Relatively Complete
Refinement Type System for
Verification of Higher-Order
Non-deterministic Programs

Hiroshi Unno (University of Tsukuba)
Yuki Satake (University of Tsukuba)
Tachio Terauchi (Waseda University)

Background

« Recent advances in (semi-)automated methods for
verifying higher-order functional programs

 safety [Rondon+ '08; U. & Kobayashi '08,'09; Terauchi '10;
Ong & Ramsay ‘'11; Jhala+ ‘11; Kobayashi+ ‘11; U.+ '13; _]

* fermination [Sereni & Jones '05; Giesl+ '11; Kuwahara+ '14; Vazou+ '14]
* non-termination [Kuwahara+ '15; Hashimoto & U. '15]
. Tempor'al pr'oper'1'ies [Koskinen & Terauchi ‘'14; Murase+ '16]

- Different techniques are used to verify
the different classes of properties, and are
hard to combine in a unified framework
 dependent refinement types,
 predicate abstraction for higher-order model checking,
« program transformation for (binary) reachability analysis,...

POPL'18, Los Angeles, United States 2

Our Contributions

* Novel dependent refinement type system that can:

* uniformly express and verify universal and existential
branching properties of call-by-value, higher-order,
and programs:

* (cond.) safety, non-safety, termination, and non-termination
 seamlessly combine universal and existential reasoning

* e.g., Prove non-safety via termination

* e.g., Prove non-termination via safety

* e.g., Prove termination and non-termination simultaneously

* Meta-theoretic properties of the type system:
* Closure of types under complement
 Soundness
* Relative completeness

POPL'18, Los Angeles, United States 3

Our Contributions

* Novel dependent refinement type system that can:

 uniformly express and verify universal and existential
branching properties of call-by-value, higher-order,
and non-deterministic programs:

* (cond.) safety, non-safety, termination, and non-termination
« seamlessly combine universal and existential reasoning

* e.g., Prove non-safety via termination

* e.g., Prove non-termination via safety

* e.g., Prove termination and non-termination simultaneously

* Meta-theoretic properties of the type system:
* Closure of types under complement
» Soundness
* Relative completeness

POPL'18, Los Angeles, United States 4

Dependent Refinement Types t

e {x:int|x = 0} predicates on
Non-negative integers |_P"°9ram values

e(x:int) » {r:int|r > x}
Functions that take an integer x and
(if terminated) return r not less than x

© A type system ensures that a type-checked
expression behaves according to the type
® Only universal branching properties
can be expressed

Overview: Our Type System

« Extends dependent refinement types with:

 Qualified types 7¢1¢2
to express universal/existential branching behaviors
and partial/total correctness

 Qualified bindings x:?t
to cope with non-determinism from program inputs

 60del encoding of function-type values
& guarded intersection types
to achieve relative completeness

POPL'18, Los Angeles, United States 6

Overview: Our Type System

« Extends dependent refinement types with:

 Qualified types 7¢1¢2
to express universal/existential branching behaviors
and partial/total correctness

 Qualified bindings x:?t
to cope with non-determinism from program inputs

 66del encoding of function-type values
& guarded intersection types
to achieve relative completeness

POPL'18, Los Angeles, United States 7

Qualified Types 7¢1¢2

* Q4 € {V,3} (universal/existential non-det.)
specifies whether the expression being typed
behaves according to the type:

 for any non-det. evaluation (Q; = V), or
 for some non-det. evaluation (Q; = 3)

* Q; € {v,3} (partial/total correctness)
specifies whether:
* T holds for all value obtained (Q, = V), or
 there exists a final value for which 7 holds (Q, = 3)

Qualified Types 7¢1¢2

* Q4 € {V,3} (universal/existential non-det.)
specifies whether the expression being typed
behaves according to the type:

 for any non-det. evaluation (Q; = V), or
 for some non-det. evaluation (Q; = 3)

* Q; € {v,3} (partial/total correctness)
specifies whether:
* the evaluation diverges or t is satisfied (Q, = V), or
* the evaluation terminates and t is satisfied (Q, = 3)

POPL'18, Los Angeles, United States 9

Examples: Qualified Types 7¢1¢2

e:{u:int| 3V

for any non-deterministic evaluation of e,
if any integer u is obtained, then u is

*e:{u:int| 37
for some non-deterministic evaluation of e,
some integer u is obtained, and u is

Typing Integer Constants

Integer
Rule: constant
—
Arn:{x:int|x=
|
Type

environment

n}VEI

/\

Universal
and Total

Converting Qualified Types

Subtyping Rule:
A-t<:175 Q407 E Q,0,)

!/ !/
A F tlel <: rngz

Universal ‘
and Partial
< Vg
vaZl Cav.
Universal \S/\HH = Existential
and Total Existential and Partial

and Total

-o
@)
2

12

—+
o
(7]

Typing Let-Bindings

Rule:
Areqy:Tit?

