A
De

DENC

ent

Temporal P

-ixpoint Logic ana

-ffects for

‘operty Verification

Yoji Nanjol!, Hiroshi Unno?, Eric Koskinen?, Tachio Terauchi3

1 University of Tsukuba 2 Stevens Institute of Technology 3 Waseda University

Temporal Property Verification

Program Temporal property

Check whether P satisfies @&

This Work

Higher-order Value dependent
functional program temporal property

P I= D

4)
Check whether P satisfies & by using

(1) a dependent refinement type & effect system and

(2) a deductive system for a first-order fixpoint logic
\ %

2018/7/11 LICS'18, Oxford, UK 3

Main Contribution

e Foundation for compositional & algorithmic
verification of value-dependent temporal
properties of higher-order programs

e cf. previous proposals are:

e fully automated but whole program analysis

|Kobayashi+ PLDI'11], [U.+ POPL'13], [Kuwahara+
ESOP’14], [Kuwahara+ CAV'15], [Murase+ POPL’16]

e compositional but no support of the class of properties
[Koskinen+ CSL-LICS'14], [U.+ POPL’18]

2018/7/11 LICS'18, Oxford, UK

This Work

Higher-order Value dependent
functional program temporal property

P I= D

4 N
Check whether P satisfies & by using

(1) a dependent refinement type & effect system and

(2) a deductive system for a first-order fixpoint logic
\ %

2018/7/11 LICS'18, Oxford, UK 5

-xample: Functional Program

let rec send_msgs n =
if n =0 then ()
else (event[Send]; send _msgs (n-1))

.

Generated event sequences:
n<0:Send? (infinite repetition of Send)
n=0:¢€ (empty sequence)
n=1:Send

n = 2 : Send, Send

emit Send event}

2018/7/11 LICS'18, Oxford, UK

This Work

Higher-order Value-dependent
functional program temporal property

P I= D

4 N
Check whether P satisfies & by using

(1) a dependent refinement type & effect system and

(2) a deductive system for a first-order fixpoint logic
\ %

2018/7/11 LICS'18, Oxford, UK 7

This Work

predicate for finite § predicate for infinite
event sequences event sequences

PE(d,d,)

~
Check whether finite event sequences generated

by P satisfy ®, and /infinite event sequences

generated by P satisfy @,
N /

2018/7/11 LICS'18, Oxford, UK 8

-xample: Value-Dependent
Temporal Property

let rec send_msgs n = {Fo;)fscrzrﬂirgit;ng} [n-times]
if 0 = 0 then repetition of Send
() dH = Ax € T*.x = Send"
else h ®V = Ax € X?. x = Send?
(event[Send]; AN /A
send_msgs (n-1)) For diverging infinite repetition
executions of Send
n<0:Send®
n=0:¢€
n=1:Send
n = 2 : Send, Send
: LICS'18, Oxford, UK 9

Further Examples

e See the paper for further examples that
demonstrate the range of applications

Amortized Complexity ‘ Higher-Order | Web Server Fairness
let rev 1 = let rec zoom () = let rec listener npool pend =
let rec aux 1 acc = match 1 with event[Zoom]; zoom () if * && pend < npool then
| [1 ->acc | h::t -> (event[Accept];
event[Tick]; aux t (h::acc) let rec shrink t f d = listener npool (pend + 1))
in aux 1 [] if f () <= 0 then else if pend > 0 then
let is_empty (11,12) =11 = [] && 12 = [] zoom () (event[Handle];
let enqueue e (11,12) = event[Enq];(11,e::12) else listener npool (pend - 1))
let rec dequeue (11,12) = match 11 with (event[Shrink]; else
| [1 -> dequeue (rev 12, [1) let t' = f() - d in (event[Wait];
| e::11' -> event[Deql; (e, (11', 12)) shrink t' (fun x -> t') d) listener npool pend)
let rec main (11,12) =
if * then main (enqueue 42 (11,12)) let shrinker t d = let server npool =
else if is_empty (11,12) then () shrink t (fun x -> t) d listener npool ©
else main (snd (dequeue (11,12))) _
shrinker : (t : {t |t = 0}) — server : (npool : {v | v = 0}) —
main: (([1,12) : int list X int list) — (unit&®) | (d:{d | d > 0Atmodd = 0}) — (unit & (x.L, Ax.¢))
QH = Ax‘#Eﬂ(x) + |£2| = #Tick(x) = #mﬂ(x) - |f1| (Unit &(D) x € (Z¥ (= \'Accept)npuol+])m
OV = Jx.T OH = Jx. L ¢ = N v
@ = Ax.x € Shrink!/9 . Zoom® = x € (37 - Wait)

This Work

Higher-order }

temporal property

Value-dependent
functional program

Check whether P satisfies ® via
(1) a dependent refinement type & effect system and
(2) a deductive system for a first-order fixpoint logic

