
Automating Relational 
Program Verification

Hiroshi Unno  (University of Tsukuba, Japan)

January 16, 2024 VMCAI'24, London, UK 1



Relational Program Verification
• Verification of properties that relate multiple executions of one or more programs
• Clarkson and Schneider formalized such properties as sets of sets of program traces

and coined the term hyperproperties [CSF 2008]

• 𝒌𝒌-safety is a notable subclass defined as hyperproperties that can be refuted by 
observing 𝑘𝑘 finite traces (i.e., the bad thing never involves more than 𝑘𝑘 traces)

• An important trend in formal methods with wide applications including security

2January 16, 2024 VMCAI'24, London, UK

[CSF 2008] Clarkson, Schneider. Hyperproperties.



Example Hyperproperties
on Multiple Programs
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Variants of Program Equivalence
• Functional (i.e., input-output) equivalence

• Termination-insensitive: 𝑓𝑓 =𝐷𝐷𝐷𝐷𝐷𝐷 𝑔𝑔 ≜ ∀𝑥𝑥,𝑦𝑦1,𝑦𝑦2. 𝑓𝑓 𝑥𝑥 ⇓ 𝑦𝑦1 ∧ 𝑔𝑔 𝑥𝑥 ⇓ 𝑦𝑦2 ⟹ 𝑦𝑦1 = 𝑦𝑦2
• Termination-sensitive:

𝑓𝑓 =𝐷𝐷𝐷𝐷𝐷𝐷 𝑔𝑔 ≜ 𝑓𝑓 =𝐷𝐷𝐷𝐷𝐷𝐷 𝑔𝑔 ∧ ∀𝑥𝑥. 𝑓𝑓 𝑥𝑥 ⇑ ⟹ ¬∃𝑦𝑦. 𝑔𝑔 𝑥𝑥 ⇓ 𝑦𝑦 ∧ ∀𝑥𝑥. 𝑔𝑔 𝑥𝑥 ⇑ ⟹ ¬∃𝑦𝑦. 𝑓𝑓 𝑥𝑥 ⇓ 𝑦𝑦

• Non-det. & Termination-sensitive: 𝑓𝑓 =𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆 𝑔𝑔 ≜ ∀𝑥𝑥. 𝑦𝑦 ∣ 𝑓𝑓 𝑥𝑥 ⇓ 𝑦𝑦 = 𝑦𝑦 ∣ 𝑔𝑔 𝑥𝑥 ⇓ 𝑦𝑦
• Probabilistic & Termination-sensitive: 𝑓𝑓 =𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑔𝑔 ≜ ∀𝑥𝑥,𝑦𝑦. Pr 𝑓𝑓 𝑥𝑥 ⇓ 𝑦𝑦 = Pr 𝑔𝑔 𝑥𝑥 ⇓ 𝑦𝑦

• Trace equivalence: 𝑝𝑝 =𝑇𝑇𝑇𝑇 𝑞𝑞 ≜ 𝑇𝑇𝑇𝑇 𝑝𝑝 = 𝑇𝑇𝑇𝑇 𝑞𝑞

• Bisimilarity: 𝑝𝑝 ∼𝑏𝑏𝑏𝑏𝑏𝑏 𝑞𝑞 ≜ there is a strong bisimulation 𝑅𝑅 such that 𝑝𝑝, 𝑞𝑞 ∈ 𝑅𝑅

• Observational equivalence: 𝑝𝑝 =𝑂𝑂𝑂𝑂𝑂𝑂 𝑞𝑞 ≜ ∀𝐶𝐶,𝑦𝑦. 𝐶𝐶 𝑝𝑝 ⇓ 𝑦𝑦 ⟺ 𝐶𝐶 𝑞𝑞 ⇓ 𝑦𝑦
• Captures non-trivial interactions between contexts 𝐶𝐶 and higher-order, object-oriented, 

and effectful (e.g., non-det., probabilistic, stateful, exception-raising, …) programs
• In security applications, attackers’ capabilities are reflected in the definition of contexts 𝐶𝐶
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The set of finite and infinite execution traces of 𝑞𝑞

An execution of 𝑓𝑓 𝑥𝑥  terminates and returns 𝑦𝑦1

𝑓𝑓 𝑥𝑥  has a diverging execution



Variants of Program Refinement
• Functional (i.e., input-output) refinement:

• Termination-insensitive: 𝑓𝑓 ≤𝑇𝑇𝐼𝐼 𝑔𝑔 ≜ ∀𝑥𝑥,𝑦𝑦. 𝑓𝑓 𝑥𝑥 ⇓ 𝑦𝑦 ⟹ 𝑔𝑔 𝑥𝑥 ⇓ 𝑦𝑦
• If 𝑓𝑓 ≤𝑇𝑇𝐼𝐼 𝑔𝑔, then ⊨ 𝑃𝑃𝑃𝑃𝑃𝑃 𝑔𝑔 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 implies ⊨ 𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

• Termination-sensitive: 𝑓𝑓 ≤𝑇𝑇𝑇𝑇 𝑔𝑔 ≜ 𝑓𝑓 ≤𝑇𝑇𝑇𝑇 𝑔𝑔 ∧ ∀𝑥𝑥. 𝑓𝑓 𝑥𝑥 ⇑ ⟹ 𝑔𝑔 𝑥𝑥 ⇑
• If 𝑓𝑓 ≤𝑇𝑇𝑇𝑇 𝑔𝑔, then ⊨ 𝑃𝑃𝑃𝑃𝑃𝑃 𝑔𝑔 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 implies ⊨ 𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (i.e., termination is also transferred)

• Trace refinement: 𝑝𝑝 ≤𝑇𝑇𝑇𝑇 𝑞𝑞 ≜ 𝑇𝑇𝑇𝑇 𝑝𝑝 ⊆ 𝑇𝑇𝑇𝑇 𝑞𝑞
• If 𝑝𝑝 ≤𝑇𝑇𝑇𝑇 𝑞𝑞, then trace properties of 𝑞𝑞 can be transferred to 𝑝𝑝

• Similarity: 𝑝𝑝 ≤𝑠𝑠𝑠𝑠𝑠𝑠 𝑞𝑞 ≜ there is a strong simulation 𝑅𝑅 such that 𝑝𝑝, 𝑞𝑞 ∈ 𝑅𝑅
• If 𝑝𝑝 ≤𝑠𝑠𝑠𝑠𝑠𝑠 𝑞𝑞, then trace (but branching-time) properties of 𝑞𝑞 can be migrated to 𝑝𝑝
• If 𝑝𝑝 ∼𝑏𝑏𝑏𝑏𝑏𝑏 𝑞𝑞, then branching-time (but hyper-) properties of 𝑞𝑞 can be migrated to 𝑝𝑝
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Useful to transfer properties and proofs!



Program Refinement as Generalized Model Checking
• Program refinement verification ⊨ 𝑝𝑝 ≤ 𝑞𝑞 generalizes ordinary model checking 𝑝𝑝 ⊨ 𝜙𝜙

• A specification of 𝒑𝒑 is given as a program 𝒒𝒒 instead of a logical formula 𝜙𝜙
• 𝑞𝑞 can encode the given 𝜙𝜙 (if the programming language is expressive enough)
• 𝑞𝑞 can be a reference implementation (cf. seL4 Project) or

an abstract model represented as a highly non-deterministic program
• This motivates me to investigate entailment checking problems 𝜓𝜓1 ⊨ 𝜓𝜓2 in

a first-order fixpoint logic modulo theories we call 𝜇𝜇CLP [CAV 2017, LICS 2018, POPL 2023]

• I will come back to this point:
relational verification via entailment checking in 𝝁𝝁𝝁𝝁𝝁𝝁𝝁𝝁
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[CAV 2017] Unno et al. Automating Induction for Solving Horn Clauses.
[LICS 2018] Nanjo et al. A Fixpoint Logic and Dependent Effects for Temporal Property Verification.
[POPL 2023] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.