Ax:TiFey: 13102 x ¢ fvs(t,)

Arletx =e;ine,: 1'3102

Typing Recursive Functions
for Partial Correctness

Rule:

A,x:rl,f:(x:rl)—m'zqvl—e:rgv

A+rec(f,x,e):(x:1q) > Tgv

|

(recursive) function
letrecfx=e

Typing Recursive Functions for
Total Correctness (cf. [Xi '01])

Rule:

Trec — (x'1T1’) - ¢ (‘l'z')Q3 =q (x:1)>T

Well-founded relation witnessing the
termination of f, as a recursion guard

Q-
2

ArEWFAx,x').¢p) Ax:Ty,f:Trece: Tga

Example:

AFrec(f,x,e):(x:1q) — ngl

x':{x'|x=0)>ox>x'=0c{y |y =x'}"

T

x:{x|x>=0},sum: 1., +if x =0thenOelse... : int"’

EWF(A(x,x').x >x"=0)

- rec(sum, x,if x = 0 then O else x + sum (x — 1)) : 7

__—7
(x:{x|x=>0}) —int"’
POPL'18, Los Angeles, United States 15

Overview: Our Type System

« Extends dependent refinement types with:

 Qualified types 7¢1¢2
to express universal/existential branching behaviors
and partial/total correctness

 Qualified bindings x:?t
to cope with non-determinism from program inputs

 66del encoding of function-type values
& guarded intersection types
to achieve relative completeness

POPL'18, Los Angeles, United States 16

Qualified Bindings x:%t

* Occur in type environments and the
argument of dependent function types

« Q € {v,3} specifies whether a certain fact
must hold for:
* any input x that satisfies 7 (Q = V), or
» some input x that satisfies 7 (Q = 3)

Examples: Qualified Bindings x:9t

e (x:7int) —» {u : int | u > x}"?

functions that, for any integer x and
for any run with the argument x,

return some integer u,
which is greater than x

e (x:7int) > {u:int | u > x
functions that, there exists an integer x,
for any run with the argument x,

return some integer u,
which is greater than x

}VEI

POPL'18, Los Angeles, United States 18

Skolemizing Existential Bindings

Rule: Skolemization Predicate

R
Ax teE@

Type environment | A .V & O),Tr+e:o
consisting of only | — L
AxitlTte:o

v-bindings
Type environment consisting
of both v- and 3-bindings

Example:
x:Vint,y:lintEy=—x
x:Vint,y:Vint,ty = —x+x+y:{z|z = 0}"
x:Vint,y:3int-x+y:{z|z= 0}

Typing Non-deterministic Choice

Rule:
A x:%int + e : t?192 x ¢ fvs(1)
ALletx =% ine: t?10Q2

Example:
xVint, y:Jint - x + y : {z | z = 0}73

x:Vint+-lety=* inx+y:{z|z= 0}

Typing Function Applications
(Universal Bindings)

Rule:
Arvy:(x:"T)>0 ArLvVy:T

A+ V1 V> - [VZ/x]O'

Typing Function Applications

(Existential Bindings) |

RLI'C . equivalence

—

Arvy:(x?t)>0 Ax"t,TEX~ D,

A,F FvVqVy: [Vz/X]O'

Example:
fPtref:t fUrxVinty:lintEx=y
fVr,yFint-f y:{z]| 1}7V

ety = infy T I
(x:7int) > {z| L}V

Converting Function Types (1/4)

Subtyping Rule:

A|—T2 <3T1 A,X:VTZ - 01 <3O'2

A (x:VTq) o 01 <: (x:719) — 09

Example:

F (x:Vint) » {y | y = x}"*
<t (x:{x1x=20})->{yly=0}"

Converting Function Types (2/4)

Subtyping Rule:

A|—T1 <3T2 A,x3VT1|—O'1 <3O'2

AF (x791) o 01 <: (x:7T3) > 09

Example:

