilde{t}) \mid (\mu X(\widetilde{x} : \widetilde{\mathcal{S}}).\phi)(\widetilde{t}) \mid (\nu X(\widetilde{x} : \widetilde{\mathcal{S}}).\phi)(\widetilde{t}) \mid (\text{terms}) \ t ::= x \mid f(\widetilde{t}) \qquad \text{LFPs } (X \text{ occurs} \\ (\text{sorts}) \ \mathcal{S} ::\in \{\mathbb{Z}, \Sigma^*, \Sigma^\omega\} \qquad \text{only positively in } \phi) \qquad \text{only positively in } \phi)
```

function symbols of the background theory

the set of finite event sequences

the set of infinite event sequences

We here fix the theory as the one above for *temporal effect analysis*, though we could choose any background first-order theory

2018/7/11

Temporal Effect Analysis

functional program

dependent temporal effect that describe the temporal behavior of e

Example:

let rec send msgs n =

if **n** = 0 then ()

else (event[Send]; send_msgs (n-1))

predicate variable that relates nand the **finite** event sequence x

$$\Phi_e^{\mu} \equiv \lambda x \in \Sigma^*. (\mu X_{\mu}(\mathbf{n}, x).$$

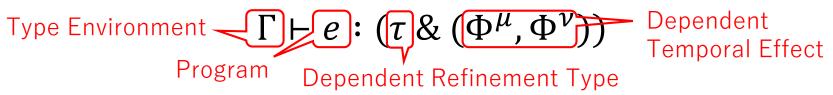
The use of first-order fixpoint logic allows precise representation (cf. previous work only allowed $(\omega$ -)regular expressions [Skalka+'08, Hofmann+'14] or did not specify the effect language [Koskinen+'14])

$$n = 0 \land x = \epsilon \lor n \neq 0 \land (\exists y. \ x = \mathbf{Send} \cdot y \land X_{\mu}(n-1,y)))(n,x)$$

$$\Phi_e^{\nu} \equiv \lambda x \in \Sigma^{\omega}. (\nu X_{\nu}(n, x), n \neq 0 \land (\exists y. \ x = \mathbf{Send} \cdot y \land X_{\nu}(n - 1, y)))(n, x)$$

predicate variable that relates nand the **infinite** event sequence <u>x</u> CS'18, Oxford, UK

Dependent Refinement Type & Effect System



Extends existing refinement type systems [Koskinen+'14, Rondon+'08, U.+'09, Terauchi'10, ...]

- Types & effects facilitate compositional analysis of dependent temporal effects
- Fixpoint logic deduction ⊩ enables algorithmic type checking

```
Key typing rules:
x \notin fv(\tau_2) \cup fv(\Phi_2) \Gamma \vdash e_1 : (\tau_1 \& \Phi_1) \Gamma, x : \tau_1 \vdash e_2 : (\tau_2 \& \Phi_2) Sequential composition of effects
                        \Gamma \vdash \mathtt{let} \ x = e_1 \ \mathtt{in} \ e_2 \colon (\tau_2 \ \& \ \Phi_1 \cdot \Phi_2)
                                                                                                           \Phi_1 \cdot \Phi_2 = (\lambda x \in \Sigma^* . \exists x_1, x_2 \in \Sigma^* . x = x_1 \cdot x_2 \land \Phi_1^{\mu}(x_1) \land \Phi_2^{\mu}(x_2),
                                                                                                                              \lambda x \in \Sigma^{\omega}.\Phi_1^{\nu}(x) \vee (\exists y \in \Sigma^*, z \in \Sigma^{\omega}.x = y \cdot z \wedge \Phi_1^{\mu}(y) \wedge \Phi_2^{\nu}(z)))
    \tau_f' = (\widetilde{x} \colon \widetilde{\tau}) \to (\tau \& (\lambda x \in \Sigma^*. X_\mu(\widetilde{x}, x), \lambda x \in \Sigma^\omega. X_\nu(\widetilde{x}, x)))
                                \Gamma, f: \tau'_f, \widetilde{x}: \widetilde{\tau} \vdash e: (\tau \& \Phi)
                                                                                                                      Fixpoints describing a dependent
      temporal effect of a recursive function