Example Hyperproperties
on Single Program
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Information Flow Confidentiality & Integrity [JSAC 2003]

• Deterministic programs
• Termination-insensitive non-interference ∈ 𝟐𝟐-safety ⊂ Hypersafety :

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓 ≜ ∀ℎ1, ℎ2, 𝑥𝑥,𝑦𝑦1,𝑦𝑦2. 𝑓𝑓 ℎ1, 𝑥𝑥 ⇓ 𝑦𝑦1 ∧ 𝑓𝑓 ℎ2, 𝑥𝑥 ⇓ 𝑦𝑦2 ⟹ 𝑦𝑦1 = 𝑦𝑦2
A well-studied security policy formalizing the absence of information leakage

• Termination-sensitive non-interference:
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓 ≜ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓 ∧ ∀ℎ1, ℎ2, 𝑥𝑥. 𝑓𝑓 ℎ1, 𝑥𝑥 ⇑ ⟹ ¬∃𝑦𝑦. 𝑓𝑓 ℎ2, 𝑥𝑥 ⇓ 𝑦𝑦

• Timing attack resilience

• Non-deterministic / concurrent programs
• Observational determinism: 𝑂𝑂𝑂𝑂 𝑓𝑓 ≜ ∀ℎ1, ℎ2, 𝑥𝑥,𝑦𝑦1, 𝑦𝑦2. 𝑓𝑓 ℎ1, 𝑥𝑥 ⇓ 𝑦𝑦1 ∧ 𝑓𝑓 ℎ2, 𝑥𝑥 ⇓ 𝑦𝑦2 ⟹ 𝑦𝑦1 = 𝑦𝑦2
• Possibilistic non-interference

• TI Generalized NI: 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓 ≜ ∀ℎ1, ℎ2, 𝑥𝑥, 𝑦𝑦. 𝑓𝑓 ℎ1, 𝑥𝑥 ⇓ 𝑦𝑦 ⟹ 𝑓𝑓 ℎ2, 𝑥𝑥 ⇑ ∨ 𝑓𝑓 ℎ2, 𝑥𝑥 ⇓ 𝑦𝑦
• TS Generalized NI: 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓 ≜ ∀ℎ1, ℎ2, 𝑥𝑥,𝑦𝑦. 𝑓𝑓 ℎ1, 𝑥𝑥 ⇓ 𝑦𝑦 ⟹ 𝑓𝑓 ℎ2, 𝑥𝑥 ⇓ 𝑦𝑦

• Bisimulation-based non-interface
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[JSAC 2003] Sabelfeld, Myers. Language-based Information-flow Security.



Availability
• Denial of Service (DoS) attack resilience

• Property that “the average response time over all executions is bounded” is 
relational while “the maximum response time is bounded” is non-relational
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Algorithm Analysis
• Robustness and sensitivity [CACM 2012, ICFP 2010]

• Continuity:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓 ≜ ∀𝑥𝑥1, 𝑥𝑥2.∀𝜖𝜖 > 0.∃𝛿𝛿 > 0.𝑑𝑑 𝑥𝑥1, 𝑥𝑥2 < 𝛿𝛿 ⟹
∀𝑦𝑦1,𝑦𝑦2. 𝑓𝑓 𝑥𝑥1 ⇓ 𝑦𝑦1 ∧ 𝑓𝑓 𝑥𝑥2 ⇓ 𝑦𝑦2 ⟹ 𝑑𝑑 𝑦𝑦1,𝑦𝑦2 < 𝜖𝜖

• Lipschitz Continuity:

𝐿𝐿𝐿𝐿 𝑓𝑓, 𝑐𝑐 ≜ ∀𝑥𝑥1, 𝑥𝑥2,𝑦𝑦1,𝑦𝑦2. 𝑓𝑓 𝑥𝑥1 ⇓ 𝑦𝑦1 ∧ 𝑓𝑓 𝑥𝑥2 ⇓ 𝑦𝑦2 ⟹
𝑑𝑑 𝑦𝑦1,𝑦𝑦2
𝑑𝑑 𝑥𝑥1, 𝑥𝑥2

< 𝑐𝑐
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[CACM 2012] Chaudhuri et al. Continuity and Robustness of Programs.
[ICFP 2010] Reed, Pierce. Distance Makes the Types Grow Stronger.



Specific Use Cases (1/2)
• Regression verification [STVR 2013]

• Check refinement 𝑇𝑇 ≤ 𝑆𝑆 for different versions 𝑇𝑇, 𝑆𝑆 of programs
where 𝑇𝑇 is obtained from 𝑆𝑆 by refactoring, bug fixes, or enhancements

• Goal is to verify the absence of a software regression which is a bug of 𝑇𝑇
introduced by the modifications to 𝑆𝑆

• Translation validation [TACAS 1998]

• Check refinement 𝑇𝑇 ≤ 𝑆𝑆 for the source 𝑆𝑆 and target 𝑇𝑇 programs
obtained by compilation or optimization
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[STVR 2013] Godlin, Strichman. Regression verification: proving the equivalence of similar programs.
[TACAS 1998] Pnueli et al. Translation Validation.



Verification of an implementation of an
abstract data type with algebraic specs.
• Arithmetic operations with:

equivalence, associativity, commutativity,
distributivity, idempotency, monotonicity,
invertibility, symmetry, transitivity, …
(see the right table from [CAV 2017])

• List operations with algebraic specs. like:
append (take xs n) (drop xs n) = xs
Try out a web interface of our relational
verifier from http://lfp.dip.jp/rcaml/
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Specific Use Cases (2/2)

[CAV 2017] Unno et al. Automating Induction for Solving Horn Clauses.

http://lfp.dip.jp/rcaml/


Goal of This Talk
Stimulate the “immature” research field and, hopefully, find research collaborators by

1. discussing the challenges in relational verification,
2. introducing our automated relational verification methods, and
3. highlighting the current limitations as well as future research directions

Disclaimer: This talk will
• mainly deal with fully automated deductive relational verification,
• target functional properties and will not address trace or contextual properties, and
• focus on infinite-state systems that can exhibit effects such as non-termination 

and non-determinism, and we will not cover other effects or finite-state systems
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Outline
1. Introduction
2. Challenges in Relational Verification
3. Automating Relational Verification

1. Self-Composition (or Product Programs) [CAV 2021]

2. Entailment Checking in 𝝁𝝁𝐂𝐂𝐋𝐋𝐏𝐏 [CAV 2017]

4. Current Limitations and Future Directions
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[CAV 2021] Unno et al. Constraint-Based Relational Verification.
[CAV 2017] Unno et al. Automating Induction for Solving Horn Clauses.



Outline
1. Introduction
2. Challenges in Relational Verification
3. Automating Relational Verification

1. Self-Composition (or Product Programs) [CAV 2021]

2. Entailment Checking in 𝝁𝝁𝐂𝐂𝐋𝐋𝐏𝐏 [CAV 2017]

4. Current Limitations and Future Directions
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[CAV 2021] Unno et al. Constraint-Based Relational Verification.
[CAV 2017] Unno et al. Automating Induction for Solving Horn Clauses.