Fxfx lx=0) > {yly=x}"
<: (x:7int) > {y | y = 0}

Converting Function Types (3/4)

Subtyping Rule:
AT<:t1 AFT<:TY
Ax:PT o <:oy
AF (x:"1q) » 01 <: (x:77;) - 0y

Example:
= <:int F <:int
X Fyly=x}" <:{yly=0}"

F (x:7int) > {y |y = x}73 <: (x7int) — {y | y = 0}73

Converting Function Types (4/4)

Subtyping Rule:

AxT (T AT,y (TEAT) EX ~ Y
Ax:"(Ty ATy) F o1 <: 0y
Ax"(ty\T2) Fog <: 1 O:;;:\:l‘::gal
Ax:"(t,\T) F T <:oy

A (x:7ty) 201 < (x:7,) — 0y
Example:

F (P {x lx=0}) - {yly=0}"

< (' {x lx=0}) > {yly=x}"

Overview: Our Type System

« Extends dependent refinement types with:

 Qualified types 7¢1¢2
to express universal/existential branching behaviors
and partial/total correctness

 Qualified bindings x:?t
to cope with non-determinism from program inputs

 60del encoding of function-type values
& guarded intersection types
to achieve relative completeness

POPL'18, Los Angeles, United States 27

Godel Encoding of
Function-Type Values

* Enables predicates of the underlying logic T
(e.g., second-order arithmetic) to depend on
function-type arguments encoded as T-objects

e (f:Vint » int"?) - (g:Vint > int"3) > {u | f ~ g}""
Functions that, given two terminating

functions f and g, always diverge
if f is not observationally equivalent to g

POPL'18, Los Angeles, United States 28

Guarded Intersection Types
/\i (¢l > TiQiQi)

e Collectively express different behaviors of
functions depending on the arguments

(x>0cint")A(x<0c{y]| L}")A
(x=0cint)A(x=0c={y| L})
Functions that, given the argument x:

e always terminate if x > 0,

* always diverge if x < 0, and otherwise,

* non-deterministically terminate or diverge

e (x:"int) -

POPL'18, Los Angeles, United States 29

Our Contributions

* Novel dependent refinement type system that can:

 uniformly express and verify universal and existential
branching properties of call-by-value, higher-order,
and non-deterministic programs:

* (cond.) safety, non-safety, termination, and non-termination
 seamlessly combine universal and existential reasoning

* e.g., Prove non-safety via termination

* e.g., Prove non-termination via safety

* e.g., Prove termination and non-termination simultaneously

* Meta-theoretic properties of the type system:
* Closure of types under complement
« Soundness
* Relative completeness

POPL'18, Los Angeles, United States 30

Complement Types —o

* Thanks to having both modes of non-determinism,
the type complement operator — can be defined:

_I(TQIQZ) 2 (7))@ (=Q2)
—{x:int| ¢} £ {x :int | = ¢}
— ((x :07) > a) 2 (x:791) > -0
-V = 3 4=V

Example: Complement Types —o

eo 2 (x:"int) » {u : int | 1Y

functions that, for any integer x and

for any run with the argument x,
diverge or return an integer

e w0 = (x:7int) » {u : int | 374
functions that, for some integer x and

for some run with the argument x,
terminate and return an integer

Example: Combined Reasoning
(Non-safety via Termination)

Goal: prove that
letrecfxy =
if x = y then 0
elsef(x—1)y
letr = £10° 0 in
letz=xinz+r

violates
fu |u=0}"

POPL'18, Los Angeles, United States

33

Example: Combined Reasoning
(Non-safety via Termination)

Goal: prove that
letrecfxy =
if x =y then 0O
elsef(x—1)y
letr = £10° 0 in
letz=xinz+r
satisfies

-({u 1u=0}"7)

POPL'18, Los Angeles, United States

34

Example: Combined Reasoning
(Non-safety via Termination)

Goal: prove that 1.

letrecfxy =
if x = y then 0

else f (x — 1)y
letr —f10 0in

letz=xinz+r
satisfies

fu |u+0}37 3

Show that f is
terminating:
The well-founded relation

A((x), (x',¥1).
X>XANy=y Ax=y
withesses that f has the type:
(x:int) - (y : {y | }) - int™

2. Show that the actual call

f 10° 0 always terminates
by checking =

Show that, for any integer r,
we can choose an integer z

such that z+7r = 0 Q.E.D.