2018/7/11 LICS'18, Oxford, UK 11

Contributions

1. A dependent refinement type & effect system for
compositional & algorithmic temporal verification

« Compositional analysis of dependent temporal effects
represented by predicates of first-order fixpoint logic £

 Algorithmic type checking via validity checking for £

2. A deductive system for the validity of L

e Use invariants and well-founded relations to
over- and under-approximate fixpoints
e Designed by transferring ideas from verification research
« Can be used with any background first-order theory

 Enable other applications to program verification,
which will be presented at the HCVS workshop on 13th

2018/7/11 LICS'18, Oxford, UK 12

Contributions

1. A dependent refinement type & effect system for
compositional & algorithmic temporal verification

« Compositional analysis of dependent temporal effects
represented by predicates of first-order fixpoint logic £

 Algorithmic type checking via validity checking for £

2018/7/11 LICS'18, Oxford, UK 13

First-Order Fixpoint Logic £

e First-order logic extended with least fixpoints
(LFPs) and greatest fixpoints (GFPs)

predicate symbols of

predicate

the background theory

variables
= | LIA®R) [2@ o1 A2 | @1V e |Vz €S9Iz €S9
X(t) | (pX(@:8).9)() | (vX(3: S).9)(D)

(terms) t LFPs (X occurs GFPs (X occurs
(sorts) S - / only positively in ¢) | only positively in ¢)

(formulas) ¢

function symbols of the set of finite the set of infinite

the background theory | event sequences | event sequences

We here fix the theory as the one above for temporal effect analysis ,

though we could choose any background first-order theory

Temporal Effect Analysis

dependent temporal

[functional program F (q)” oY) effectthat describe the
¢ e’ € temporal behavior of e

Example: The use of first-order fixpoint logic
let rec send_msgs n = allows precise representation
if n = 0 then () (cf. previous work only allowed

(w-)regular expressions [Skalka+'08,
Hofmann+'14] or did not specify the
effect language [Koskinen+'14])

else (event[Send]; send_msgs (n-1))

predicate variable that relates n
and the finite event sequence x

L = Ax € T*. (uX, (n, x).

n=0Ax=¢€V

) (1, x)

n#0 A (Jy.x=Send-y A X,(n—1,y)]

Y =Ax €2°. (vX,(n,x)n # 0A (3y. x = Send - y AX,(n — 1, y) P (n, x)

predicate variable that relates n
and the infinite event sequence x |c518 0xford, UK 15

Dependent Refinement Type & Effect System
Type Enwronment{[‘)e (LJ& ([(I)ﬂ bV ; Dependent

Temporal Effect

Program pependent Refinement Type

Extends existing refinement type systems [koskinen+'14, Rondon+'08, U.+'09, Terauchi'10, ---]
« Types & effects facilitate compositional analysis of dependent temporal effects
« Fixpoint logic deduction I+ enables algorithmic type checking

Key typing rules:

¢ fo(r)Ufo(Py) Thep: (m&®) Tz:mber: (&P
I'Fletxz=e;inesy: (Tg&#@l Do)

Sequential composition of effects

O Py = (A\r € T*Izy, 20 € X x =21 - 2 AP (1) A BL(22),
Az € XYY () V (Fy e E* z € X% x =y -2 AP (y) A DY(2)))

Th = (3:7) = (1& (\e € £*.X,(7.2), \a € £.X, (7, 2)))

T f};g;(ﬁ’gaﬁ"’f'ff e;(('(fffi’))[oo e Fixpoints describing a dependent
P (o R 2 o e‘fg,.‘;;;w;ifw'ggw_;v(w,;'))i) temporal effect of a recursive function

I'Frec(f,z,e): (71 & Pyar)

Check sub-effect
I [T+ Va € %04 (z) = &4 (z)]

Tre oo [TFoi< oo Phrm<im |IF[DFVze s .ot)qu ()] rela:ltion via f_ixpoint
Fll—e O’Ql ?Subtypmg L F (1 &®p)<: (10 & Do) |OgIC deduction

Theorem 1 (Soundness): T e : (t & (O, ®V)) implies e € [T + T & (d#, dV)]
(e behaves as specified by (7&(®*, ®¥)) under a valuation conforming to T)

Contributions

2. A deductive system for the validity of L

e Use invariants and well-founded relations to
over- and under-approximate fixpoints
e Designed by transferring ideas from verification research
« Can be used with any background first-order theory

 Enable other applications to program verification,
which will be presented at the HCVS workshop on 13th

2018/7/11 LICS'18, Oxford, UK

17

First-Order Fixpoint Logic L s

e First-order logic extended with least fixpoints
(LFPs) and greatest fixpoints (GFPs)

sorts (e.g. Z) of the

predicate symbols of

predicate

background theory

the background theory

variables

~

(formulas) ¢ =T LJ‘ | A(t) | =9 | P1 A ¢ | 1V 2 | Vi € S.¢|3x e S.¢
X @) | (pX(2:5).9)(t) | (wX(2: 5).9)(1)