Challenges in Relational Verification
• Although each program execution is independent (except the input correlation

ensured by the precondition), proving relational properties is challenging
without reasoning about the correlation of intermediate execution states

• Analyzing each execution separately does not work well as it necessitates
an exact summarization of the input-output relation for each execution

• Thus, an automated verifier is required to simultaneously synthesize
1. a correlation of intermediate states, namely a relational invariant and
2. a scheduler (or alignment) that preserves it!
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Comparison with Concurrent Programs Verification
• Executions of programs that run concurrently can be highly dependent as states can be 

synchronized with locks or semaphores, and data races can occur due to shared memory
• Concurrent program is checked to satisfy the specification

for all possible interleaving executions under a demonic scheduler

• Multiple executions in relational verification are independent
• It is sufficient to prove that the specification holds in a certain interleaving execution, 

chosen by an angelic scheduler
• However, to reason about the correlation between states at the time of output,

it is still necessary to effectively synchronize at other intermediate points as well
• Therefore, the complexity of the verification is more significantly influenced by the 

differences between the programs than by the complexity of each program individually
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𝑧𝑧1 ≠ 𝑧𝑧2

A relational invariant preserved by the above alignment:
𝑦𝑦1 = 𝑦𝑦2 ∧ 𝑝𝑝𝑐𝑐1 = 𝑏𝑏 ∧ 𝑝𝑝𝑐𝑐2 = 𝑓𝑓 ∧ 𝑥𝑥1% 2 = 0 ⇒ 𝑧𝑧1 = 𝑧𝑧2 ∧ 𝑝𝑝𝑐𝑐1 = 𝑏𝑏 ∧ 𝑝𝑝𝑐𝑐2 = 𝑓𝑓 ∧ 𝑥𝑥1% 2 = 1 ⇒ 𝑧𝑧1 + 𝑦𝑦1 = 𝑧𝑧2

stuttering execution when 𝑥𝑥1%2 = 1
instead of lock-step one recovers 𝑧𝑧1 = 𝑧𝑧2

Example: Program Equivalence

mult1 𝑝𝑝𝑐𝑐1, 𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1 : 𝑎𝑎, 3,4, ? → 𝑏𝑏, 3,4,0 → 𝑏𝑏, 2,4,4 → 𝑏𝑏, 1,4,8 → 𝑏𝑏, 0,4,12 → 𝑐𝑐, 0,4,12

mult2 𝑝𝑝𝑐𝑐2, 𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2 : 𝑑𝑑, 3,4, ? → 𝑒𝑒, 3,4,0 → 𝑓𝑓, 2,4,4 → 𝑓𝑓, 0,4,12 → 𝑔𝑔, 0,4,12
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int mult1(int x, int y) {
a: int z=0;
b: while(x>0) { x=x-1; z=z+y }
c: return z;
}

int mult2(int x, int y) {
d: int z=0;
e: if(x % 2 == 1) { x=x-1; z=z+y }
f: while(x>0) { x=x-2; z=z+2*y }
g: return z;
}

Let’s align the executions to preserve 𝑧𝑧1 = 𝑧𝑧2 as much as possible

𝑧𝑧1 = 𝑧𝑧2 𝑧𝑧1 = 𝑧𝑧2 𝑧𝑧1 = 𝑧𝑧2 𝑧𝑧1 = 𝑧𝑧2

But how to infer such predicate 𝑥𝑥1%2 = 1? 



Example: Termination-Insensitive Non-Interference 
(TINI) ∈ 2-safety (1/2)
• doubleSquare ℎ, 𝑥𝑥 [CAV 2019] computes 2 ⋅ 𝑥𝑥2 in two different ways depending on 

the high security input ℎ
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doubleSquare(bool h, int x) {
int z, y=0;
if(h) { z=2*x } else { z=x }
while(z>0) { z--; y=y+x }
if(!h) { y=2*y }
return y;

}

Can an attacker infer the value of ℎ by 
observing the low security input 𝑥𝑥 and the 
return value 𝑦𝑦?

No! TINI(doubleSquare) holds:
∀𝒉𝒉𝟏𝟏,𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏,𝒉𝒉𝟐𝟐,𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐.
doubleSquare 𝒉𝒉𝟏𝟏,𝒙𝒙𝟏𝟏 ⇓ 𝒚𝒚𝟏𝟏 ∧
doubleSquare 𝒉𝒉𝟐𝟐,𝒙𝒙𝟐𝟐 ⇓ 𝒚𝒚𝟐𝟐 ∧
𝒙𝒙𝟏𝟏 = 𝒙𝒙𝟐𝟐 ⇒ 𝒚𝒚𝟏𝟏 = 𝒚𝒚𝟐𝟐

[CAV 2019] Shemer et al. Property Directed Self Composition.



Example: Termination-Insensitive Non-Interference 
(TINI) ∈ 2-safety (2/2)
• The parallel executions of 2 copies of the program under the partial lock-step 

scheduler makes a safe relational invariant “complex”
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doubleSquare(bool h, int x) {
int z, y=0;

ℓ1: if(h) {z=2*x} else {z=x}
ℓ2: while(z>0) { z--; y=y+x }
ℓ3: if(!h) { y=2*y }

return y; }

Executions ℎ1, 𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1 and ℎ2, 𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2 with the partial lock-step scheduler:
⊤, 2,0, ? → ⊤, 2,0,4 → ⊤, 2,2,3 → ⊤, 2,4,2 → ⊤, 2,6,1 → ⊤, 2,8,0 → ⊤, 2,8,0

⊥, 2,0, ? → ⊥, 2,0,2 → ⊥, 2,2,1 → ⊥, 2,4,0 → ⊥, 2,8,0
𝑥𝑥1 = 𝑥𝑥2 How can we prove 

that 𝑦𝑦1 = 𝑦𝑦2?
𝑦𝑦1 = 𝑦𝑦2 𝑦𝑦1 = 𝑦𝑦2 𝑦𝑦1 = 𝑦𝑦2

Copy2 has exited the loop. Partial lock-step scheduler 
waits for Copy1 to exit the loop to synchronize

Any “simple” but safe and ind. relational invariant 
preserved by the partial lock-step scheduler?
↳ No!  Safe ind. relational invariant for the 
scheduler is not expressible in LIA [CAV 2019]

𝑦𝑦1 ≠ 𝑦𝑦2 𝑦𝑦1 ≠ 𝑦𝑦2

ℓ1

ℓ1

ℓ2

ℓ2

ℓ2

ℓ2

ℓ2

ℓ2

ℓ2

ℓ3

ℓ2 ℓ3



Example: Co-Termination ∈ Hyperliveness (1/2)

21January 16, 2024 VMCAI'24, London, UK

prog1(int x, int y) { while(x>0) { x=x–y; } }
prog2(int x, int y) { while(x>0) { x=x–2*y; } }

Do prog1 𝑥𝑥1,𝑦𝑦1 and prog2 𝑥𝑥2,𝑦𝑦2 agree on termination
under the precondition 𝑥𝑥1 = 𝑥𝑥2 ∧ 𝑦𝑦1 = 𝑦𝑦2?