                              \Gamma \vdash \mathtt{rec}(f, \widetilde{x}, e) \colon (\tau_f \& \Phi_{val})
                                                                                                                                                                                    Check sub-effect
                                                                                                               \Vdash |\Gamma \vdash \forall x \in \Sigma^*.\Phi_1^{\mu}(x) \Rightarrow \Phi_2^{\mu}(x)|
                                                                                                                                                                                     relation via fixpoint
                                                                                                               \Vdash [\Gamma \vdash \forall x \in \Sigma^{\omega}.\Phi_1^{\nu}(x) \Rightarrow \Phi_2^{\nu}(x)]
   \frac{\Gamma \vdash e \colon \sigma_1 \quad \Gamma \vdash \sigma_1 <\colon \sigma_2}{\Gamma \vdash e \colon \sigma_2}
                                                                                    \Gamma \vdash \tau_1 \mathrel{<:} \tau_2
                                                   Subtyping
                                                                                                                                                                                    logic deduction
                                                                                                          \Gamma \vdash (\tau_1 \& \Phi_1) <: (\tau_2 \& \Phi_2)
```

Theorem 1 (Soundness): $\Gamma \vdash e : (\tau \& (\Phi^{\mu}, \Phi^{\nu}))$ implies $e \in [\Gamma \vdash \tau \& (\Phi^{\mu}, \Phi^{\nu})]$ (e behaves as specified by $(\tau \& (\Phi^{\mu}, \Phi^{\nu}))$ under a valuation conforming to Γ)

Contributions

- 1. A dependent refinement type & effect system for compositional & algorithmic temporal verification
 - Compositional analysis of dependent temporal effects represented by predicates of first-order fixpoint logic £
 - Algorithmic type checking via validity checking for £
- 2. A deductive system for the validity of \mathcal{L}
 - Use invariants and well-founded relations to over- and under-approximate fixpoints
 - Designed by transferring ideas from verification research
 - Can be used with any background first-order theory
 - Enable other applications to program verification, which will be presented at the HCVS workshop on 13th

First-Order Fixpoint Logic & (revisited)

 First-order logic extended with least fixpoints (LFPs) and greatest fixpoints (GFPs)

predicate variables

predicate symbols of the background theory

sorts (e.g. Z) of the background theory

(formulas)
$$\phi ::= \top \mid \bot \mid A(\widetilde{t}) \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid \forall x \in \mathcal{S}.\phi \mid \exists x \in \mathcal{S}.\phi \mid X(\widetilde{t}) \mid (\mu X(\widetilde{x} : \widetilde{\mathcal{S}}).\phi)(\widetilde{t}) \mid (\nu X(\widetilde{x} : \widetilde{\mathcal{S}}).\phi)(\widetilde{t})$$

 $(\text{terms}) \ t \ ::= \ x \mid f(\widetilde{t})$

function symbols of the background theory

 $(X \text{ occurs only positively in } \phi)$

GFPs $(X \text{ occurs only positively in } \phi)$