~

(terms) t == x| f(t) LFPs GFPs
(X occurs only (X occurs only

function symbols of positively in ¢) positively in ¢)

the background theory

2018/7/11 LICS'18, Oxford, UK 18

the Va

Deductive System I ¢ for

idity of L

1. Over- and under-approximate fixpoint subformulas
of ¢ by non-fixpoint formulas

e For soundness, subformulas that occur positively and
negatively are respectively under- and over-approximated

2. Resultin
a solver

non-fixpoint formulas are discharged by
or the background first-order theory

e Techniques for obtaining approximations:

- Over-Approximation Under-Approximation

Invariant (induction) Well-founded relation
1 Well-founded relation Invariant (co-induction)

Analogous to techniques in safety and liveness property verification

2018/7/11

LICS'18, Oxford, UK 19

-xample: Fixpoint Deduction via
Over-Approx. of LFP

Check that p is a pre-fixpoint of F Deduction in background first-order theory

(or, equivalently, perform induction

by unfolding LFP and applying I.H.

to the recursive occurrences of X)
s

= F(p)(x) = p(x) (Ep(x) = x = Send™)

IHp(x).= x = Send™
7
/ﬁ Ik @8 (x) = x = Send™

[Ax € ¥* x = Send Over-approx. of LFP

/\ by pre-fixpoint

4 N
Ax € X%, (,uXu(n, x).F(XM)(n, x)) (n, x)
" n=0Ax=¢€V

L where F(X)(n,x) = (n #0A(3y. x=Send-yAX(n— 1,y))> y

2018/7/11 LICS'18, Oxford, UK 20

-xample: Fixpoint Deduction via
Over-Approx. of GFP

Check that the given well-founded relation p,
witnesses that the given predicate p; and ®} Deduction in background

have no intersection (see the paper for details) first-order theory
f—/\ N

E=P1(Tl,x) An#0Ax =Send-x’ :]
(pl(n — 1,x’) /\.pz(n, x,n—1, X’))

E —p1(x) = x = Send?

(0, X);pp; T Tn#0ATy.x=Send - yAX,(n—1,y) IF —p;(x) = x = Send®
IFdy(x) = x = Send?® N

Over-approx. of GFP
w w
\AxEZ .nZOV\x;tSend) by negation of p,

A(ng, xq,ny,x,).ny >n, =20 | Ax € X%,

<va(n, x).n#0A (Ely. x = Send -y A)) (n, x)

Xv(n _ 1'y)

2018/7/11 LICS'18, Oxford, UK 21

Deductive System I+ ¢ for £

Over-approximation

_ = of LFP (inducti
Background@ = (AF)/X] = o - O [[F/aW] (induction)
first-order g [P-VALID

— Fp-Lrp—
I C[(uX (@)-4) (@) T
theory solver

= = [(0\29)/X]y IF CH[E/3)Y] re.qpprUnder-approximation

F CH(vX (F).4)(1)] of GFP (co-induction)

X(@);ipi;p2; T Lonf () - CHpi(t)] = WF(ps)

_ +
F CH(uX @)0) @) Frebe
X(@);pr;p2: T Tnnf () |+ C™[-pi(t)] | WF(ps) B
— ~ ~ Fpr-GFpP
Approximation of fixpoints " €7 I(wX(@)-¥)(?)]
using well-founded relation P represents a fixpoint-free formula.

(see the paper for details) nnf () is negation normal form of .

C* (resp. C™) is positive (resp. negative) context.
Theorem 2 (Soundness of IF): IF ¢ implies E ¢

2018/7/11

LICS'18, Oxford, UK 22

Conclusion

* Foundation for compasitional & algorithmic _
verification of value-dependent temporal properties
of higher-order programs

1. Dependent refinement type & effect system

« Compositional analysis of dependent temporal effects
represented by predicates of first-order fixpoint logic £

« Algorithmic type checking via validity checking for £
2. Deductive system for the validity of £

- Over-Approximation Under-Approximation

Invariant (induction) Well-founded relation
el Well-founded relation Invariant (co-induction)

» Can be used with any background first-order theory

e Enable other applications to program verification,
which will be presented at the HCVS workshop on 13th

2018/7/11 LICS'18, Oxford, UK 23

	A Fixpoint Logic and Dependent Effects for Temporal Property Verification
	Temporal Property Verification
	This Work
	Main Contribution
	This Work
	Example: Functional Program
	This Work
	This Work
	Example: Value-Dependent Temporal Property
	Further Examples
	This Work
	Contributions
	Contributions
	First-Order Fixpoint Logic ℒ
	Temporal Effect Analysis
	Dependent Refinement Type & Effect System
	Contributions
	First-Order Fixpoint Logic ℒ (revisited)
	Deductive System ⊩𝜙 for�the Validity of ℒ
	Example: Fixpoint Deduction via Over-Approx. of LFP
	Example: Fixpoint Deduction via Over-Approx. of GFP
	Deductive System ⊩𝜙 for ℒ
	Conclusion