Yes! (Symmetric) co-termination holds:
∀𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏,𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐. 𝒙𝒙𝟏𝟏 = 𝒙𝒙𝟐𝟐 ∧ 𝒚𝒚𝟏𝟏 = 𝒚𝒚𝟐𝟐 ⇒

∃𝒛𝒛𝟏𝟏.prog1 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 ⇓ 𝒛𝒛𝟏𝟏
⇒ ¬ prog2 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 ⇑ ∧ ∃𝒛𝒛𝟐𝟐.prog2 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 ⇓ 𝒛𝒛𝟐𝟐

⇒ ¬ prog1 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 ⇑

One symmetric co-termination problem boils down to 
two asymmetric co-termination problems



Example: Co-Termination ∈ Hyperliveness (2/2)
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Executions 𝑥𝑥1,𝑦𝑦1 and 𝑥𝑥2,𝑦𝑦2 with the partial lock-step scheduler:
4,1 → 3,1 → 2,1 → 1,1 → 0,1

4,1 → 2,1 → 0,1
𝑥𝑥1 = 𝑥𝑥2
∧ 𝑦𝑦1 = 𝑦𝑦2 prog2

terminated

prog1(int x, int y) { while(x>0) { x=x–y; } }
prog2(int x, int y) { while(x>0) { x=x–2*y; } }

How can we prove that this residual 
execution always terminates?



Example: (TI-/TS-)GNI ∈ ∀∃hyperproperties
• gniEx ℎ, 𝑙𝑙 non-deterministically returns a value 𝑥𝑥 ≥ 𝑙𝑙 in two different ways 

depending on the high security input ℎ
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gniEx(bool high, int low) {
if(high) {

int x = nondet_int();
if(x >= low) { return x }
else { while(true) {} }

} else {
int x = low;
while(nondet_bool()){x++}
return x;

}
}

Can an attacker infer the value of ℎ by 
observing the low security input 𝑙𝑙 and 
the return value 𝑥𝑥?

No! TIGNI(gniEx) holds:
∀𝒉𝒉𝟏𝟏,𝒉𝒉𝟐𝟐, 𝒍𝒍,𝒙𝒙𝟏𝟏. gniEx 𝒉𝒉𝟏𝟏, 𝒍𝒍 ⇓ 𝒙𝒙𝟏𝟏 ⇒
gniEx 𝒉𝒉𝟐𝟐, 𝒍𝒍 ⇑ ∨
∃𝒙𝒙𝟐𝟐. gniEx 𝒉𝒉𝟐𝟐, 𝒍𝒍 ⇓ 𝒙𝒙𝟐𝟐 ∧ 𝒙𝒙𝟏𝟏 = 𝒙𝒙𝟐𝟐

Demonic (∀) choice

TSGNI(gniEx) also holds:
∀𝒉𝒉𝟏𝟏,𝒉𝒉𝟐𝟐, 𝒍𝒍,𝒙𝒙𝟏𝟏. gniEx 𝒉𝒉𝟏𝟏, 𝒍𝒍 ⇓ 𝒙𝒙𝟏𝟏 ⇒
∃𝒙𝒙𝟐𝟐. gniEx 𝒉𝒉𝟐𝟐, 𝒍𝒍 ⇓ 𝒙𝒙𝟐𝟐 ∧ 𝒙𝒙𝟏𝟏 = 𝒙𝒙𝟐𝟐

Angelic (∃) choice

But how to solve such games between ∀ and ∃?



Other Challenging Examples in the Literature
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[PLDI 2019] Churchill et al. Semantic program alignment for equivalence checking.
[LFCS 2013] Barthe et al. Beyond 2-Safety: Asymmetric Product Programs for Relational Program Verification
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1. Introduction
2. Challenges in Relational Verification
3. Automating Relational Verification

1. Self-Composition (or Product Programs) [CAV 2021]

2. Entailment Checking in 𝝁𝝁𝐂𝐂𝐋𝐋𝐏𝐏 [CAV 2017]

4. Current Limitations and Future Directions
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[CAV 2021] Unno et al. Constraint-Based Relational Verification.
[CAV 2017] Unno et al. Automating Induction for Solving Horn Clauses.



Self-Composition
(or Product Programs)
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Self-Composition (or Product Programs)
• Relational verification amounts to synthesis of relational invariants and schedulers 
• Self-composition refers to a range of techniques aimed at synthesizing alignments 

represented symbolically as programs, automata, logical constraints, and games
• Syntactic: [CSFW 2004, SAS 2005, PLAS 2006, FM 2011, LFCS 2013, SAS 2016, LPAR 2017]

• Semantic: [CAV 2019a, CAV 2019b, PLDI 2019, CAV 2021, CAV 2022]
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[CSFW 2004] Barthe et al. Secure Information Flow by Self-Composition.
[SAS 2005] Terauchi, Aiken. Secure Information Flow as a Safety Problem.
[PLAS 2006] Unno et al. Combining Type-Based Analysis and Model Checking for Finding Counterexamples against Non-Interference.
[FM 2011] Barthe et al. Relational Verification Using Product Programs.
[LFCS 2013] Barthe et al. Beyond 2-Safety: Asymmetric Product Programs for Relational Program Verification
[SAS 2016] Angelis et al. Relational Verification Through Horn Clause Transformation.
[LPAR 2017] Mordvinov, Fedyukovich. Synchronizing Constrained Horn Clauses.
[CAV 2019a] Farzan, Vandika. Automated Hypersafety Verification.
[CAV 2019b] Shemer et al. Property Directed Self Composition.
[PLDI 2019] Churchill et al. Semantic program alignment for equivalence checking.
[CAV 2021] Unno et al. Constraint-Based Relational Verification.
[CAV 2022] Beutner, Finkbeiner. Software Verification of Hyperproperties Beyond k-Safety.



Our Approach to Semantic Self-Composition [CAV 2021]

• Soundly and completely encode the simultaneous synthesis problem of
relational invariants and fair & semantic schedulers needed for relational 
verification (𝑘𝑘-safety, co-termination, and GNI) as
a constraint solving problem of the class, we call pfwCSP that extends CHCs with

1. head-disjunction (used to express scheduler fairness constraints),
2. well-foundedness constraints (used for synthesizing co-termination witnesses),
3. functionality constraints (used for synthesizing winning strategies for GNI)

• Generalize semantic self-composition for 𝑘𝑘-safety [CAV 2019] to GNI and co-termination
• For solving pfwCSP, provide a constraint solver PCSat based on

the template-based CEGIS and an unsat-core based template refinement
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[CAV 2019] Shemer et al. Property Directed Self Composition.
[CAV 2021] Unno et al. Constraint-Based Relational Verification.



Semantic Self-Composition for TI-NI
• Find a semantic scheduler 𝑆𝑆𝑆𝑆ℎ and a safe invariant of the parallel executions of 2 

copies of the program under 𝑆𝑆𝑐𝑐ℎ
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Can choose which program to execute depending on the states

doubleSquare(bool h,int x) {
int z, y=0;

ℓ1: if(h) {z=2*x} else {z=x}
ℓ2: while(z>0) { z--; y=y+x }
ℓ3: if(!h) { y=2*y }

return y; }

Found invariant expressible in LIA:
ℎ1 ∧ ¬ℎ2
∧ 𝑥𝑥1 = 𝑥𝑥2

∧ 𝑦𝑦1 = 2 ⋅ 𝑦𝑦2 ∧ 𝑧𝑧1 = 2 ⋅ 𝑧𝑧2 ∨ ⋯∧
𝑦𝑦1 = 2 ⋅ 𝑦𝑦2 − 𝑥𝑥2 ∧ 𝑧𝑧1 = 2 ⋅ 𝑧𝑧2 + 1

∨ ℎ1 ∧ ℎ2 ∧ ⋯∨ ¬ℎ1 ∧ ℎ2 ∧ ⋯∨ ¬ℎ1 ∧ ¬ℎ2 ∧ ⋯

Found scheduler 𝑆𝑆𝑆𝑆ℎ dictates:
both copies move if 𝑧𝑧1 = 2 ⋅ 𝑧𝑧2,
1st copy moves if 𝑧𝑧1 = 2 ⋅ 𝑧𝑧2 + 1