Deductive System $\mathbf{I} + \boldsymbol{\phi}$ for the Validity of $\boldsymbol{\mathcal{L}}$

- 1. Over- and under-approximate fixpoint subformulas of ϕ by non-fixpoint formulas
 - For soundness, subformulas that occur positively and negatively are respectively under- and over-approximated
- 2. Resulting non-fixpoint formulas are discharged by a solver for the background first-order theory
- Techniques for obtaining approximations:

	Over-Approximation	Under-Approximation
LFP	Invariant (induction)	Well-founded relation
GFP	Well-founded relation	Invariant (co-induction)

Analogous to techniques in safety and liveness property verification

Example: Fixpoint Deduction via Over-Approx. of LFP

Check that p is a pre-fixpoint of FDeduction in background first-order theory (or, equivalently, perform induction by unfolding LFP and applying I.H. to the recursive occurrences of *X*) $\vdash p(x) \Rightarrow x = \operatorname{Send}^n$ $\vdash p(x) \Rightarrow x = \operatorname{Send}^n$ $F(p)(x) \Rightarrow p(x)$ $\Vdash \Phi_e^{\mu}(x) \Rightarrow x = \operatorname{Send}^n$ Over-approx. of LFP $\lambda x \in \Sigma^*, x = \mathrm{Send}^n$ by pre-fixpoint $\lambda x \in \Sigma^* \cdot \left(\mu X_{\mu}(n, x) \cdot F(X_{\mu})(n, x) \right) (n, x)$ where $F(X)(n,x) = \begin{pmatrix} n = 0 \land x = \epsilon \lor \\ n \neq 0 \land (\exists y. \ x = Send \cdot y \land X(n-1,y)) \end{pmatrix}$

Example: Fixpoint Deduction via Over-Approx. of GFP

Check that the given well-founded relation p_2 witnesses that the given predicate p_1 and Φ_e^{ν} have no intersection (see the paper for details)

Deduction in background first-order theory

$$p_{1}(n,x) \wedge n \neq 0 \wedge x = \text{Send} \cdot x' \Rightarrow$$

$$(p_{1}(n-1,x') \wedge p_{2}(n,x,n-1,x'))$$

$$\vdots$$

$$X_{\nu}(n,x); p_{1}; p_{2}; \top \overline{\uparrow} n \neq 0 \wedge \exists y. x = \text{Send} \cdot y \wedge X_{\nu}(n-1,y)$$

$$\vdash \neg p_1(x) \Rightarrow x = \operatorname{Send}^{\omega}$$
$$\vdash \neg p_1(x) \Rightarrow x = \operatorname{Send}^{\omega}$$

 $\lambda x \in \Sigma^{\omega} . n \ge 0 \lor x \ne Send^{\omega}$

 $\Vdash \Phi_e^{\nu}(x) \Rightarrow x = \mathrm{Send}^{\omega}$

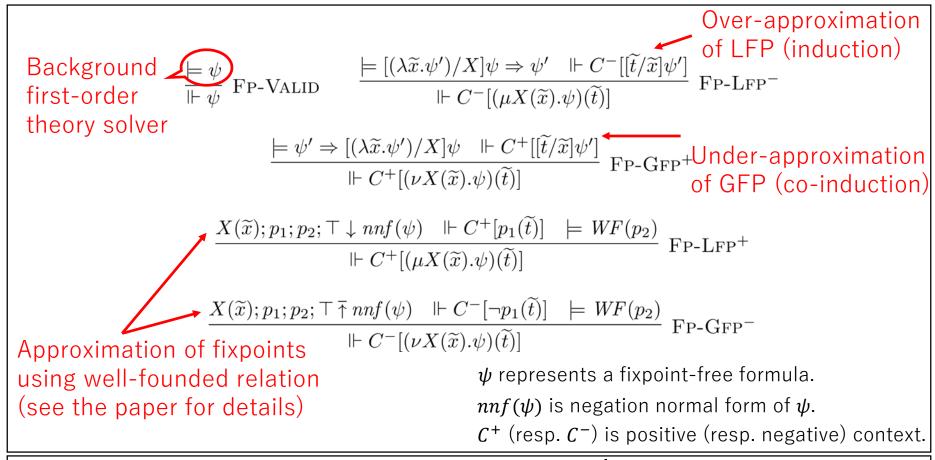
Over-approx. of GFP by negation of p_1

$$\lambda(n_1, x_1, n_2, x_2). n_1 > n_2 \ge 0$$

$$\lambda x \in \Sigma^{\omega}$$
.

$$\left(\nu X_{\nu}(n,x). n \neq 0 \land \begin{pmatrix} \exists y. \ x = \text{Send} \cdot y \land \\ X_{\nu}(n-1,y) \end{pmatrix}\right) (n,x)$$

Deductive System $\Vdash \phi$ for \mathcal{L}



Theorem 2 (Soundness of II-): IF ϕ implies $\models \phi$

22

Conclusion

- Foundation for compositional & algorithmic verification of value-dependent temporal properties of higher-order programs
- 1. Dependent refinement type & effect system
 - Compositional analysis of dependent temporal effects represented by predicates of first-order fixpoint logic £
 - Algorithmic type checking via validity checking for £
- 2. Deductive system for the validity of \mathcal{L}

	Over-Approximation	Under-Approximation
LFP	Invariant (induction)	Well-founded relation
GFP	Well-founded relation	Invariant (co-induction)

- Can be used with any background first-order theory
 - Enable other applications to program verification, which will be presented at the HCVS workshop on 13th