POPL'18, Los Angeles, United States 35

Our Contributions

* Novel dependent refinement type system that can:

 uniformly express and verify universal and existential
branching properties of call-by-value, higher-order,
and non-deterministic programs:

* (cond.) safety, non-safety, termination, and non-termination
 seamlessly combine universal and existential reasoning

* e.g., Prove non-safety via termination

* e.g., Prove non-termination via safety

* e.g., Prove termination and non-termination simultaneously

* Meta-theoretic properties of the type system:
* Closure of types under complement
 Soundness
* Relative completeness

POPL'18, Los Angeles, United States 36

Closure of Types under Complement

For any type o refining a simple type S,
* [6] N [-0] =@ and
* [o] U [-a] = [S]
where
* [6]: the set of expressions
that behave according to o

¢ [ST: the set of expressions of the type S

Soundness

'-e: o implies e € [T I o]

|

the set of expressions
that behave according to
o under any valuation
conforming to T

Relative Completeness
e€l'+o] impliesTke:o

under the assumption that the underlying logic
is sufficiently expressible
* to Godel encode arbitrary functions definable in
the target programming language

 to represent well-founded relations witnessing
the termination of the definable functions

Summary

* Novel dependent refinement type system that can:

* uniformly express and verify universal and existential
branching properties of call-by-value, higher-order,
and programs:

* (cond.) safety, non-safety, termination, and non-termination
 seamlessly combine universal and existential reasoning

* e.g., Prove non-safety via termination

* e.g., Prove non-termination via safety

* e.g., Prove termination and non-termination simultaneously

* Meta-theoretic properties of the type system:
* Closure of types under complement
 Soundness
* Relative completeness

POPL'18, Los Angeles, United States 40

Future Work

* Extensions with temporal specifications:
« Temporal trace specs. (e.g., LTL)
* Branching temporal specs. (e.g., CTL, modal-p)

« Extensions with language features:
* Recursive data structures
 Linked data structures
* Call-by-name evaluation
 Probabilistic choice

« Automation of type checking and inference

Towards Automation (Ongoing)

» Type Checking
* How to leverage off-the-shelf SMT solvers?

> Abstraction and counterexample guided refinement
for the encoding of function-type values

* Type Inference

* How to synthesize inductive invariants, well-founded
relations, and Skolemization predicates?

»Reduction to existentially-quantified
Horn clause and well-foundedness constraints

 How to achieve scalable inference?
»Combination of universal and existential reasoning

POPL'18, Los Angeles, United States 42

	Relatively Complete Refinement Type System for Verification of Higher-Order Non-deterministic Programs
	Background
	Our Contributions
	Our Contributions
	Dependent Refinement Types 𝝉
	Overview: Our Type System
	Overview: Our Type System
	Qualified Types 𝝉 𝑸 𝟏 𝑸 𝟐
	Qualified Types 𝝉 𝑸 𝟏 𝑸 𝟐
	Examples: Qualified Types 𝝉 𝑸 𝟏 𝑸 𝟐
	Typing Integer Constants
	Converting Qualified Types
	Typing Let-Bindings
	Typing Recursive Functions for Partial Correctness
	Typing Recursive Functions for Total Correctness (cf. [Xi ’01])
	Overview: Our Type System
	Qualified Bindings 𝒙 : 𝑸 𝝉
	Examples: Qualified Bindings 𝒙 : 𝑸 𝝉
	Skolemizing Existential Bindings
	Typing Non-deterministic Choice
	Typing Function Applications�(Universal Bindings)
	Typing Function Applications�(Existential Bindings)
	Converting Function Types (1/4)
	Converting Function Types (2/4)
	Converting Function Types (3/4)
	Converting Function Types (4/4)
	Overview: Our Type System
	Gödel Encoding of�Function-Type Values
	Guarded Intersection Types 𝒊 𝝓 𝒊 ⊳ 𝝉 𝒊 𝑸 𝒊 𝑸 𝒊 ′
	Our Contributions
	Complement Types ¬𝝈
	Example: Complement Types ¬𝝈
	Example: Combined Reasoning�(Non-safety via Termination)
	Example: Combined Reasoning�(Non-safety via Termination)
	Example: Combined Reasoning�(Non-safety via Termination)
	Our Contributions
	Closure of Types under Complement
	Soundness
	Relative Completeness
	Summary
	Future Work
	Towards Automation (Ongoing)