Executions ℎ1, 𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1 and ℎ2, 𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2 under 𝑆𝑆𝑆𝑆ℎ:
⊤, 2,0, ? → ⊤, 2,0,4 → ⊤, 2,2,3 → ⊤, 2,4,2 → ⊤, 2,6,1 → ⊤, 2,8,0 → ⊤, 2,8,0

⊥, 2,0, ? → ⊥, 2,0,2 → ⊥, 2,2,1 → ⊥, 2,4,0 → ⊥, 2,8,0
𝑦𝑦1 = 𝑦𝑦2

𝑦𝑦1 = 𝑦𝑦2
𝑦𝑦1 = 2 ⋅ 𝑦𝑦2

𝑦𝑦1 = 2 ⋅ 𝑦𝑦2 − 𝑥𝑥2 𝑦𝑦1 = 2 ⋅ 𝑦𝑦2 𝑦𝑦1 = 2 ⋅ 𝑦𝑦2 − 𝑥𝑥2
𝑦𝑦1 = 2 ⋅ 𝑦𝑦2

ℓ1

ℓ1

ℓ2

ℓ2

ℓ2

ℓ2

ℓ2

ℓ2

ℓ2

ℓ3

ℓ2 ℓ3



Input:

doubleSquare
(bool h, int x) {

int z, y=0;

if(h) { z=2*x }
else { z=x }

while(z>0)
{ z--; y=y+x }

if(!h) { y=2*y }

return y;

}
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Output 𝓒𝓒 (with 𝒉𝒉𝟏𝟏 = ⊤ ∧ 𝒉𝒉𝟐𝟐 = ⊥ fixed):

• 𝐼𝐼 𝑉𝑉1,𝑉𝑉2 ⟸ 𝑥𝑥1 = 𝑥𝑥2 ∧ 𝑦𝑦1 = 𝑦𝑦2 = 0
∧ 𝑧𝑧1 = 2 ⋅ 𝑥𝑥1 ∧ 𝑧𝑧2 = 𝑥𝑥2

,

• 𝐼𝐼 𝑥𝑥1,𝑦𝑦1′ , 𝑧𝑧1′ ,𝑉𝑉2 ⟸ 𝐼𝐼 𝑉𝑉1,𝑉𝑉2 ∧ 𝑆𝑆𝑆𝑆ℎ1 𝑉𝑉1,𝑉𝑉2

∧ 𝑧𝑧1 > 0 ∧ 𝑧𝑧1′ = 𝑧𝑧1 − 1 ∧ 𝑦𝑦1′ = 𝑦𝑦1 + 𝑥𝑥1 ∨
𝑧𝑧1 ≤ 0 ∧ 𝑧𝑧1′ = 𝑧𝑧1 ∧ 𝑦𝑦1′ = 𝑦𝑦1

,…,

• 𝑦𝑦1 = 2 ⋅ 𝑦𝑦2 ⟸ 𝐼𝐼 𝑉𝑉1,𝑉𝑉2 ∧ 𝑧𝑧1 ≤ 0 ∧ 𝑧𝑧2 ≤ 0,
• 𝑆𝑆𝑆𝑆ℎ1 𝑉𝑉1,𝑉𝑉2 ∨ 𝑆𝑆𝑆𝑆ℎ2 𝑉𝑉1,𝑉𝑉2 ∨ 𝑆𝑆𝑆𝑆ℎ1,2 𝑉𝑉1,𝑉𝑉2

⟸ 𝐼𝐼 𝑉𝑉1,𝑉𝑉2 ∧ 𝑧𝑧1 > 0 ∨ 𝑧𝑧2 > 0 ,
• 𝑧𝑧1 > 0 ⟸ 𝐼𝐼 𝑉𝑉1,𝑉𝑉2 ∧ 𝑆𝑆𝑆𝑆ℎ1 𝑉𝑉1,𝑉𝑉2 ∧ 𝑧𝑧2 > 0,
• 𝑧𝑧2 > 0 ⟸ 𝐼𝐼 𝑉𝑉1,𝑉𝑉2 ∧ 𝑆𝑆𝑆𝑆ℎ2 𝑉𝑉1,𝑉𝑉2 ∧ 𝑧𝑧1 > 0,

where 𝑉𝑉1 = 𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1 and 𝑉𝑉2 = 𝑥𝑥2, 𝑦𝑦2, 𝑧𝑧2

Prog. & Spec. pfwCSP SAT or UNSAT

Constraint Generation Constraint Solving

represents a relational invariant
preserved by a semantic scheduler

30

represent the semantic 
scheduler: if 𝑆𝑆𝑆𝑆ℎ1 holds, 

1st copy is scheduled

non-Horn clause that 
goes beyond CHCs !

the relational invariant is 
inductive and implies TI-NI

the scheduler is fair: at least one 
unfinished program must be 

scheduled if there is any
(necessary for the soundness)



Semantic Self-Composition for Asymmetric Co-
Termination
• Find a fair semantic scheduler 𝑆𝑆𝑆𝑆𝑆, a relational invariant, and a well-founded 

relation under 𝑆𝑆𝑐𝑐𝑐
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Executions 𝑥𝑥1,𝑦𝑦1 and 𝑥𝑥2,𝑦𝑦2 with 𝑆𝑆𝑆𝑆ℎ :
4,1 → 3,1 → 2,1 → 1,1 → 0,1

4,1 → 2,1 → 0,1
𝑥𝑥1 = 𝑥𝑥2
∧ 𝑦𝑦1 = 𝑦𝑦2

prog1
terminated

prog2
terminated

prog1(int x, int y) { while(x>0) { x=x–y; } }
prog2(int x, int y) { while(x>0) { x=x–2*y; } }

Found relational invariant implies:
𝑥𝑥1 > 0 ∧ 𝑥𝑥2 ≤ 0 ⇒ 𝑦𝑦1 ≥ 1

Found scheduler 𝑆𝑆𝑆𝑆ℎ dictates:
both programs move if 𝑥𝑥1 > 0 ∧ 𝑥𝑥2 > 0,

prog1 moves if 𝑥𝑥1 > 0 ∧ 𝑥𝑥2 ≤ 0

Found well-founded relation says:
if 𝑥𝑥1 > 0 ∧ 𝑥𝑥2 ≤ 0, then prog1 repeatedly decreases 𝒙𝒙𝟏𝟏 
but 𝒙𝒙𝟏𝟏 is lower bounded by 0



Input:

prog1(x, y) {
while(x>0)
{ x=x–y }

}

prog2(x, y) {
while(x>0)
{ x=x-2*y }

}
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Output 𝓒𝓒:
• 𝐼𝐼 0, 𝑏𝑏,𝑉𝑉 ⟸ 𝐹𝐹𝜆𝜆 𝑉𝑉, 𝑏𝑏 ∧ 𝑥𝑥1 = 𝑥𝑥2 ∧ 𝑦𝑦1 = 𝑦𝑦2,
• 𝐼𝐼 𝑑𝑑′, 𝑏𝑏, 𝑥𝑥1′ , 𝑦𝑦1, 𝑥𝑥2,𝑦𝑦2 ⟸ 𝐼𝐼 𝑑𝑑, 𝑏𝑏,𝑉𝑉 ∧ 𝑆𝑆𝑆𝑆ℎ1 𝑉𝑉 ∧

𝑥𝑥1 > 0 ∧ 𝑥𝑥1′ = 𝑥𝑥1 − 𝑦𝑦1 ∨ 𝑥𝑥1 ≤ 0 ∧ 𝑥𝑥1′ = 𝑥𝑥1 ∧
𝑥𝑥1 > 0 ∧ 𝑥𝑥2 > 0 ⇒ 𝑑𝑑′ = 𝑑𝑑 + 1 ,…,

• 𝑅𝑅⇓ 𝑉𝑉1, 𝑥𝑥1 − 𝑦𝑦1,𝑦𝑦1 ⟸ 𝐼𝐼 𝑑𝑑, 𝑏𝑏,𝑉𝑉1,𝑉𝑉2 ∧ 𝑥𝑥1 > 0 ∧ 𝑥𝑥2 ≤ 0,
• 𝑆𝑆𝑆𝑆ℎ1 𝑑𝑑, 𝑏𝑏,𝑉𝑉 ∨ 𝑆𝑆𝑆𝑆ℎ2 𝑑𝑑, 𝑏𝑏,𝑉𝑉 ∨ 𝑆𝑆𝑆𝑆ℎ1,2 𝑑𝑑, 𝑏𝑏,𝑉𝑉

⟸ 𝐼𝐼 𝑑𝑑, 𝑏𝑏,𝑉𝑉 ∧ 𝑥𝑥1 > 0 ∨ 𝑥𝑥2 > 0 ,
• 𝑥𝑥1 > 0 ⟸ 𝐼𝐼 𝑑𝑑, 𝑏𝑏,𝑉𝑉 ∧ 𝑆𝑆𝑆𝑆ℎ1 𝑑𝑑, 𝑏𝑏,𝑉𝑉 ∧ 𝑥𝑥2 > 0,
• 𝑥𝑥2 > 0 ⟸ 𝐼𝐼 𝑑𝑑, 𝑏𝑏,𝑉𝑉 ∧ 𝑆𝑆𝑆𝑆ℎ2 𝑑𝑑, 𝑏𝑏,𝑉𝑉 ∧ 𝑥𝑥1 > 0,
• 𝑑𝑑 ∈ −𝑏𝑏, 𝑏𝑏 ∧ 𝑏𝑏 ≥ 0 ⟸ 𝐼𝐼 𝑑𝑑, 𝑏𝑏,𝑉𝑉1,𝑉𝑉2 ∧ 𝑥𝑥1 > 0 ∧ 𝑥𝑥2 > 0

where 𝑉𝑉 = 𝑥𝑥1,𝑦𝑦1,𝑥𝑥2,𝑦𝑦2

Prog. & Spec. pfwCSP SAT or UNSAT

Constraint Generation Constraint Solving

32

represents a relational invariant
preserved by a semantic scheduler

represents a well-
founded relation 

witnessing the 
termination of prog1

relative to the 
termination of prog2

the relational invariant is 
inductive and, along with the 

well-founded relation, implies 
Co-Termination

the scheduler is fair: all 
unfinished programs must 
be eventually scheduled

(necessary for soundness)

the difference 𝑑𝑑 between the numbers of steps 
taken by the two is within the bound 𝑏𝑏

represents a total function
used to select a bound 𝑏𝑏 for 

each state 𝑉𝑉



Semantic Self-Composition for (TI-/TS-)GNI
• Find a fair semantic scheduler, a relational invariant, a well-founded relation, 

and strategies for the non-deterministic choices of the angelic side
• Augment the encodings for TI-NI and Co-Term with

• predicate variables that represent the strategies:
total functions from states to choices of the angelic side

• prophecy variables that represent the final outputs of the demonic side
(necessary for the completeness)

• Please refer to [CAV 2021] for details and examples
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[CAV 2021] Unno et al. Constraint-Based Relational Verification.



Implementation and Evaluation
• Evaluated our solver PCSat for solving pfwCSP

on 20 relational verification problems:
• 15 solved fully automatically, 5 required small hints
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The CoAR Verification & Synthesis Tool Chain 
(https://github.com/hiroshi-unno/coar)
• Intermediate languages: (cf. CHCs, SyGuS, SemGuS, …)

• pfwnCSP: predicate Constraint Satisfaction Problem with functionality, well-foundedness, 
& non-emptiness constrains [AAAI20, CAV21dt, CAV21rel, POPL23opt…]

• 𝝁𝝁CLP: Constraint Logic Program with arbitrarily nested inductive & co-inductive 
predicates (≈ fixpoint logic modulo theories) [POPL23mod, …]

• Backends:
• PCSat : pfwnCSP constraint solver/optimizer [AAAI20, CAV21dt, CAV21rel, POPL23opt, …]

• MuVal : 𝝁𝝁CLP solver based on pfwnCSP solving [CAV21dt, POPL23mod, …]

• MuCyc : 𝝁𝝁CLP solver based on cyclic-proof search [CAV17, POPL22, …]

• Frontends:
• Constraint generator for C [SAS19]

• Constraint generator for LTS [CAV21dt, …] (LLVM IR to LTS translator available)
• RCaml : constraint generator for OCaml [FLOPS08, PPDP09, POPL13, SAS15, POPL18, LICS18, CAV18, POPL23aem, POPL24, …]
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https://github.com/hiroshi-unno/coar


Discussion
• Semantic self-composition has a high theoretical potential and promising 

experimental results have actually been obtained
• Current limitations

• Relational verifiers based on semantic self-composition exhibit increased search 
costs and reduced efficiency as the capability of representable schedulers grows

• Future directions
• Leverage various existing syntactic and semantic abstraction, search pruning, and 

symmetry breaking techniques to accelerate the search
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Entailment Checking in 𝝁𝝁𝐂𝐂𝐋𝐋𝐏𝐏
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Program Refinement as Generalized Model Checking
• Program refinement verification ⊨ 𝑝𝑝 ≤ 𝑞𝑞 generalizes ordinary model checking 𝑝𝑝 ⊨ 𝜙𝜙

• A specification of 𝒑𝒑 is given as a program 𝒒𝒒 instead of a logical formula 𝜙𝜙
• 𝑞𝑞 can encode the given 𝜙𝜙 (if the programming language is expressive enough)
• 𝑞𝑞 can be a reference implementation (cf. seL4 Project) or

an abstract model represented as a highly non-deterministic program
• This motivates me to investigate entailment checking problems 𝜓𝜓1 ⊨ 𝜓𝜓2 in

a first-order fixpoint logic modulo theories we call 𝜇𝜇CLP [CAV 2017, LICS 2018, POPL 2023]

• Relational verification boils down to entailment checking in 𝝁𝝁𝝁𝝁𝝁𝝁𝝁𝝁
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[CAV 2017] Unno et al. Automating Induction for Solving Horn Clauses.
[LICS 2018] Nanjo et al. A Fixpoint Logic and Dependent Effects for Temporal Property Verification.
[POPL 2023] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.



Example: Functional Program & Relational Spec.
(* recursive function to compute “x × y” *)
let rec mult x y =

if y = 0 then 0 else x + mult x (y - 1)

(* tail recursive function to compute “x × y + a” *)
let rec mult_acc x y a =

if y = 0 then a else mult_acc x (y - 1) (a + x)

(* functional equivalence of mult and mult_acc *)
let main x y a = assert (mult x y + a = mult_acc x y a)
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CHCs Constraint Generation
based on Dependent Refinement Types [PPDP 2009]
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let rec mult x y =
if y = 0 then 0
else x + mult x (y - 1)

let rec mult_acc x y a =
if y = 0 then a
else mult_acc x (y - 1) (a + x)

let main x y a =
assert (mult x y + a

= mult_acc x y a)

[PPDP 2009] Unno, Kobayashi. 
Dependent Type Inference 
with Interpolants.



CHC Solving via Entailment Checking in 𝝁𝝁CLP
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The CHCs on the right is satisfiable if and only if
the following entailment holds in 𝝁𝝁𝐂𝐂𝐂𝐂𝐂𝐂

𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ,𝑄𝑄 𝑥𝑥,𝑦𝑦,𝑎𝑎, 𝑠𝑠2 ⊨ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

where

𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑧𝑧 =𝜇𝜇
𝑦𝑦 = 0 ∨

𝑦𝑦 ≠ 0 ∧ 𝑃𝑃 𝑥𝑥,𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑧𝑧 = 𝑥𝑥 + 𝑟𝑟

𝑄𝑄 𝑥𝑥,𝑦𝑦,𝑎𝑎, 𝑟𝑟 =𝜇𝜇
𝑦𝑦 = 0 ∧ 𝑟𝑟 = 𝑎𝑎 ∨

𝑦𝑦 ≠ 0 ∧ 𝑄𝑄 𝑥𝑥,𝑦𝑦 − 1,𝑎𝑎 + 𝑥𝑥, 𝑟𝑟



𝝁𝝁CLP: An Extension of CLP with Quantifiers and 
Arbitrarily-Nested (Co-)Inductive Predicates
• Can be seen as a first-order fixpoint logic modulo background theories 𝑇𝑇
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(formulas) 𝜙𝜙 ∷= ⊥ ⊤ 𝐴𝐴 𝑡𝑡 ¬𝜙𝜙 𝜙𝜙1 ∧ 𝜙𝜙2 | 𝜙𝜙1 ∨ 𝜙𝜙2 ∀𝑥𝑥.𝜙𝜙 ∃𝑥𝑥.𝜙𝜙 | 𝑝𝑝(𝑡𝑡)
(terms) 𝑡𝑡 ∷= 𝑥𝑥 | 𝑓𝑓 𝑡𝑡 (predicates) 𝑝𝑝 ∷= 𝑋𝑋 𝝁𝝁𝝁𝝁.𝝀𝝀𝒙𝒙.𝝓𝝓 𝝂𝝂𝝂𝝂.𝝀𝝀𝒙𝒙.𝝓𝝓

• 𝐴𝐴 ranges over predicate symbols and 𝑓𝑓 ranges over function symbols in 𝑇𝑇,
• 𝑥𝑥 ranges over term variables and 𝑋𝑋 ranges over predicate variables,
• Predicates occur only positively in 𝝁𝝁𝝁𝝁.𝝀𝝀𝒙𝒙.𝝓𝝓 and 𝝂𝝂𝝂𝝂.𝝀𝝀𝒙𝒙.𝝓𝝓 for monotonicity
• Least fixpoints 𝝁𝝁𝝁𝝁.𝝀𝝀𝒙𝒙.𝝓𝝓 represent inductive predicates, and

greatest fixpoints 𝝂𝝂𝝂𝝂.𝝀𝝀𝒙𝒙.𝝓𝝓 represent co-inductive predicates
• We also use equational form: 𝑋𝑋 𝑥⃗𝑥 =𝜇𝜇 𝜙𝜙 and 𝑋𝑋 𝑥⃗𝑥 =𝜈𝜈 𝜙𝜙

• Examples (integer arithmetic as 𝑇𝑇):
 𝜇𝜇𝜇𝜇. 𝜆𝜆𝑥𝑥. 𝑥𝑥 = 0 ∨ 𝑋𝑋 𝑥𝑥 − 1 𝑥𝑥
 𝜈𝜈𝜈𝜈. 𝜆𝜆𝜆𝜆. 𝑥𝑥 ≥ 0 ∧ 𝑋𝑋 𝑥𝑥 + 1 𝑥𝑥

⇔ 𝑥𝑥 = 0 ∨ 𝑥𝑥 = 1 ∨ 𝑥𝑥 = 2 ∨ ⋯⇔ ∃𝑧𝑧 ≥ 0. 𝑥𝑥 = 𝑧𝑧
⇔ 𝑥𝑥 ≥ 0 ∧ 𝑥𝑥 + 1 ≥ 0 ∧ 𝑥𝑥 + 2 ≥ 0 ∧ ⋯⇔ ∀𝑧𝑧 ≥ 0. 𝑥𝑥 + 𝑧𝑧 ≥ 0



Entailment Checking via Inductive Theorem Proving
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𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧ 𝑄𝑄 𝑥𝑥,𝑦𝑦,𝑎𝑎, 𝑠𝑠2 ⊨ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

Prove this by 
induction on 
derivation of 
𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1

𝑃𝑃 𝑥𝑥, 0,0 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑥𝑥 + 𝑟𝑟 ⇐ 𝑃𝑃 𝑥𝑥, 𝑦𝑦 − 1, 𝑟𝑟 ∧ 𝑦𝑦 ≠ 0
𝑄𝑄 𝑥𝑥, 0, 𝑎𝑎, 𝑎𝑎 𝑄𝑄 𝑥𝑥,𝑦𝑦, 𝑎𝑎, 𝑟𝑟 ⇐ 𝑄𝑄 𝑥𝑥,𝑦𝑦 − 1, 𝑎𝑎 + 𝑥𝑥, 𝑟𝑟 ∧ 𝑦𝑦 ≠ 0
𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2 ⇐ 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧ 𝑄𝑄 𝑥𝑥, 𝑦𝑦, 𝑎𝑎, 𝑠𝑠2



Principle of Induction on Derivation
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∀𝐷𝐷. 𝜓𝜓 𝐷𝐷 if and only if
∀𝐷𝐷. ∀𝐷𝐷′.𝐷𝐷′ ≺ 𝐷𝐷 ⇒ 𝜓𝜓 𝐷𝐷′ ⇒ 𝜓𝜓 𝐷𝐷

where 𝐷𝐷′ ≺ 𝐷𝐷 represents that
𝐷𝐷′ is a strict sub-derivation of 𝐷𝐷

𝐷𝐷 =

𝐷𝐷1
𝐽𝐽3 𝐷𝐷2
𝐽𝐽2 𝐷𝐷3

𝐷𝐷4
𝐽𝐽4

𝐽𝐽1

Assume 𝜓𝜓 𝐷𝐷1 ,𝜓𝜓 𝐷𝐷2 ,
𝜓𝜓 𝐷𝐷3 ,𝜓𝜓 𝐷𝐷4 ,

𝜓𝜓
⋮
𝐽𝐽2

, 𝜓𝜓
⋮
𝐽𝐽3

,𝜓𝜓
⋮
𝐽𝐽4

and prove 𝜓𝜓 𝐷𝐷
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CHC Solving:

Inductive Theorem Proving:
∅;𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ,𝑄𝑄 𝑥𝑥,𝑦𝑦,𝑎𝑎, 𝑠𝑠2 ⊢ 𝑠𝑠1 + 𝑎𝑎 = 𝑠𝑠2

Induction hypotheses and lemmas

Premises

Judgment



Unfold
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Induct

Add an induction hypothesis:

𝛾𝛾 = ∀𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ , 𝑎𝑎′, 𝑠𝑠2′ .𝐷𝐷 𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ≺ 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧
𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ∧ 𝑄𝑄 𝑥𝑥′,𝑦𝑦′,𝑎𝑎′, 𝑠𝑠2′ ⇒ 𝑠𝑠1′ + 𝑎𝑎′ = 𝑠𝑠2′

Case analysis on the last rule used

Guard to avoid unsound application
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Unfold

Case analysis on the last rule used
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Valid

Validity checking
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Valid
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Unfold Case analysis on the last rule used
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Valid
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IndHyp Apply induction hypothesis

𝛾𝛾 = ∀𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ,𝑎𝑎′, 𝑠𝑠2′ .𝐷𝐷 𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ≺ 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧
𝑃𝑃 𝑥𝑥′,𝑦𝑦′, 𝑠𝑠1′ ∧ 𝑄𝑄 𝑥𝑥′,𝑦𝑦′,𝑎𝑎′, 𝑠𝑠2′ ⇒ 𝑠𝑠1′ + 𝑎𝑎′ = 𝑠𝑠2′

𝜎𝜎 𝛾𝛾 = 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦 − 1, 𝑠𝑠1 − 𝑥𝑥 ≺ 𝐷𝐷 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑠𝑠1 ∧ 𝑃𝑃 𝑥𝑥,𝑦𝑦 − 1, 𝑠𝑠1 − 𝑥𝑥 ∧
𝑄𝑄 𝑥𝑥,𝑦𝑦 − 1,𝑎𝑎 + 𝑥𝑥, 𝑠𝑠2 ⇒ 𝑠𝑠1 − 𝑥𝑥 + (𝑎𝑎 + 𝑥𝑥) = 𝑠𝑠2
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Valid

QED



Properties of the Inductive Proof System for CHCs 
Solving
• Soundness: If the goal is proved, the original CHCs have a solution (which may not be 

expressible in the background theory)
• Relative Completeness: If the original CHCs have a solution expressible in the 

background theory, the goal is provable
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Automating Induction
• Use the following rule application strategy:

• Repeatedly apply INDHYP until no new premises are added
• Apply VALID whenever a new premise is added
• Select some 𝑃𝑃 𝑡̃𝑡 and apply INDUCT and UNFOLD

• Close a proof branch by VALID that uses
• SMT solvers: provide efficient and powerful reasoning about data structures (e.g., 

integers, reals, algebraic data structures) but predicates are abstracted as 
uninterpreted functions 

• CHC solvers: provide bit costly but powerful reasoning about inductive 
predicates
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A Prototype Entailment Checker MuCyc
http://lfp.dip.jp/rcaml/
• Use Z3 and SPACER respectively as the backend SMT and CHC solvers

• Integrated with a dependent refinement type based CHC generation tool RCaml for OCaml

• Currently support entailments in

• The fragment corresponding to CHCs: 𝑃𝑃1 𝑥𝑥1 , … ,𝑃𝑃𝑛𝑛 𝑥𝑥𝑛𝑛 ⊨ 𝜙𝜙 and

• 𝑃𝑃1 𝑥𝑥1 , … ,𝑃𝑃𝑛𝑛 𝑥𝑥𝑛𝑛 ⊨ 𝑄𝑄 𝑦⃗𝑦 , which is useful for program refinement verification and proving 
lemmas to prove entailments in the above fragment (cf. commutativity proof of mult)

• Can prove and then exploit lemmas which are:

• User-supplied,

• Heuristically conjectured from the given constraints, or

• Automatically generated by an abstract interpreter

• Can generate a counterexample (if any)
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http://lfp.dip.jp/rcaml/


Experiments on IsaPlanner Benchmark Set
• 85 (mostly) relational verification problems of

total functions on inductively defined data structures
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Inductive Theorem Prover #Successfully Proved
RCaml 68
Zeno 82 [Sonnex+ ’12]

HipSpec 80 [Claessen+ ’13]

CVC4 80 [Reynolds+ ’15]

ACL2s 74 (according to [Sonnex+ ’12])

IsaPlanner 47 (according to [Sonnex+ ’12])

Dafny 45 (according to [Sonnex+ ’12])

Support automatic 
lemma discovery &
goal generalization



Experiments on Benchmark Programs with 
Advanced Language Features & Side-Effects
• 30 (mostly) relational verification problems for:

• Complex integer functions: Ackermann, McCarthy91
• Nonlinear real functions: dyn_sys
• Higher-order functions: fold_left, fold_right, repeat, find, ...
• Exceptions: find
• Non-terminating functions: mult, sum, …
• Non-deterministic functions: randpos
• Imperative procedures: mult_Ccode
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• 28 (2 required lemmas) successfully proved by MuCyc

• 3 proved by CHC constraint solver 𝝁𝝁Z PDR
• 2 proved by inductive theorem prover CVC4 (if inductive 

predicates are encoded using uninterpreted functions)



Discussion
• The integration of SMT solving, CHC solving, and inductive theorem proving

resulted in an automated relational verifier across programs in various paradigms
with advanced language features and side-effects

• Current limitations
• Limited support for automatic lemma discovery and goal generalization
• Does not support the full fragment of 𝝁𝝁CLP

• Future directions
• Generalize the recently observed connection of (co)inductive theorem proving to

invariant and ranking function synthesis [LICS 2018, POPL 2023] and software model
checking [POPL 2022] to the full fragment of 𝜇𝜇CLP
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[LICS 2018] Nanjo et al. A Fixpoint Logic and Dependent Effects for Temporal Property Verification.
[POPL 2022] Tsukada, Unno. Software Model-Checking as Cyclic-Proof Search.
[POPL 2023] Unno et al. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.



Outline
1. Introduction
2. Challenges in Relational Verification
3. Automating Relational Verification

1. Self-Composition (or Product Programs) [CAV 2021]

2. Entailment Checking in 𝝁𝝁𝐂𝐂𝐋𝐋𝐏𝐏 [CAV 2017]

4. Current Limitations and Future Directions
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[CAV 2021] Unno et al. Constraint-Based Relational Verification.
[CAV 2017] Unno et al. Automating Induction for Solving Horn Clauses.



Current Limitations of Both Approaches
• It often becomes impossible to establish program refinement and equivalence, when 

there is movement of statements across loops or recursions
• E.g., loop-invariant code motion, loop interchange, loop fusion, …
• Using commutativity or idempotency at the right times may help establish 

program refinement or equivalence, but more research is needed to automate it
• Although not automated, the proof system for entailment in 𝝁𝝁CLP can prove commutativity 

and idempotency and use them as lemmas to prove other entailments that involve reordering
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Ongoing and Future Work
• Develop a general theory and algorithms for aligning reordered executions
• Improve the efficiency of semantic self-composition by incorporating abstraction,

search pruning, and symmetry breaking techniques
• Automate relational entailments checking in the full class of 𝜇𝜇CLP
• Automate program verification of:

• Temporal relational properties expressed in hyperlogics (HyperLTL, HyperCTL*, …)
• Probabilistic relational properties, motivated from

security, privacy, cryptography, and machine learning
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Conclusion
• Relational verification amounts to synthesis of relational invariants and schedulers
• Emerging semantic self-composition techniques enable precise alignment but 

require further development to be refined into an efficient solver
• An alternative approach based on entailment checking in 𝝁𝝁CLP, a first-order 

fixpoint logic, shows promise, though it requires more automation through the 
adoption of software model checking and theorem proving techniques to fully realize 
the potential of this approach

• In both automated approaches, aligning reordered executions remains a challenge
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Questions?
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